A Proof of Theorem 1

We proceed in two steps: First, we consider the simpler case of binary adjacency matrices B &€
{0,1}%*4 (Section A.1). Note that since {0, 1}%*? is a discrete space, we cannot take gradients or
do continuous optimization. For this we need the second step, in which we relax the function we
originally define on binary matrices to real matrices (Section A.2).

A.1 Special case: Binary adjacency matrices

When does a matrix B € {0, 1}4*¢ correspond to an acyclic graph? Recall the spectral radius r(B)
of a matrix B is the largest absolute eigenvalue of B. One simple characterization of acyclicity is the
following:

Proposition 2 (Infinite series). Suppose B € {0,1}%*¢ and r(B) < 1. Then B is a DAG if and only
if
tr(I - B)"' =d. (18)

Proof. Tt essentially boils down to the fact that tr B* counts the number of length-% closed walks in
a directed graph. Clearly an acyclic graph will have tr B¥ = 0 forall k = 1,.. ., cc. In other words,

B has no cycles if and only if f(B) =Y -, Z‘Z:l(Bk)ii = 0, then

oo ) oo d
w(I-B) =ty B =tl+Y uB =d+Y Y (BYu=d+ f(B)
k=0

k=1 k=11i=1
The desired result follows. O

Unfortunately, the condition that r(B) < 1 is strong: although it is automatically satisfied when B
is a DAG, it is generally not true otherwise, and furthermore the projection is nontrivial. Alterna-
tively, instead of the infinite series, one could consider the characterization based on finite series
ZZ:l tr BX = 0, which does not require 7(B) < 1. However, this is impractical for numerical rea-
sons: The entries of B can easily exceed machine precision for even small values of d, which makes
both function and gradient evaluations highly unstable. Therefore it remains to find a characterization
that not only holds for all possible B, but also has numerical stability.

Proposition 3 (Matrix exponential). A binary matrix B € {0,1}%*4 is a DAG if and only if
tre? = d. (19)

Proof. Similar to Proposition 2 by noting that B has no cycles if and only if (B*);; = 0 forall k& > 1
and all 7, which is true if and only if Y77, Zle(Bk)“/k! =tref —d=0. O

It is worth pointing out that matrix exponential is well-defined for all square matrices. In addition
to everywhere convergence, this characterization has an added bonus: As the number of edges in B
increases along with the number of nodes d, the number of possible closed walks grows rapidly, so
the trace characterization tr(I — B)~! rapidly becomes ill-conditioned and difficult to manage. By
re-weighting the number of length-k closed walks by k!, this becomes much easier to manage. While
this is a useful characterization, it does not satisfy all of our desiderata since—being defined over a
discrete space—it is not a smooth function. The final step is to extend Proposition 3 to all of R?*¢,

A.2 The general case: Weighted adjacency matrices

Unfortunately, the characterization (19) fails if we replace B with an arbitrary weighted matrix .
However, we can replace B with any nonnegative weighted matrix, and the same argument use to
prove Proposition 3 shows that (19) will still characterize acyclicity. Thus, to extend this to matrices
with both positive and negative values, we can simply use the Hadamard product W o W, which
leads to

h(W) =tr (VW) —d=0 (20)
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and its gradient
Vh(W) = (VW) 02w @21)

The proof of (5) is similar to (19), and desiderata (c)-(d) follow from (6). To see why desiderata (b)
holds, note that the proof of Proposition 2 shows that the power series tr(B + B% + ---) simply
counts the number of closed walks in B, and the matrix exponential simply re-weights these counts.
Replacing B with W o W amounts to counting weighted closed walks, where the weight of each
edge is wfj Thus, larger h(W) > h(W') means either (a) W has more cycles than W’ or (b) The

cycles in W are more heavily weighted than in W',

Moreover, notice that A(W') > 0 for all W since each term in the series is nonnegative. This gives
another interesting perspective of the space of DAGs as the set of global minima of h(W). However,
due to the nonconvexity, this is not equivalent to the first order stationary condition Vh(W) = 0.

B Details of Proximal Quasi-Newton

Recall By, € RP*P is the low-rank approximation of the Hessian matrix given by L-BFGS updates.
Let the memory size of L-BFGS be m, which is taken to be m < p. The compact form of L-BFGS
update can be written as

By, = I — QQ, (22)
where
sTs, L.17' 4
Q=[S Yi], R= [”’“L'ZT ’ _5,6} . Q=RQ",
Sk =1[8k-m - Sk—1], Vi =Weem - Yr_1),

T T
Sk = Wi+1 — Wk, Y = 9Gkr1 — Gy Tk = Yi1Yk—1/8k—1Y%—1,

T e
i St i _ o, ifi >
Dy, = diag [s{_, Yr_m sT 1 ynoa]s (L) :{ k—mai—1Yk—m+j—1 J

0 otherwise

The low rank structure of By, enables fast computation of subsequent coordinate descent procedure.
Specifically, notice that all Q,R,Q, and diag(B) can be precomputed in O(m?p + m?) time,
which is significantly smaller than naive Hessian inversion O(p?). After precomputation, in each
coordinate update, both a and ¢ in (17) can be computed and updated in O(1) time. Moreover, let
d = Qd € R?™, we have (Bd); = vd; — @,..d, which suggests b in (17) only requires O(m) to
compute and update. Therefore each coordinate update is O(m).

The detailed procedure of PQN is outlined in Algorithm 2.

C Sensitivity of threshold

We demonstrate the effect of threshold in Figure 4. For each setting, we computed the “ROC” curve
for FDR and TPR with varying level of threshold, while ensuring the resulting graph is indeed a

DAG. On the right, we also present the estimated edge weights of Wgcp in decreasing order. One can
first observe that in all cases most of the edge weights are equal or close to zero as expected. The
remaining question is how to choose a threshold that separates out these (near zero) from signals
(away from zero) so that best performance can be achieved. With enough samples, one can often
notice a sudden change in the weight distribution as in Figure 4(a)(c). With insufficient samples, the
breakpoint is less clear, and the optimal choice that balances between TPR and FDR is depends on
the specific settings. Nonetheless, the predictive performance is less sensitive to threshold value as
one can see from the slope of the decrease in the weights before getting close to zero. Indeed, in our
experiments, we found a fixed threshold w = 0.3 is a suboptimal yet reasonable choice across many
different settings.
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Algorithm 2 Proximal Quasi-Newton for unconstrained problem [50]

1. Input: wy, gg = V f(wy), active set S = [p].
2. Fork=0,1,2,...:
(a) Shrink S to rule out j with w; = 0 or small subgradient [0; L(w)|
(b) If shrinking stopping criteria is satisfied
i. Reset S = [p] and L-BFGS memory
ii. Update shrinking stopping criteria and continue
(c) Solve (16) for descent direction dj, using coordinate update (17) on active set
(d) Line search for step size n € (0, 1] until Armijo rule is satisfied:

flwy +ndy) < f(we) + ner(M|wy + dills = A|lwel| + gidi),  (23)

where ¢; is some small constant, typically set to 10~2 or 1074,
(e) Generate new iterate wy1 < wg + ndg

(f) Update g, s,y,Q, R, @ restricted to S
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Figure 4: Illustration of the effect of the threshold with d = 20 and A = 0.1. For each subfigure,
ROC curve (left) shows FDR and TPR with varying level of threshold, and sorted weights (right)
plots the entries of Wgcp in decreasing order.

D Sensitivity of weight scale

We investigate the effect of weight scaling to the NOTEARS algorithm in Figure 5. In particular,
we run experiments with w;; € o - [0.5,2] U —c - [0.5, 2] with o« € {1.0,0.9,0.8,...,0.1}. On the
left, we plot the smallest threshold w required to obtain a DAG (see Section 4.3) for different scale a.
Overall, across different values of «, the variation in the smallest w required is minimal. We also
hasten to point out that this also decreases the signal to noise ratio (SNR), which more directly affects

the accuracy. Indeed, in the figure on the right, we can observe (as expected) some performance drop
when using smaller value of a.
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Figure 5: Varying weight scale « € {1.0,...,0.1} with d = 20 and n = 1000 on an ER-2 graph.

(Left) Smallest threshold w such that W is a DAG. (Right) SHD between ground truth and NOTEARS,
lower the better. The minimum w remains stable, while the accuracy of NOTEARS drops as expected
since the SNR decreases with a.

E Experiments

E.1 Experiment details
We used simulated graphs from two well-known ensembles of random graphs:

o Erdos-Rényi (ER). Random graphs whose edges are added independently with equal proba-
bility p. We simulated models with d, 2d, and 4d edges (in expectation) each, denoted by
ER-1, ER-2, and ER-4, respectively.

o Scale-free networks (SF). Networks simulated according to the preferential attachment

process described in Barabdsi & Albert [5]. We simulated scale-free networks with 4d edges
and 8 = 1, where (3 is the exponent used in the preferential attachment process.

Scale-free graphs are popular since they exhibit topological properties similar to real-world net-
works such as gene networks, social networks, and the internet. Given a random acyclic graph
B € {0,1}9%4 from one of these two ensembles, we assigned edge weights independently from
Unif ([—2, —0.5] U [0.5,2]) to obtain a weight matrix W = [wy | - -+ |wa] € R4, Given W, we

sampled X = WT X + z € R? according to the following three noise models:

e Gaussian noise (Gauss). z ~ N(0, Ijxq)-
o Exponential noise (Exp). z; ~ Exp(1),j=1,...,d.
o Gumbel noise (Gumbel). z; ~ Gumbel(0,1),j=1,...,d.

Based on these models, we generated random datasets X € R™*¢ by generating the rows i.i.d.
according to one of the models above. For each simulation, we generated n samples for graphs
with d € {10, 20,50, 100} nodes. To study both high- and low-dimensional settings, we used
n € {20,1000}.

For each dataset, we ran FGS, PC, and LinGAM and NOTEARS to compare the performance in
reconstructing the DAG B. We used the following implementations:

e FGS and PC were implemented through the py-causal package, available at https://
github.com/bd2kccd/py-causal. Both of these methods are written in highly optimized
Java code.

e LinGAM was implemented using the author’s Python code: https://sites.google.
com/site/sshimizu06/1ingam.

Since the accuracy of PC and LiINGAM was significantly lower than either FGS or NOTEARS, we
only report the results against FGS. A few comments on FGS are in order: 1) FGS estimates a graph,
so it does not output any parameter estimates; 2) Instead of returning a DAG, FGS returns a CPDAG
[9], which contains undirected edges; 3) FGS has a single tuning parameter that controls the strength
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Figure 6: Visual comparison of the learned weighted adjacency matrix on a 20-node graph with
n = 1000 (large samples) and n = 20 (insufficient samples): Wecp(A) is the proposed NOTEARS
algorithm with ¢;-regularization A, and Bggs is the binary estimate of the baseline [31]. Top row:
ER1, bottom row: ER4.

of regularization. Thus, in our evaluations, we treated FGS favourably by treating undirected edges
as true positives as long as the true graph had a directed edge in place of the undirected edge. For
tuning parameters, we used the values suggested by the authors of the FGS code.

Denote the estimate returned by FGS by Brgs. As discussed in Appendix C, we fix the threshold
at w = 0.3. Having fixed w, when there is no regularization, NOTEARS requires no tuning. With
¢1-regularization, NOTEARS-/; requires a choice of A which wes selected as follows: Based on the
estimate returned by FGS, we tuned A so that the selected graph (after thresholding) had the same
number of edges as Brgs (or as close as possible). This ensures that the results are not influenced by
hyperparameter tuning, and fairly compares each method on graphs of roughly the same complexity.

Denote this estimate by W and the resulting adjacency matrix by B = A(W).

E.2 Metrics

We evaluated the learned graphs on four common graph metrics: 1) False discovery rate (FDR), 2)
True positive rate (TPR), 3) False positive rate (FPR), and 4) Structural Hamming distance (SHD).
Recall that SHD is the total number of edge additions, deletions, and reversals needed to convert
the estimated DAG into the true DAG. Since we consider directed graphs, a distinction between
True Positives (TP) and Reversed edges (R) is needed: the former is estimated with correct direction
whereas the latter is not. Likewise, a False Positive (FP) is an edge that is not in the undirected
skeleton of the true graph. In addition, Positive (P) is the set of estimated edges, True (T) is the set of
true edges, False (F) is the set of non-edges in the ground truth graph. Finally, let (E) be the extra
edges from the skeleton, (M) be the missing edges from the skeleton. The four metrics are then given
by:

1. FDR = (R + FP)/P
2. TPR = TP/T

3. FPR = (R + FP)/F
4. SHD = E + M + R.

E.3 Further evaluations

Figure 6 shows learned weighted adjacency matrices for ER1 and ER4. One can observe the same
trend: with large n, both regularized and unregularized NOTEARS works well compared to FGS,
and with small n, due to identifiability, the unregularized NOTEARS suffers significantly, yet with
the help of ¢;-regularization we can still accurately recover the true underlying graph.

Figure 7 and Figure 8 shows structure recovery results for n = 1000 and n = 20 for various random
graphs and SEM noise types. Other than fixed w as in the main paper, we also included the optimal
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Figure 7: Structure recovery results for n = 1000. Lower is better, except for TPR (lower left), for

which higher is better. Rows: random graph types, { ER,SF}-k = { Erdos-Rényi, scale-free} graphs

with kd expected edges. Columns: noise types of SEM. Error bars represent standard errors over 10

simulations.

choice of thresholding, marked as “best”

general outperforms FGS, without tuning w to the optimum for each setting.

Table 2 extends the global minimizer result for various random graph types. For each random graph
and samples, we computed exact local scores as inputs to GOBNILP program, which finds the
globally optimal structure for the given score. We can again observe that the difference between our

estimate ¥ and global minimizer W is small across all cases.
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Figure 8: Structure recovery results for n = 20. Lower is better, except for TPR (lower left), for
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with kd expected edges. Columns: noise types of SEM. Error bars represent standard errors over 10
simulations.

Table 2: Comparison of NOTEARS vs. globally optimal solution. A(WG7/M7) =FWg) — (W)
n__ A Graph F(W) F(We) F(W) F(Wee) AWa, W) [W —Wel [W — Wl

20 0.00 ERI 5.01 3.69 519 3.73 -1.50 0.09 3.54
20 0.50 ER1 1243 9.90 10.69 9.88 -0.78 0.11 2.76
1000 0.00 ERI  4.96 493 497 4.92 -0.04 0.03 0.35
1000 0.50 ERI 1237 1053 11.01 10.58 -0.48 0.11 2.47
20 0.00 ER2 5.11 385 5.36 3.88 -1.52 0.07 3.38
20 0.50 ER2 16.04 12.81 13.49 12.90 -0.68 0.12 3.15
1000 0.00 ER2 4.99 497 5.02 4.95 -0.05 0.02 0.40
1000 0.50 ER2 1593 1332 14.03 13.46 -0.71 0.12 2.95
20 0.00 ER4 4.76 3.66 5.23 3.88 -1.57 0.08 4.25
20 050 ER4 2824 1638 19.81 16.82 -3.44 0.15 6.66
1000 0.00 ER4 5.03 5.00 5.50 4.97 -0.50 0.00 0.46
1000 0.50 ER4 2851 1829 29091 18.69 -11.61 0.13 5.76
20 0.00 SF4 499 377 4.0 3.85 -0.93 0.08 3.31
20 0.50 SF4 2333 16.19 17.31 16.69 -1.12 0.15 5.08
1000 0.00 SF4 4.96 494  5.05 4.99 -0.11 0.04 0.29
1000 0.50 SF4 2329 17.56 19.70 18.43 -2.13 0.13 4.34
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