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Sup.1 Notation

Table Sup.1: Summary of notation

Notation Interpretation
x, z two arbitrary, non-zero vectors
xpiq, zpiq the corresponding output vectors at layer i P t0, 1, 2u
x
piq
j , zpiqj the jth block of xpiq, zpiq, no permutation

x̃piq, z̃piq the permuted vectors at layer i P t0, 1, 2u
x̃
piq
j , z̃piqj the jth block of xpiq, zpiq after permutation
D0, D1, D2 number of blocks in a vector (before 1st layer, after permutation, and after 2nd layer,

respectively)
W1,W2 block weight matrices at each convolution layer
Wi,`,z effective weight matrices with ReLU taken into account, when input vector is z
Qx,z expectation of WT

`,xW`,z

θpiq the angle between two different vectors x, z at layer i
θ
piq
j the angle between the jth blocks of xpiqj , zpiqj at layer i, without permutation
θ̃
piq
j the angle between the jth blocks of x̃piqj , z̃piqj at layer i, with permutation

h̃x,z a random vector that WT
1,`,xW

T
2,`,xW2,`,zW1,`,zz concentrates around

hz,z˛ the perturbation of h̃z,z˛ around its mean z{4
Sε,z˛ a small region outside which the perturbation hz,z˛ is very small
vz,z˛ descent direction at z

Before continuing to the proof of Theorem 1, we introduce some notation.

Let In be an n ˆ n identity matrix. If dimension is not specified, we assume it is clear from the
context. Let diagpAz ą 0q be a diagonal matrix, where pi, iqth “ 1 if pAzqi ą 0, and 0 otherwise.
Let Bpz, rq be an Euclidean ball of radius r centered at z. Let W1,`,z “ diagpW1z ą 0qW1 and
W2,`,z “ diagpW2W1,`,zz ą 0qW2. For matrices, }A} denotes the spectral norm. Let Sk´1 be
the unit sphere in Rk. A block vector z “ rzis

n
i P Rkn is a concatenation of n vectors, each of
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size k, and uses boldface notation. Similarly, a diagonal block matrix is denoted W “ rWis
n
i , with

matrices tWiu on it diagonal. For any nonzero z P Rk, let hx “ x
}x}2

. For block vector z “ rzisni , let
z̄ “ rz̄is

n
i“1. For fixed x, z P Rk, let MhxØz̄ be the matrix such that MhxØz̄hx “ z̄, MhxØz̄ z̄ “ hx

and MhxØz̄v “ 0 for all v P spanptx, zuqK. Then given block vectors x “ rxisni“1, z “ rzis
n
i“1, let

Mx̄Øz̄ “ rMhxiØhzi
sni“1. Denote the block identity matrix I “ rIks

n
i“1. Let =px, zq be the angle

between two vectors x and z.

Recall that the weight matrix Wi each for layers i “ 1, 2 is assumed to be permuted to be a block
matrix, as illustrated in Figure Sup.1(b). A corresponding permutation is also applied to the input
vectors of each layers.

Specifically, assume an input block vector z “ zp0q “ rz
p0q
j s

D0
j“1, then the output of the first transposed

convolution layer is zp1q “ W1,`,zz
p0q which also has D0 channels (blocks). Before the second

convolution layer, we apply another permutation such that the new vector z̃p1q “ Permpzp1qq now
has D1 blocks. z̃p1q is then fed as an input to the second transpose convolution layer, resulting in an
output zp2q “W2,`,zz̃

p1q.

In addition, let θpiq “ =pxpiq, zpiqq denote the angle between two different vectors xpiq, zpiq at the
ith layer. In particular, let θpiqj “ =px

piq
j , z

piq
j q denote the angle between the jth blocks of the two

vectors. If the vectors are permuted, we use θ̃piqj “ =px̃
piq
j , z̃

piq
j q. We also introduce the notation d

for multiplication of a regular vector a P Rn and a block vector z “ rzjsnj“1 in the following way:

ad z “ rajzjs
n
j“1.

We use big-Op¨q notation to denote the order of magnitude for a variable. Finally, we also use À,Á
and » when the inequalities and equalities are up to a small universal constant ε which may not be
specified. For instance x » y indicates that x “ y `Opεq. All vector and angle notations used are
summarized in Table Sup.1.

Sup.2 Proof for Theorem 1
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Figure Sup.1: Illustration of a single transposed convolution operation. kji stands for ith filter
kernel for the jth input channel. z and x denote the input and output signals, respectively. (a) The
standard transposed convolution represented as linear multiplication. (b) With proper row and column
permutations, the permuted weight matrix has a repeating block structure.

Proof mostly follows the arguments in the recent paper by [1]. As we discussed in Section 2, the
weight matrix W1 P RC1D1ˆC0D0 of the first layer of the network can be arranged as a block matrix
W1 “ rW s

D0
i“1 where W P RC1`ˆC0 is a Gaussian matrix repeating in each block, see Figure Sup.1.

In the rest of the proof we will use this arrangement of the matrix. Note that this effectively means a
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permuation of the vectors after each layer. This has to be handled carefully througout the proof. By
assumption, the sampling matrix A is an identity matrix, so the cost function can be written as

Jpzq “
1

2
}Gpz˛q ´Gpzq}22.

The operation of the first layer on an input signal z “ rzisD0
i“1 is

W1,`,zz “ σpW1zq.

In general operation of the generator network can be written as

Gpzq “W2,`,zW1,`,zz.

Remark Sup.0. The matrix W1,`,z captures the operation of ReLU activation combined with
weights of each layer, hence it will be instrumental in the rest of the proof. We note that that in the

case of Leaky ReLU activation Lpxq “
"

x if x ě 0
αx if x ă 0

, the output of each layer is

LpW1zq “ diagpW1z ą 0qW1z` α diagpW1z ă 0qW1z “ αW1z` p1´ αqW1,`,zz.

In the rest of the proof we assume the input vectors are in the block form as well as the weight
matrices and denote them in boldface. This does not change the operation of the neural network. Next
we prove a central technical lemma which concerns concentration of the matrix WT

1,`,xW1,`,z. First
we define the following matrices. For any nonzero x, z P Rn with angle θx,z “ =px, zq between , let

Qx,z :“
π ´ θx,z

2π
In `

sin θx,z
2π

MhxØz̄. (Sup.1)

Similarly for two block vectors x “ rxisni“1 and z “ rzis
n
i“1, define the block matrix

Qx,z :“ rQxi,zis
n
i“1. (Sup.2)

The following result appears in [1].

Lemma Sup.1 (Lemma 5 [1]). Fix ε P p0, 1q. Let A P Rnˆk have i.i.d. N p0, 1{nq entries. If
n ą ck log k, then with probability at least 1´ 8ne´γk,

@x, z P Rk, }AT
`,xA`,z ´Qx,z} ď ε. (Sup.3)

When x “ y, it holds

@x ‰ 0, }AT
`,xA`,x ´ In{2} ď ε. (Sup.4)

Here c, γ depends only on ε.

Here the matrix Qx,z happens to be the expectation of the matrix AT
`,xA`,z . This can be shown by

an elementary calculation. We can now state the central technical lemma.

Lemma Sup.2. Fix ε P p0, 1q. Let W “ rW sD0
i“1 where W P RC1`ˆC0 have i.i.d. N p0, 1{C1`q. If

C1` Áε C0 logC0, then with probability at least 1´ 8D0`C1 e
´γC0 ,

@x, z P RC0D0 , }WT
`,xW`,z ´Qx,z} ď ε. (Sup.5)

When x “ y, it holds

@x ‰ 0, }WT
`,xW`,x ´ I{2} ď ε. (Sup.6)

Here c, γ depends only on ε.

Lemma Sup.2 is crucial to the rest of the proof. We note that the conditions of Theorem 1 are almost
identical to the ones of Lemma Sup.2. In other words, the concentration of weight matrices as given
in (4) and (5) are enough to imply the existence of a strict descent direction for the cost function Jpxq
outside of two small neighborhoods. We now prove the lemma.
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Proof. Observe that for block vectors x “ rxisD0
i“1 and z “ rzis

D0
i“1 we can write

WT
1,`,xW1,`,z “ rW

T
`,xiW`,zis

D0
i“1. (Sup.7)

We know from spectral norm of block matrices that

}WT
1,`,xW1,`,z ´Qx,z} “ max

i“1,...,D0

}WT
`,xiW`,zi ´Qxi,zi}. (Sup.8)

Lemma Sup.1 implies that if C1` Á C0 logC0 then with probability at least 1´ 8C1`e
´γC0 , it holds

that }WT
`,xiW`,zi ´Qxi,zi} ď ε. A union bound argument yields

Pp}WT
1,`,xW1,`,z ´Qx,z} ď εq ď

D0
ÿ

i“1

Pp}WT
`,xiW`,zi ´Qxi,zi} ď εq ď 8D0C1` e

´γC0 .

Next, we present another useful result that controls how W1,`,x distorts the angle between two
vectors x, z. Let:

gpθq :“ cos´1

ˆ

pπ ´ θq cos θ ` sin θ

π

˙

.

First we borrow another result from [1].

Lemma Sup.3 (Lemma 23 [1]). Fix ε P p0, 0.1q. Let the conditions of Lemma Sup.1 hold and A
satisfy (Sup.3). For x, z denote θ0 “ =px, zq and θ1 :“ =pA`,xx,A`,zzq. Then

|θ1 ´ gpθ0q| ď 4
?
ε.

This lemma shows that a Gaussian matrix combined with ReLU operation preserves the angle between
vectors up to function gp¨q. Our next lemma uses this result.

Lemma Sup.4. Fix ε ă 1{p16πq2. Assume that weight matrices W1 and W2 satisfy (Sup.5) with
constant ε. Then it holds for all x, z ‰ 0 that

xW2,`,xW1,`,xx,W2,`,zW1,`,zzy ą 0.

Proof. We operate under the assumptions that the weight matrices Wj for layer i “ 1, 2 satisfy
Equation (Sup.4) and Equation (Sup.6). In particular these equations imply that for layer i “ 1, 2 and
all input vector z, z ‰ 0,

1

2
´ ε ď }Wi,`,z}

2 ď
1

2
` ε (Sup.9)

1

2
´ ε ď }Wi,`,z}

2 ď
1

2
` ε. (Sup.10)

Since zp1q “W1,`,zz
p0q, it follows that for all blocks j “ 1, . . . , D0 that

c

1

2
´ ε }z

p0q
j }2 ď }z

p1q
j }2 ď

c

1

2
` ε }z

p0q
j }2 (Sup.11)

c

1

2
´ ε }zp0q}2 ď }z

p1q}2 ď

c

1

2
` ε }zp0q}2.

The same statements hold true for x and xpiqj as well. Consequently, by dividing the inequalities we
have for x and z that

c

1´ 2ε

1` 2ε

}x
p0q
j }2

}z
p0q
j }2

ď
}x
p1q
j }2

}z
p1q
j }2

ď

c

1` 2ε

1´ 2ε

}x
p0q
j }2

}z
p0q
j }2

(Sup.12)

c

1´ 2ε

1` 2ε

}xp0q}2
}zp0q}2

ď
}xp1q}2
}zp1q}2

ď

c

1` 2ε

1´ 2ε

}xp0q}2
}zp0q}2

. (Sup.13)
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Figure Sup.2: Plot of function gp¨q defined in Section Sup.2

We assume without loss of generality that the input vectors xp0q “ rxp0qj s
D0
j“1 and zp0q “ rz

p0q
j s

D0
j“1

are block normalized, i.e., }xp0qj }2 “ }z
p0q
j }2 “ 1. We have

xxp1q, zp1qy “
ÿ

j

xx
p1q
j , z

p1q
j y “

}xp1q}2}z
p1q}2 cosθp1q “

ÿ

j

}x
p1q
j }2}z

p1q
j }2 cos θ

p1q
j

ě min
j

cos θ
p1q
j

ÿ

j

}x
p1q
j }2}z

p1q
j }2. (Sup.14)

Using the fact that input vectors are block normalized, it follows from the first inequality in (Sup.12)
that

c

1´ 2ε

1` 2ε
}z
p1q
j }22 ď }x

p1q
j }2}z

p1q
j }2 (Sup.15)

and from the second inequality in (Sup.13) that

}xp1q}2}z
p1q}2 ď

c

1` 2ε

1´ 2ε
}zp1q}22 (Sup.16)

Combining (Sup.14), (Sup.15) and (Sup.16) yields that
c

1` 2ε

1´ 2ε
}zp1q}22 cosθp1q ě

c

1´ 2ε

1` 2ε
min
j

cos θ
p1q
j

ÿ

j

}z
p1q
j }22

which in turn implies that

p1` 8εq cosθp1q ě min
j

cos θ
p1q
j “ cos θ

p1q
pi
, (Sup.17)

for some pi. Here we used the fact that 1`v
1´v ď 1 ` 4v for 0 ď z ď 1

2 . Lemma Sup.3 implies that

|θ
p1q
pi
´ gpθ

p0q
pi
q| ď 4

?
ε. Since gpθp0q

î
q ă π

4 (see Figure Sup.2), we have 0 ď θ
p1q
pi
ď π

4 ` 4
?
ε. Then

for small enough ε, (Sup.17) implies that

cosθp1q ě
cos θ

p1q
pi

1` 8ε
ě

cospπ4 ` 4
?
εq

1` 8ε
ą 0.6.
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The last inequality comes from the fact that cospπ4`4
?
εq

1`8ε is monotonically decreasing with small ε,
so the minimum can be computed and is roughly equals to 0.646, since ε ă 1{p16πq2. The exact
number doesn’t affect the final results, because we only want to bound cosθp1q away from 0.

Now we proceed to the second layer of the network. As explained in the Section Sup.1, we first
reorder vectors x̃p1q “ rx̃p1qj s

D1
j“1 and z̃p1q “ rz̃

p1q
j s

D1
j“1. We expand the dot product of xp1q and zp1q

similarly as before

}xp1q}2}z
p1q}2 cosθp1q “

ÿ

j

}x̃
p1q
j }2}z̃

p1q
j }2 cos θ̃

p1q
j .

Define the set of indices
I “ tj : }x̃

p1q
j }2 ‰ 0 and }x̃p1qj }2 ‰ 0u.

Then we can continue

}xp1q}2}z
p1q}2 cosθp1q “

ÿ

jPI

}x̃
p1q
j }2}z̃

p1q
j }2 cos θ̃

p1q
j

ď max
jPI

cos θ̃
p1q
j

ÿ

jPI

}x̃
p1q
j }2}z̃

p1q
j }2

ď max
jPI

cos θ̃
p1q
j }x̃

p1q}2}z̃
p1q}2

where we used Cauchy-Schwartz inequality in the last line. Since the reordering does not change the
norm of the block vectors, we have }xp1q}2}zp1q}2 “ }x̃p1q}2}z̃p1q}2. Consequently, it follows that
cosθp1q ď maxjPI cos θ̃

p1q
j . In other words, for some pj P I ,

0.6 ă cosθp1q ď cos θ̃
p1q
pj
. (Sup.18)

Recall that after the second transposed convolution layer of the network, we have zp2qj “ W2z̃
p1q
j .

Since similar relation as in (Sup.11) holds for second layer as well and we have }x̃p1q
pj
}2 ą 0 and

}z̃
p1q
pj
}2 ą 0 as pj P I , it follows that

}x̃
p2q
pj
}2 ą 0 and }z̃p2q

pj
}2 ą 0. (Sup.19)

By invoking Lemma Sup.3 once again, we have |θp2q
pj
´ gpθ̃

p1q
pj
q| ď 4

?
ε. Combining this with

(Sup.18) yields

cos θ
p2q
pj
ě 0.6. (Sup.20)

Finally we arrive at the desired result

xW2,`,xW1,`,xx
p0q,W2,`,zW1,`,zz

p0qy

“ xxp2q, zp2qy “
ÿ

j

}x
p2q
j }2}z

p2q
j }2 cos θ

p2q
j

ě }x
p2q
pj
}2}z

p2q
pj
}2 cos θ

p2q
pj
ą 0

which follows from (Sup.19) and (Sup.20).

Sup.2.1 Additional Lemmas

Recall that the block weight matrix is defined as W1 “ rW1s
D0
j“1 where W1 P RC1`ˆC0 . Similarly,

W2 “ rW2s
D1
j“1 where W2 P RC2`ˆC1 . In the following lemma, we extend the concentration of

matrix products in Lemma Sup.2 to 2-layer networks.
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Lemma Sup.5. Fix ε P p0, 1q. Let W1 have i.i.d. N p0, 1{C1`q weights and W2 have i.i.d.
N p0, 1{C2`q weights. Assume the conditions of Lemma Sup.2 hold, then with high probability
for all z “ 0,

}WT
1,`,zW

T
2,`,zW2,`,zW1,`,z ´ I{4} ď 2ε. (Sup.21)

Proof. From Lemma Sup.2, we know that for all z “ 0,
}WT

1,`,zW1,`,z ´ I{2} ď ε

}WT
2,`,zW2,`,z ´ I{2} ď ε

Also, from Equation (Sup.10) we have

}W1,`,z}
2 ď

1

2
` ε.

Using these two along with the triangle inequality, it follows that
}WT

1,`,zW
T
2,`,zW2,`,zW1,`,z ´ I{4}

“

›

›

›

›

ˆ

WT
1,`,zW

T
2,`,zW2,`,zW1,`,z ´

1

2
WT

1,`,zW1,`,z

˙

`

ˆ

1

2
WT

1,`,zW1,`,z ´ I{4

˙
›

›

›

›

ď }WT
1,`,zpW

T
2,`,zW2,`,z ´ I{2qW1,`,z}

`
1

2
}WT

1,`,zW1,`,z ´ I{2}

ď }W1,`,z}
2}WT

2,`,zW2,`,z ´ I{2}

`
1

2
}WT

1,`,zW1,`,z ´ I{2}

ď

ˆ

1

2
` ε

˙

ε`
1

2
ε ď 2ε.

Given block vectors x and z, we define the following vector

h̃x,z :“

„

π´θ̃
p1q
j

2π

D1

j“1

d

˜

„

π´θ
p0q
j

2π

D0

j“1

d z`

„

sin θ
p0q
j }z

p0q
j }2

2π}x
p0q
j }2

D0

j“1

d x

¸

`

„

sin θ̃
p1q
j }z̃

p1q
j }2

2π}x̃
p1q
j }2

D1

j“1

d x

(Sup.22)

where θ̃
p1q
j , x̃

p1q
j , z̃

p1q
j are defined as in Section Sup.1 and Table Sup.1. Next we show that

WT
1,`,xW

T
2,`,xW2,`,zW1,`,zz concentrates around this random vector h̃x,z.

Lemma Sup.6. Assume W1 and W2 satisfy the conditions of Lemma Sup.2. The for all x ‰ 0, z ‰ 0
we have

}WT
1,`,xW

T
2,`,xW2,`,zW1,`,zz´ h̃x,z}2 À εmaxt}x}2, }z}2u.

Proof. We expand
WT

1,`,xW
T
2,`,xW2,`,zW1,`,zz “

WT
1,`,xrW

T
2,`,xW2,`,z ´Qxp1q,zp1qsW1,`,zz

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

T1

`

„

π´θ̃
p1q
j

2π

D1

j“1

dWT
1,`,xW1,`,zz

looooooooooooooooooomooooooooooooooooooon

T2

`

„

sin θ̃
p1q
j }z̃

p1q
j }2

2π}x̃
p1q
j }2

D1

j“1

dWT
1,`,xW1,`,xx

looooooooooooooooooooooomooooooooooooooooooooooon

T3

.
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We have

|T1| ď }W1,`,x}}W1,`,z}}W
T
2,`,xW2,`,z ´Qxp1q,zp1q}}z}2 ď ε}z}2 (Sup.23)

where we used (Sup.10) and Lemma Sup.2. Expanding T2 we get

T2 ´

„

π´θ̃
p1q
j

2π

D1

j“1

dQx,zz “

„

π´θ̃
p1q
j

2π

D1

j“1

d rWT
1,`,xW1,`,zz´Qx,zs

which can be bounded as follows
ˇ

ˇ

ˇ

ˇ

ˇ

T2 ´

„

π´θ̃
p1q
j

2π

D1

j“1

dQx,zz

ˇ

ˇ

ˇ

ˇ

ˇ

ď }WT
1,`,xW1,`,z}}z}2 ď ε}z}2 (Sup.24)

where we used (Sup.5). Using the definition (Sup.1) of Qx,z we observe that

Qx,zz “

„

π´θ
p0q
j

2π

D0

j“1

d z`

„

sin θ
p0q
j }z

p0q
j }2

2π}x
p0q
j }2

D0

j“1

d x. (Sup.25)

Expanding T3 we get
ˇ

ˇ

ˇ

ˇ

ˇ

T3 ´

„

sin θ̃
p1q
j }z̃

p1q
j }2

2π}x̃
p1q
j }2

D1

j“1

d x

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

„

sin θ̃
p1q
j }z̃

p1q
j }2

2π}x̃
p1q
j }2

D1

j“1

d rWT
1,`,xW1,`,x ´ Isx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

}WT
1,`,xW1,`,x ´ I}}x}2 ď ε}x}2 (Sup.26)

where we used (Sup.6) in the last inequality. The result follows by combining (Sup.23), (Sup.24),
(Sup.25) and (Sup.26).

Before we proceed to finishing the proof of Theorem 1, we introduce a couple more definitions and
lemmas:

hz,z˛ “
z

4
´ h̃z,z˛ (Sup.27)

Sε,z˛ “
 

z : }hz,z˛}2 ď εmaxp}z}2 , }z
˛}2q

(

(Sup.28)

Note that h̃z,z˛ has already been defined in Equation (Sup.22), and hz,z˛ is simply the perturbation
of h̃z,z˛ around its mean. Sε,z˛ is the region where such perturbation is small.
Lemma Sup.7. Assume the conditions of Lemma Sup.5 and Lemma Sup.6 hold. Then, with high
probability for all z “ 0,

}vz,z˛ ´ hz,z˛}2 ă 2εmaxp}z}2 , }z
˛}2q (Sup.29)

Proof. Recall that the descent direction vz,z˛ is already given in Equation (Sup.39), which we repeat
as follows

vz,z˛ “ pW2,`,zW1,`,zq
TpW2,`,zW1,`,zq

looooooooooooooooooooomooooooooooooooooooooon

T1

z

´ pW2,`,zW1,`,zq
TpW2,`,z˛W1,`,z˛q

looooooooooooooooooooooomooooooooooooooooooooooon

T2

z˛

“ T1z´ T2z
˛ (Sup.30)

Under the conditions of Lemma Sup.5, with high probability we have that

}T1 ´ I{4} ď 2ε. (Sup.31)
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In addition, under the conditions of Lemma Sup.6, with high probability and a change of notation we
have that

›

›

›
T2z

˛ ´ h̃z,z˛
›

›

›

2
ď ε }z˛}2 . (Sup.32)

Combining the definition of hz,z˛ and Line (Sup.30), it follows that

}vz,z˛ ´ hz,z˛}2 “
›

›

›
pT1z´ T2z

˛q ´

´z

4
´ h̃z,z˛

¯
›

›

›

2

ď

›

›

›

›

T1z´
1

4
z

›

›

›

›

2

`

›

›

›
T2z

˛ ´ h̃z,z˛
›

›

›

2

ď }T1 ´ I{4}2 }z}2 `
›

›

›
T2z

˛ ´ h̃z,z˛
›

›

›

2

ď 2ε }z}2 ` ε }z
˛}2

ă 2εmaxp}z}2 , }z
˛}2q

The first inequality applies triangle inequality, the second uses the simple fact that }Ax} ď }A} }x}2,
and the last inequality is a result of both Line (Sup.31) and Line (Sup.32).

Now we introduce the last lemma needed for the main proof. This lemma establishes that the set Sε,z
is a subset of the union of two small neighbors around z˛ and ´ρz˛ with radius no more than ε.
Lemma Sup.8. Suppose 4ε ď 1. Then

S4ε,z˛ Ă Bpz˛, cε }z˛}2q Y Bp´ρz˛, dε }z˛}2q
where ρ, c, d are universal constants.

Proof. The proof mainly follows Lemma 8 in [1]. Using the definitions (Sup.22) and (Sup.27) we
can rewrite hz,z˛ as follows:

hz,z˛ “ ´βz
˛ ` p1{4´ αqz

where the vectors α and β are

α “

„

π´θ̃
p1q
j

2π

D1

j“1

d

„

sin θ
p0q
j }z

˛,p0q
j }2

2π}z
p0q
j }2

D0

j“1

`

„

sin θ̃
p1q
j }z̃

˛,p1q
j }2

2π}z̃
p1q
j }2

D1

j“1

,

β “

„

π´θ̃
p1q
j

2π

D1

j“1

d

„

π´θ
p0q
j

2π

D0

j“1

.

Without loss of generality, let }z˛,p0qj }2 “ 1, z P Sε,z˛ and M “ maxpmaxj }z
p0q
j }2, 1q. Then

definition of Sε,z˛ in (Sup.28) implies that }hz,z˛}2 is small. This, in turn, implies that

| ´ βj ` cos θ
p0q
j p1{4´ αjq| ď εM, (Sup.33)

| sin θ
p0q
j p1{4´ αjq| ď εM for all j. (Sup.34)

Recall that θp0qj is the angle between zp0qj and z˛,p0qj , which are the j-th block of the vectors z and z˛

respectively. For the rest of the proof, we argue as follows. Using (Sup.33) and (Sup.34), we will
show that for all j either

θ
p0q
j ď 2ε and }zp0qj }2 » }z

˛,p0q
j }2 (Sup.35)

or

|θ
p0q
j ´ π| ď 2ε and }zp0qj }2 » ρ}z

˛,p0q
j }2 (Sup.36)

holds for some constant ρ. This, in turn, implies that for all j, zp0qj is either very close to z˛,p0qj or to
the polar opposite of it up to a constant ρ. Indeed, observe the fact that

}z
p0q
j ´ z

˛,p0q
j }2 ď

ˇ

ˇ

ˇ
}z
p0q
j }2 ´ }z

˛,p0q
j }2

ˇ

ˇ

ˇ
`

´

}z
˛,p0q
j }2 `

ˇ

ˇ

ˇ
}z
p0q
j }2 ´ }z

˛,p0q
j }2

ˇ

ˇ

ˇ

¯

θ
p0q
j .
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This simply says that if a vector is known to have magnitude within ∆r of some other vector with
magnitude r and two vectors have an angle less than ∆θ between them, then the Euclidean distance
between two vectors is no more than ∆r ` pr `∆rq∆θ. Then using the assumption }z˛,p0qj }2 “ 1
and (Sup.35) we have

}z
p0q
j ´ z

˛,p0q
j }2 À ε.

Given this, we can conclude that

}z´ z˛}22 “
D0
ÿ

j“1

}z
p0q
j ´ z

˛,p0q
j }22 À ε2D0

which implies z P Bpz˛, cε }z˛}2q for some constant c. A similar argument holds for zp0qj and ρz˛,p0qj
using (Sup.36). This implies the claim of the lemma.

We now proceed to prove our claim that either (Sup.35) or (Sup.36) holds. We make the following
observations:

|βj | ď 1, (Sup.37)

|αj | ď
1` sin θ

p0q
j

2π}z
p0q
j }2

(Sup.38)

for all j. Following similar arguments from [1, Proof of Lemma 8] and using (Sup.37) and (Sup.38),
we can deduce that M ď 2. Hand et.al. in [1] also establish using M ď 2, (Sup.37) and (Sup.38) that
for all j, θp0qj is either small, i.e., θp0qj « 0, or large, i.e., θp0qj « π. We refer to [1, Proof of Lemma 8]
for details. Now we consider those two cases.

Small angle case: Recall that we eventually aim to show either that (Sup.35) or (Sup.36) holds.
Therefore under the assumption that θp0qj is small, it is enough to show that }zp0qj }2 » }z

˛,p0q
j }2 “ 1.

Assume that θp0qj “ Opεq. Then sin θ
p0q
j “ Opεq and cos θ

p0q
j “ 1 ` Opεq. Combining these with

M ď 2, (Sup.33), (Sup.37) and (Sup.38) yields }zp0qj }2 “ 1`Opεq which is the desired result.

Large angle case: Assume that θp0qj “ π ` Opεq. Similarly as before, it suffices to show that

}z
p0q
j }2 » ρ for some constant ρ. We have sin θ

p0q
j “ Opεq and cos θ

p0q
j “ ´1`Opεq. Combining

these with M ď 2, (Sup.33), (Sup.37) and (Sup.38) yields }zp0qj }2 »
2

5π “ ρ. This completes the
proof.

In the remaining we make the following abbreviations: vz “ vz,z˛ , hz “ hz,z˛ , and Sε “ Sε,z˛ .

Sup.2.2 Finishing the proof for Theorem 1

We first prove Equation (5) of Theorem 1, i.e., the existence of local maximum at the origin. We
begin by providing a descent direction:

vz,z˛ “ pW2,`,zW1,`,zq
TpW2,`,zW1,`,zqz´ pW2,`,zW1,`,zq

TpW2,`,z˛W1,`,z˛qz
˛.

(Sup.39)

This expression is the gradient of J where J is differentiable. By using the definition of one-sided
directional derivative Dz compute that

DzJp0q “ ´xW2,`,zW1,`,zz,W2,`,z˛W1,`,z˛z
˛y ď ´

1

16π
}z}2}z

˛}2 ă 0,

where the inequality follows from Lemma Sup.4 and the second inequality follows sice z, z˛ ‰ 0.

Proof of Equation (4) is more involved. It mainly follows the arguments in [1](Section 6.1) adapted
to our block structure of the weight matrices. One needs to eventually compute the directional
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derivative Dvz,z˛ and shows that it is negative when z is outside of two neighborhoods given in (4).
Lemma Sup.8 establishes that S4ε is a subset of two small neighbors around z˛ and ´ρz˛. Therefore,
it is sufficient to show that for all z outside S4ε, the derivative along the descent direction vz is always
negative. By definition, the (unnormalized) one-sided directional derivative of Jpzq in the direction
of vz at z is

DvzJpzq “ lim
tÑ0`

Jpz` tvzq ´ Jpzq

t
.

Since the function σpW2σpW1zqq is both continuous and piecewise linear, it follows that for any
z “ 0 and vz “ 0 there exists a sequence tznu Ñ z such that J is differentiable at each zn, and
DvzJpzq “ limnÑ8∇Jpznq ¨ vz. Since ∇Jpznq “ vzn , it follows that

DvzJpzq “ lim
nÑ8

vzn ¨ vz.

Now we bound the right-hand side from below

vzn ¨ vz
“ hzn ¨ hz ` pvzn ´ hznq ¨ hz`

hzn ¨ pvz ´ hzq ` pvzn ´ hznq ¨ pvz ´ hzq

ě hzn ¨ hz ´ }vzn ´ hzn}2 }hzn}2´

}hzn}2 }vz ´ hz}2 ´ }vzn ´ hzn}2 }vz ´ hz}2
ě hzn ¨ hz ´ εmaxp}zn}2 , }z

˛}2q }hz}2
´ εmaxp}z}2 , }z

˛}2q }hzn}2

´ ε2 maxp}zn}2 , }z
˛}2qmaxp}z}2 , }z

˛}2q,

where the first inequality follows from the triangle inequality and the second is a result of
Lemma Sup.7.

As hz is continuous in z for all nonzero z, it follows that for any z R S4ε,

lim
nÑ8

vzn ¨ vz ě }hz}
2
2 ´ 2ε }hz}2 maxp}z}2 , }z

˛}2q

´ ε2 maxp}z}2 , }z
˛}2q

2

ě
}hz}2

2

“

}hz}2 ´ 4εmaxp}z}2 , }z
˛}2q

‰

`
1

2

“

}hz}
2
2 ´ 2ε2 maxp}z}2 , }z

˛}2q
2
‰

ą 0

The second inequality uses the definition of S4ε. Consequently, DvzJpzq “ limnÑ8 vzn ¨ vz ą 0,
and thus D´vzJpzq ă 0 for all z R S4ε. Proof is finished by applying Lemma Sup.8.
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