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Table S1: Details of network structure and training scheme for each system.

System enbedding neta M2
b fitting net cutoffc LR schemed pref. schemee

Mol. uni.f (50,100) 6 (240,240,240) - (2e+7,1e+5,32,5e-4,0.97) (0.02,1.0,1000,1)
Mol. ind.g (30,60) 6 (80,80,80) - (2e+7,1e+5,32,5e-3,0.96) (0.2,1.0,1000,1)

Cu (40,80) 4 (160,160,160) (5.8,6.0) (2e+6,1e+4,1,5e-3,0.95) (0.1,0.1,1000,1)
Ge (40,80) 4 (160,160,160) (6.8,7.0) (2e+6,1e+4,1,5e-3,0.95) (0.1,0.1,1000,1)
Si (40,80) 4 (160,160,160) (5.8,6.0) (2e+6,1e+4,1,5e-3,0.95) (0.1,0.1,1000,1)

Al2O3 (40,80) 4 (160,160,160) (5.8,6.0) (2e+6,1e+4,1,5e-3,0.95) (0.1,0.1,1000,1)
C5H5N (50,100,100) 8 (240,240,240,240) (6.3,6.5) (4e+6,2e+4,1,5e-3,0.95) (0.2,1.0,1000,1)

TiO2 (60,120,120) 6 (240,240,240,240) (7.2,7.5) (2e+6,1e+4,1,1e-3,0.96) (0.1,0.1,1000,1)
MoS2+Pt (60,120,120) 8 (240,240,240,240) (7.2,7.5) (2e+6,1e+4,1,1e-3,0.96) (1,3,1000,1)

HEA (60,120,120) 8 (300,300,300,300) (6.8,7.0) (2.3e+6,1e+4,1,1e-3,0.96) (0.01,10,1000,1)

aThe architecture of the embedding/fitting net is given by the number of nodes in each hidden layer. We adopt
a ResNet-like structure. For one layer ol going to the next layer ol+1, ol first undergoes a linear transformation
and then a nonlinear activation, i.e., õl+1 = tanh(W lol + bl), where tanh is a component-wize hyperbolic
tangent function. Next, if the number of nodes in ol is the same as ol+1, let ôl+1 = ol; else, if the number of
nodes in ol is half of ol+1, we make two copies of ols and concatenate them together to define ôl+1. Finally,
ol+1 = ôl+1 + tiõ

l+1. In the embedding net we set ti to 1; while in the fitting net, we set it to a trainable
parameter.

bM2 the number of columns that one slices from Gi to define Gi2 in Eq. (12).
cIn the format of (rcs, rc) defined in Eq. (10).
dThe parameters (a1, a2, a3, a4, a5) in the learning rate (LR) scheme are the total training batch, the decay

batch, the batch size, the starting learning rate, and the decay rate, respectively. If the current training batch is x,
then the learning rate will be a4 × a5

x/a2 .
eThe parameters (p1, p2, p3, p4) in the prefactor (pref.) scheme are the pstart for energy, plimit for energy,

pstart for force, and plimit for force, respectively. They are used to define the loss function in Eq. (13). The
prefactor scheme is p = plimit(1− a5

x/a2) + pstart(a5
x/a2). See definition for x, a2 and a5 in the footnote

for LR scheme. No virial information is used for all the systems but C5H5N. For C5H5N, the pstart for virial is
0.2, and plimit for virial is 1.

fMol. uni. means the unified DeepPot-SE model for 7 different molecules.
gMol. ind. means individule DeepPot-SE models for 7 different molecules. The network structures and

training schemes are all the same for the 7 cases, so we report in a line.
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Proposition 1. The DeepPot-SE model is invariant under translational, rotational, and permutational
operations.

Proof. According to the main text, the DeepPot-SE model can be summarized as

Ew(R) =
∑
i

Ei, Ei = Ei(Di(Ri)).

It suffices to show that Di(Ri) is invariant under translational, rotational, and permutational opera-
tions.

First, sinceRi is composed of relative coordinates between i and its neighbors, Di is invariant under
translational operations.

Second, note that length scalar rji and dot product rji · rki are invariant under rotational operations.
Recall that Di = (Gi1)T R̃i(R̃i)TGi2, where Gi1 and Gi2 are functions of scalars rji only and the
jk-th element of the matrix R̃i(R̃i)T is s(rji)s(rki)(1 +

rji·rki

rjirki
), which again involves only scalars

and dot products of vectors, we know Di is invariant under rotational operations.

Finally, since [(R̃i)TGi2]lm =
∑

k[(R̃i)T ]lk[Gi2]km, a permutation of atomic indices amounts to
a permutation of k in the summation rule

∑
k, which leaves [(R̃i)TGi2]lm unchanged. Therefore,

(R̃i)TGi2 is invariant under permutational operations. Similarly, (Gi1)T R̃i is also invariant under
permutational operations. Therefore, Di is invariant under permutational operations.
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