Acceleration through Optimistic No-Regret Dynamics (Appendix)

Jun-Kun Wang College of Computing Georgia Institute of Technology Atlanta, GA 30313 jimwang@gatech.edu Jacob Abernethy College of Computing Georgia Institute of Technology Atlanta, GA 30313 prof@gatech.edu

A Two key lemmas

Lemma 4 Let the sequence of x_t 's be chosen according to MIRRORDESCENT. Assume that the Bregman Divergence is uniformly bounded on \mathcal{K} , so that $D = \sup_{t=1,...,T} V_{x_t}(x^*)$, where x^* denotes the minimizer of $f(\cdot)$. Assume that the sequence $\{\gamma_t\}_{t=1,2,...}$ is non-increasing. Then we have α -REG^x $\leq \frac{D}{\gamma_T} - \sum_{t=1}^T \frac{1}{2\gamma_t} ||x_{t-1} - x_t||^2$.

Proof. The key inequality we need, which can be found in Lemma 1 of [5] (and for completeness is included in Appendix A) is as follows: let y, c be arbitrary, and assume $x^+ = \operatorname{argmin}_{x \in \mathcal{K}} \langle x, y \rangle + V_c(x)$, then for any $x^* \in \mathcal{K}$, $\langle x^+ - x^*, y \rangle \leq V_c(x^*) - V_{x^+}(x^*) - V_c(x^+)$. Now apply this fact for $x^+ = x_t, y = \gamma_t \alpha_t y_t$ and $c = x_{t-1}$, which provides

$$\langle x_t - x^*, \gamma_t \alpha_t y_t \rangle \le V_{x_{t-1}}(x^*) - V_{x_t}(x^*) - V_{x_{t-1}}(x_t).$$
(1)

So, the weighted regret of the x-player can be bounded by

$$\begin{aligned} \boldsymbol{\alpha} - \operatorname{REG}^{x} &:= \sum_{t=1}^{T} \alpha_{t} \langle x_{t} - x^{*}, y_{t} \rangle \stackrel{(1)}{\leq} \sum_{t=1}^{T} \frac{1}{\gamma_{t}} \left(V_{x_{t-1}}(x^{*}) - V_{x_{t}}(x^{*}) - V_{x_{t-1}}(x_{t}) \right) \\ &= \frac{1}{\gamma_{1}} V_{x_{0}}(x^{*}) - \frac{1}{\gamma_{T}} v_{x_{T}}(x^{*}) + \sum_{t=1}^{T-1} \left(\frac{1}{\gamma_{t+1}} - \frac{1}{\gamma_{t}} \right) V_{x_{t}}(x^{*}) - \frac{1}{\gamma_{t}} V_{x_{t-1}}(x_{t}) \\ &\stackrel{(a)}{\leq} \frac{1}{\gamma_{1}} D + \sum_{t=1}^{T-1} \left(\frac{1}{\gamma_{t+1}} - \frac{1}{\gamma_{t}} \right) D - \frac{1}{\gamma_{t}} V_{x_{t-1}}(x_{t}) = \frac{D}{\gamma_{T}} - \sum_{t=1}^{T} \frac{1}{\gamma_{t}} V_{x_{t-1}}(x_{t}) \\ &\stackrel{(b)}{\leq} \frac{D}{\gamma_{T}} - \sum_{t=1}^{T} \frac{1}{2\gamma_{t}} \| x_{t-1} - x_{t} \|^{2}, \end{aligned}$$

$$(2)$$

where (a) holds since the sequence $\{\gamma_t\}$ is non-increasing and D upper bounds the divergence terms, and (b) follows from the strong convexity of ϕ , which grants $V_{x_{t-1}}(x_t) \ge \frac{1}{2} ||x_t - x_{t-1}||^2$. \Box

The above lemma requires a bound D on the divergence terms $V_{x_t}(x^*)$, which might be large in certain unconstrained settings – recall that we do no necessarily require that \mathcal{K} is a bounded set, we only assume that $f(\cdot)$ is minimized at a point with finite norm. On the other hand, when the x-player's learning rate γ is fixed, we can define the more natural choice $D = V_{x_0}(x^*)$.

Lemma 4 [Alternative]: Let the sequence of x_t 's be chosen according to MIRRORDESCENT, and assume $\gamma_t = \gamma$ for all t. Let $D = V_{x_0}(x^*)$, where x^* denotes the benchmark in α -REG^x. Then we have α -REG^x $\leq \frac{D}{\gamma} - \sum_{t=1}^{T} \frac{1}{2\gamma} ||x_{t-1} - x_t||^2$.

Proof. The proof follows exactly as before, yet $\gamma_t = \gamma_{t+1}$ for all t implies that $\frac{1}{\gamma_{t+1}} - \frac{1}{\gamma_t} = 0$ and we may drop the sum in the third line of (2). The rest of the proof is identical.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Lemma 1 of [5]: Let $x' = \arg \min_{x \in \mathcal{K}} \langle x, y \rangle + V_c(x)$. Then, it satisfies that for any $x^* \in \mathcal{K}$,

$$\langle x' - x^*, y \rangle \le V_c(x^*) - V_{x'}(x^*) - V_c(x').$$
 (3)

Proof. Recall that the Bregman divergence with respect to the distance generating function $\phi(\cdot)$ at a point c is: $V_c(x) := \phi(x) - \langle \nabla \phi(c), x - c \rangle - \phi(c)$.

Denote $F(x) := \langle x, y \rangle + V_c(x)$. Since x' is the optimal point of $\arg \min_{x \in K} F(x)$, by optimality, $\langle x^* - x', \nabla F(x') \rangle \ge 0$, for any $x^* \in K$. So,

$$\langle x^* - x', \nabla F(x') \rangle = \langle x^* - x', y \rangle + \langle x^* - x', \nabla \phi(x') - \nabla \phi(c) \rangle = \langle x^* - x', y \rangle + \{ \phi(x^*) - \langle \nabla \phi(c), x^* - c \rangle - \phi(c) \} - \{ \phi(x^*) - \langle \nabla \phi(x'), x^* - x' \rangle - \phi(x') \} - \{ \phi(x') - \langle \nabla \phi(c), x' - c \rangle - \phi(c) \} = \langle x^* - x', y \rangle + V_c(x^*) - V_{x'}(x^*) - V_c(x') \ge 0.$$
(4)

The last inequality means that

$$\langle x' - x^*, y \rangle \le V_c(x^*) - V_{x'}(x^*) - V_c(x').$$
 (5)

B Proof of Theorem 4

Theorem 4 Algorithm 3 with $\theta = \frac{1}{4L}$ is equivalent to Algorithm 2 with $\gamma_t = \frac{(t+1)}{t} \frac{1}{8L}$ in the sense that they generate equivalent sequences of iterates:

for all
$$t = 1, 2, \ldots, T$$
, $w_t = \overline{x}_t$ and $z_{t-1} = \widetilde{x}_t$.

Proof. First, let us check the base case to see if $w_1 = \bar{x}_1$. We have that $w_1 = z_0 - \theta \nabla f(z_0)$ from line 3 of Algorithm 3, while $\bar{x}_1 = \bar{x}_0 - \frac{1}{4L} \nabla f(\tilde{x}_1)$ in (11). Thus, if the initialization is the same: $w_0 = z_0 = x_0 = \bar{x}_0 = \tilde{x}_1$, then $w_1 = \bar{x}_1$.

Now assume that $w_{t-1} = \bar{x}_{t-1}$ holds for a $t \ge 2$. Then, from the expression of line 4 that $z_{t-1} = w_{t-1} + \frac{t-2}{t+1}(w_{t-1} - w_{t-2})$, we get $z_{t-1} = \bar{x}_{t-1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2})$. Let us analyze that the r.h.s of the equality. The coefficient of x_{t-1} in $\bar{x}_{t-1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2})$ is $\frac{(t-1) + \frac{t-2}{t+1}(t-1)}{A_{t-1}} = \frac{2(1+\frac{t-2}{t+1})}{t} = \frac{2(2t-1)}{t(t+1)}$, while the coefficient of each x_{τ} for any $\tau \le t-2$ in $\bar{x}_{t-1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2})$ is $\frac{(1+\frac{t-2}{t+1})}{A_{t-1}} = \frac{1}{t} + \frac{t-2}{t+1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2})$ is $\frac{(1+\frac{t-2}{t+1})}{t} + \frac{t-2}{t+1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2})$ is $\frac{(1+\frac{t-2}{t+1})}{t} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2}) = \frac{2(2t-1)}{t}$, while the coefficient of each x_{τ} for any $\tau \le t-2$ in $\bar{x}_{t-1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2})$ is $\frac{(1+\frac{t-2}{t+1})}{t} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2}) = \frac{2(2t-1)}{t}$. Yet, the coefficient of x_{t-1} in \tilde{x}_t is $\frac{t+(t-1)}{A_t} = \frac{2(2t-1)}{t(t+1)}$ and the coefficient of x_{τ} in \tilde{x}_t is $\frac{\pi}{A_t} = \frac{2\tau}{t(t+1)}$ for any $\tau \le t-2$. Thus, $z_{t-1} = \tilde{x}_t$. Now observe that if $z_{t-1} = \tilde{x}_t$, we get $w_t = \bar{x}_t$. To see this, substituting $z_{t-1} = w_{t-1} + \frac{t-2}{t+1}(w_{t-1} - w_{t-2})$ of line 4 into line 3, we get $w_t = w_{t-1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2}) - \theta \nabla f(z_{t-1})$. By using $z_{t-1} = \tilde{x}_t$ and $w_{t-1} = \bar{x}_{t-1}$, we further get $w_t = \bar{x}_{t-1} + \frac{t-2}{t+1}(\bar{x}_{t-1} - \bar{x}_{t-2}) - \theta \nabla f(\tilde{x}_t) = \bar{x}_t$. We can repeat the argument to show that the correspondence holds for any t, which establishes the equivalency.

Notice that the choice of decreasing sequence $\{\gamma_t\}$ here can still make the distance terms in (10) cancel out. So, we get $O(1/T^2)$ rate by the guarantee.

C Proof of Theorem 5

Theorem 5 Let $\alpha_t = t$. Assume $\mathcal{K} = \mathbb{R}^n$. Also, let $\gamma_t = O(\frac{1}{L})$. The output \bar{x}_T of Algorithm 4 is an $O(\frac{1}{T})$ -approximate optimal solution of $\min_x f(x)$.

Proof. To analyze the guarantee of \bar{x}_T of Algorithm 4, we use the following lemma about FOLLOWTHELEADER for strongly convex loss functions.

Corollary 1 from [3] Let $\ell_1, ..., \ell_T$ be a sequence of functions such that for all $t \in [T]$, ℓ_t is σ_t -strongly convex. Assume that FOLLOWTHELEADER runs on this sequence and for each $t \in [T]$, let θ_t be in $\nabla \ell_t(y_t)$. Then, $\sum_{t=1}^T \ell_t(y_t) - \min_x \sum_{t=1}^T \ell_t(y) \le \frac{1}{2} \sum_{t=1}^T \frac{\|\theta_t\|^2}{\sum_{t=1}^{t-1} \sigma_\tau}$

Observe that the y-player plays FOLLOWTHELEADER on the loss function sequence $\alpha_t \ell_t(y) := \alpha_t(-\langle x_t, y \rangle + f^*(y))$, whose strong convexity parameter is $\frac{\alpha_t}{L}$ (due to $f^*(y)$ is $\frac{1}{L}$ -strongly convex by duality). Also, $\nabla \ell_t(y_t) = -x_t + \nabla f^*(y_t) = -x_t + \bar{x}_{t-1}$, where the last inequality is due to that if $y_t = \operatorname{argmax}_y \langle \frac{1}{A_{t-1}} \sum_{s=1}^{t-1} \alpha_s x_s, y \rangle - f^*(y) = \nabla f(\bar{x}_{t-1})$, then $\bar{x}_{t-1} = \nabla f^*(y_t)$ by duality. So, we have $\overline{\alpha} \cdot \operatorname{REG}^y \stackrel{AboveCor.}{\leq} \frac{1}{2A_T} \sum_{t=1}^T \frac{\alpha_t^2 \|\bar{x}_{t-1} - x_t\|^2}{\sum_{\tau=1}^t \alpha_\tau (1/L)} = \frac{1}{2A_T} \sum_{t=1}^T \frac{\alpha_t^2 L \|\bar{x}_{t-1} - x_t\|^2}{A_t} = O(\sum_{\tau=1}^T \frac{L \|\bar{x}_{t-1} - x_t\|^2}{A_T})$. For the x-player, it is an instance of MIRRORDESCENT, so $\overline{\alpha} \cdot \operatorname{REG}^x := \frac{1}{A_T} \sum_{t=1}^T \langle x_t - x^*, \alpha_t y_t \rangle \leq \frac{\frac{1}{\gamma_T} D - \sum_{t=1}^T \frac{1}{2\gamma_t} \|x_{t-1} - x_t\|^2}{A_T}$ Therefore, \bar{x}_T of Algorithm 4 is an $\overline{\alpha} \cdot \operatorname{REG}^x + \overline{\alpha} \cdot \operatorname{REG}^y = O(\frac{L \sum_{t=1}^T (\|\bar{x}_{t-1} - x_t\|^2 - \|x_t - x_{t-1}\|^2)}{A_T})$ -approximate optimal solution. Since the distance terms may not cancel out, one may only bound the differences of the distance terms by a constant, which leads to the non-accelerated O(1/T) rate.

D Proof of Theorem 6

Theorem 6 Let $\alpha_t = t$. Algorithm 5 with update by option (A) is the case when the y-player uses OPTIMISTICFTL and the x-player adopts MIRRORDESCENT with $\gamma_t = \frac{1}{4L}$ in Fenchel game. Therefore, w_T is an $O(\frac{1}{T^2})$ -approximate optimal solution of $\min_{x \in \mathcal{K}} f(x)$.

Proof. We first prove by induction showing that w_t in Algorithm 5 is $\sum_{s=1}^{t} \frac{\alpha_s}{A_t} x_s$ for any t > 0. For the base case t = 1, we have $w_1 = (1 - \beta_1)w_0 + \beta_1 x_1 = x_1 = \frac{\alpha_1}{A_1} x_1$. Now suppose that the equivalency holds at t - 1, for a $t \ge 2$. Then,

$$w_{t} = (1 - \beta_{t})w_{t-1} + \beta_{t}x_{t} \stackrel{(a)}{=} (1 - \beta_{t})(\sum_{s=1}^{t-1} \frac{\alpha_{s}}{A_{t-1}}x_{s}) + \beta_{t}x_{t}$$

$$= (1 - \frac{2}{t+1})(\sum_{s=1}^{t-1} \frac{\alpha_{s}}{\frac{t(t-1)}{2}}x_{s}) + \beta_{t}x_{t} = \sum_{s=1}^{t-1} \frac{\alpha_{s}}{\frac{t(t+1)}{2}}x_{s} + \frac{\alpha_{t}}{A_{t}}x_{t} = \sum_{s=1}^{t} \frac{\alpha_{s}}{A_{s}}x_{s},$$
(6)

where (a) is by induction. So, it holds at t too. Now we are going to show that $z_t = \frac{1}{A_t}(\alpha_t x_{t-1} + \sum_{s=1}^{t-1} \alpha_s x_s) = \widetilde{x}_t$. We have that $z_t = (1 - \beta_t)w_{t-1} + \beta_t x_{t-1} = (1 - \beta_t)(\sum_{s=1}^{t-1} \frac{\alpha_s}{A_{t-1}} x_s) + \beta_t x_{t-1} = (1 - \frac{2}{t+1})(\sum_{t=1}^{t-1} \frac{\alpha_t}{\frac{t(t-1)}{2}} x_t) + \beta_t x_{t-1} = \sum_{s=1}^{t-1} \frac{\alpha_s}{\frac{t(t+1)}{2}} x_s + \beta_t x_{t-1} = \sum_{s=1}^{t-1} \frac{\alpha_s}{A_t} x_s + \frac{\alpha_t}{A_t} x_{t-1} = \widetilde{x}_t$. The result also means that $\nabla f(z_t) = \nabla f(\widetilde{x}_t) = y_t$ of the y-player who plays Optimistic-FTL in Algorithm 1. Furthermore, it shows that line 5 of Algorithm 5: $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \gamma'_t \langle \nabla f(z_t), x \rangle + V_{x_{t-1}}(x)$ is exactly (9) of MIRRORDESCENT in *Fenchel game*. Also, from (6), the last iterate w_T in Algorithm 5 corresponds to the final output of our accelerated solution to *Fenchel game*, which is the weighted average point that enjoys the guarantee by the game analysis. \Box

E Proof of Theorem 7

Theorem 7 Let $\alpha_t = t$. Algorithm 5 with update by option (B) is the case when the y-player uses OPTIMISTICFTL and the x-player adopts BETHEREGULARIZEDLEADER with $\eta = \frac{1}{4L}$ in Fenchel game. Therefore, w_T is an $O(\frac{1}{T^2})$ -approximate optimal solution of $\min_{x \in \mathcal{K}} f(x)$.

Proof. Consider in *Fenchel game* that the y-player uses OPTIMISTICFTL while the x-player plays according to BTRL:

$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{t=1}^T \langle x_t, \alpha_t y_t \rangle + \frac{1}{\eta} R(x),$$

where $R(\cdot)$ is a 1-strongly convex function. Define, $z = \arg \min_{x \in \mathcal{K}} R(x)$. Form [1] (also see Appendix F), it shows that BTRL has regret

Regret :=
$$\sum_{t=1}^{T} \langle x_t - x^*, \alpha_t y_t \rangle \le \frac{R(x^*) - R(z) - \frac{1}{2} \sum_{t=1}^{T} ||x_t - x_{t-1}||^2}{\eta}$$
, (7)

where x^* is the benchmark/comparator defined in the definition of the weighted regret (4).

By combining (8) and (7), we get that

$$\frac{\boldsymbol{\alpha} \cdot \operatorname{ReG}^{x} + \boldsymbol{\alpha} \cdot \operatorname{REG}^{y}}{A_{T}} = \frac{\frac{R(x^{*}) - R(z)}{\eta} + \sum_{t=1}^{T} \left(\frac{\alpha_{t}^{2}}{A_{t}}L - \frac{1}{2\eta}\right) \|x_{t-1} - x_{t}\|^{2}}{A_{T}} \le O\left(\frac{L(R(x^{*}) - R(z))}{T^{2}}\right), \tag{8}$$

where the last inequality is because $\eta = \frac{1}{4L}$ so that the distance terms cancel out. So, by Lemma 1 and Theorem 1 again, we know that \bar{x}_T is an $O(\frac{1}{T^2})$ -approximate optimal solution of $\min_{x \in \mathcal{K}} f(x)$.

The remaining thing to do is showing that \bar{x}_T is actually w_T of Algorithm 5 with option (B). But, this follows the same line as the proof of Theorem 6. So, we have completed the proof.

F Proof of BETHEREGULARIZEDLEADER 's regret

For completeness, we replicate the proof in [1] about the regret bound of BETHEREGULAR-IZEDLEADER in this section.

Theorem 10 of [[1]] Let θ_t be the loss vector in round t. Let the update of BTRL be $x_t = \arg \min_{x \in \mathcal{K}} \langle x, L_t \rangle + \frac{1}{\eta} R(x)$, where $R(\cdot)$ is β -strongly convex. Denote $z = \arg \min_{x \in \mathcal{K}} R(x)$. Then, BTRL has regret

$$Regret := \sum_{t=1}^{T} \langle x_t - x^*, \theta_t \rangle \le \frac{R(x^*) - R(z) - \frac{\beta}{2} \sum_{t=1}^{T} \|x_t - x_{t-1}\|^2}{\eta}.$$
(9)

To analyze the regret of BETHEREGULARIZEDLEADER, let us consider OPTIMISTICFTRL first. Let θ_t be the loss vector in round t and let the cumulative loss vector be $L_t = \sum_{s=1}^t \theta_s$. The update of OPTIMISTICFTRL is

$$x_t = \arg\min_{x \in \mathcal{K}} \langle x, L_{t-1} + m_t \rangle + \frac{1}{n} R(x), \tag{10}$$

where m_t is the learner's guess of the loss vector in round t, $R(\cdot)$ is β -strong convex with respect to a norm $(\|\cdot\|)$ and η is a parameter. Therefore, it is clear that the regret of BETHEREGULARIZEDLEADER will be the one when OPTIMISTICFTRL's guess of the loss vectors exactly match the true ones, i.e. $m_t = \theta_t$.

Theorem 16 of [[1]] Let θ_t be the loss vector in round t. Let the update of OPTIMISTICFTRL be $x_t = \arg \min_{x \in \mathcal{K}} \langle x, L_{t-1} + m_t \rangle + \frac{1}{\eta} R(x)$, where m_t is the learner's guess of the loss vector in round t and R(x) is a β -strongly convex function. Denote the update of standard FTRL as $z_t = \arg \min_{x \in \mathcal{K}} \langle x, L_{t-1} \rangle + \frac{1}{\eta} R(x)$. Also, $z_1 = \arg \min_{x \in \mathcal{K}} R(x)$. Then, OPTIMISTICFTRL (10) has regret

$$Regret := \sum_{t=1}^{T} \langle x_t - x^*, \theta_t \rangle \le \frac{R(x^*) - R(z_1) - D_T}{\eta} + \sum_{t=1}^{T} \frac{\eta}{\beta} \|\theta_t - m_t\|_*^2,$$
(11)

where $D_T = \sum_{t=1}^T \frac{\beta}{2} \|x_t - z_t\|^2 + \frac{\beta}{2} \|x_t - z_{t+1}\|^2$, $z_t = \operatorname{argmin}_{x \in \mathcal{K}} \langle x, L_{t-1} \rangle + \frac{1}{\eta} R(x)$, and $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \langle x, L_{t-1} + m_t \rangle + \frac{1}{\eta} R(x)$.

Recall that the update of BETHEREGULARIZEDLEADER is $x_t = \arg \min_{x \in \mathcal{K}} \langle x, L_t \rangle + \frac{1}{\eta} R(x)$, Therefore, we have that $m_t = \theta_t$ and $x_t = z_{t+1}$ in the regret bound of OPTIMISTICFTRL indicated by the theorem. Consequently, we get that the regret of BETHEREGULARIZEDLEADER satisfies

Regret :=
$$\sum_{t=1}^{T} \langle x_t - x^*, \theta_t \rangle \le \frac{R(x^*) - R(z) - \frac{\beta}{2} \sum_{t=1}^{T} ||x_t - x_{t-1}||^2}{\eta}$$
. (12)

G Proof of OPTIMISTICFTRL 's regret

For completeness, we replicate the proof in [1] about the regret bound of OPTIMISTICFTRL in this section.

Theorem 16 of [[1]] Let θ_t be the loss vector in round t. Let the update of OPTIMISTICFTRL be $x_t = \arg \min_{x \in \mathcal{K}} \langle x, L_{t-1} + m_t \rangle + \frac{1}{\eta} R(x)$, where m_t is the learner's guess of the loss vector in round t and R(x) is a β -strongly convex function. Denote the update of standard FTRL as $z_t = \arg \min_{x \in \mathcal{K}} \langle x, L_{t-1} \rangle + \frac{1}{\eta} R(x)$. Also, $z_1 = \arg \min_{x \in \mathcal{K}} R(x)$. Then, OPTIMISTICFTRL (10) has regret

$$Regret := \sum_{t=1}^{T} \langle x_t - x^*, \theta_t \rangle \le \frac{R(x^*) - R(z_1) - D_T}{\eta} + \sum_{t=1}^{T} \frac{\eta}{\beta} \|\theta_t - m_t\|_*^2,$$
(13)

where $D_T = \sum_{t=1}^T \frac{\beta}{2} \|x_t - z_t\|^2 + \frac{\beta}{2} \|x_t - z_{t+1}\|^2$, $z_t = \operatorname{argmin}_{x \in \mathcal{K}} \langle x, L_{t-1} \rangle + \frac{1}{\eta} R(x)$, and $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \langle x, L_{t-1} + m_t \rangle + \frac{1}{\eta} R(x)$.

Proof. Define $z_t = \operatorname{argmin}_{x \in \mathcal{K}} \langle x, L_{t-1} \rangle + \frac{1}{\eta} R(x)$ as the update of the standard FOLLOW-THE-REGULARIZED-LEADER. We can re-write the regret as

$$\operatorname{Regret} := \sum_{t=1}^{T} \langle x_t - x^*, \theta_t \rangle = \sum_{t=1}^{T} \langle x_t - z_{t+1}, \theta_t - m_t \rangle + \sum_{t=1}^{T} \langle x_t - z_{t+1}, m_t \rangle + \langle z_{t+1} - x^*, \theta_t \rangle$$
(14)

Let us analyze the first sum

$$\sum_{t=1}^{T} \langle x_t - z_{t+1}, \theta_t - m_t \rangle. \tag{15}$$

Now using Lemma 17 of [1] (which is also stated below) with $x_1 = x_t$, $u_1 = \sum_{s=1}^{t-1} \theta_s + m_t$ and $x_2 = z_{t+1}$, $u_2 = \sum_{s=1}^{t} \theta_s$ in the lemma, we have

$$\sum_{t=1}^{T} \langle x_t - z_{t+1}, \theta_t - m_t \rangle \le \sum_{t=1}^{T} \|x_t - z_{t+1}\| \|\theta_t - m_t\|_* \le \sum_{t=1}^{T} \frac{\eta}{\beta} \|\theta_t - m_t\|_*^2.$$
(16)
or the other sum

For the other sum,

$$\sum_{t=1}^{T} \langle x_t - z_{t+1}, m_t \rangle + \langle z_{t+1} - x^*, \theta_t \rangle, \tag{17}$$

we are going to show that, for any $T \ge 0$, it is upper-bounded by $\frac{R(x^*)-R(z_1)-D_T}{\eta}$, which holds for any $x^* \in \mathcal{K}$, where $D_T = \sum_{t=1}^T \frac{\beta}{2} ||x_t - z_t||^2 + \frac{\beta}{2} ||x_t - z_{t+1}||^2$. For the base case T = 0, we see that $\sum_{t=1}^0 ||x_t - z_{t+1}||^2 + \frac{\beta}{2} ||x_t - z_{t+1}||^2 = 0 \le \frac{R(x^*)-R(z_1)-0}{\eta}$ (18)

$$\sum_{t=1}^{0} \langle x_t - z_{t+1}, m_t \rangle + \langle z_{t+1} - x^*, \theta_t \rangle = 0 \le \frac{R(x^*) - R(z_1) - 0}{\eta},$$
(18)
as $z_1 = \arg \min_{x \in \mathcal{K}} R(x).$

Using induction, assume that it also holds for T - 1 for a $T \ge 1$. Then, we have

$$\begin{split} \sum_{t=1}^{T} \langle x_t - z_{t+1}, m_t \rangle + \langle z_{t+1}, \theta_t \rangle \\ &\stackrel{(a)}{\leq} \langle x_T - z_{T+1}, m_T \rangle + \langle z_{T+1}, \theta_T \rangle + \frac{R(z_T) - R(z_1) - D_{T-1}}{\eta} + \langle z_T, L_{T-1} \rangle \\ &\stackrel{(b)}{\leq} \langle x_T - z_{T+1}, m_T \rangle + \langle z_{T+1}, \theta_T \rangle + \frac{R(x_T) - R(z_1) - D_{T-1} - \frac{\beta}{2} ||x_T - z_T||^2}{\eta} + \langle x_T, L_{T-1} + m_T \rangle \\ &= \langle z_{T+1}, \theta_T - m_T \rangle + \frac{R(x_T) - R(z_1) - D_{T-1} - \frac{\beta}{2} ||x_T - z_T||^2}{\eta} + \langle x_T, L_{T-1} + m_T \rangle \\ &\stackrel{(c)}{\leq} \langle z_{T+1}, \theta_T - m_T \rangle + \frac{R(z_{T+1}) - R(z_1) - D_{T-1} - \frac{\beta}{2} ||x_T - z_T||^2 - \frac{\beta}{2} ||x_T - z_{T+1}||^2}{\eta} \\ &+ \langle z_{T+1}, L_{T-1} + m_T \rangle \\ &= \langle z_{T+1}, L_T \rangle + \frac{R(x_T) - R(z_1) - D_T}{\eta} \\ &\stackrel{(d)}{\leq} \langle x^*, L_T \rangle + \frac{R(x^*) - R(z_1) - D_T}{\eta}, \end{split}$$
(19)

where (a) is by induction such that the inequality holds at T-1 for any $x^* \in \mathcal{K}$ including $x^* = z_T$, (b) and (c) are by strong convexity so that

$$\langle z_T, L_{T-1} \rangle + \frac{R(z_T)}{\eta} \le \langle x_T, L_{T-1} \rangle + \frac{R(x_T)}{\eta} - \frac{\beta}{2\eta} \| x_T - z_T \|^2,$$
 (20)

and

$$|x_T, L_{T-1} + m_T\rangle + \frac{R(x_T)}{\eta} \le \langle z_{T+1}, L_{T-1} + m_T\rangle + \frac{R(z_{T+1})}{\eta} - \frac{\beta}{2\eta} ||x_T - z_{T+1}||^2,$$
(21)

and (d) is because z_{T+1} is the optimal point of $\operatorname{argmin}_x \langle x, L_T \rangle + \frac{R(x)}{\eta}$. We've completed the induction.

Lemma 17 of [[1]] Denote $x_1 = \operatorname{argmin}_x \langle x, u_1 \rangle + \frac{1}{\eta} R(x)$ and $x_2 = \operatorname{argmin}_x \langle x, u_2 \rangle + \frac{1}{\eta} R(x)$ for a β -strongly convex function $R(\cdot)$ with respect to a norm $\|\cdot\|$. We have $\|x_1 - x_2\| \leq \frac{\eta}{\beta} \|u_1 - u_2\|_*$.

H Proof of Theorem 8

Theorem 8 For the game $g(x, y) := \langle x, y \rangle - \tilde{f}^*(y) + \frac{\|x\|_2^2}{2}$, if the y-player plays OPTIMISTICFTL and the x-player plays BETHEREGULARIZEDLEADER: $x_t \leftarrow \arg \min_{x \in \mathcal{X}} \sum_{s=0}^t \alpha_s \ell_s(x)$, where $\alpha_0 \ell_0(x) := \alpha_0 \frac{\|\|x\|_2^2}{2}$, then the weighted average (\bar{x}_T, \bar{y}_T) would be $O(\exp(-\frac{T}{\sqrt{\kappa}}))$ -approximate equilibrium of the game, where the weights $\frac{\alpha_t}{\bar{A}_t} = \frac{1}{\sqrt{6\kappa}}$. This implies that $f(\bar{x}_T) - \min_{x \in \mathcal{X}} f(x) = O(\exp(-\frac{T}{\sqrt{\kappa}}))$.

Proof. From Lemma 3, we know that the y-player's regret by OPTIMISTICFTL is

$$\begin{split} \sum_{t=1}^{T} \alpha_t \ell_t(\widetilde{y}_t) - \alpha_t \ell_t(y^*) &\leq \sum_{t=1}^{T} \delta_t(\widetilde{y}_t) - \delta_t(\hat{y}_{t+1}) \\ &= \sum_{t=1}^{T} \alpha_t \langle x_{t-1} - x_t, \widetilde{y}_t - \hat{y}_{t+1} \rangle \\ \text{(Eqns. 5, 6)} &= \sum_{t=1}^{T} \alpha_t \langle x_{t-1} - x_t, \nabla \widetilde{f}(\widetilde{x}_t) - \nabla \widetilde{f}(\overline{x}_t) \rangle \\ \text{(Hölder's Ineq.)} &\leq \sum_{t=1}^{T} \alpha_t \|x_{t-1} - x_t\| \| \nabla \widetilde{f}(\widetilde{x}_t) - \nabla \widetilde{f}(\overline{x}_t) \| \\ &= \sum_{t=1}^{T} \alpha_t \|x_{t-1} - x_t\| \| \nabla \widetilde{f}(\widetilde{x}_t) - \mu \widetilde{x}_t - \nabla \widetilde{f}(\overline{x}_t) + \mu \overline{x}_t \| \\ \text{(triangle inequality)} &\leq \sum_{t=1}^{T} \alpha_t \|x_{t-1} - x_t\| (\| \nabla f(\widetilde{x}_t) - \nabla \widetilde{f}(\overline{x}_t) \| + \mu \| \overline{x}_t - \widetilde{x}_t \|) \\ \text{(L-smoothness and } L \geq \mu) &\leq 2L \sum_{t=1}^{T} \alpha_t \|x_{t-1} - x_t\| \| \widetilde{x}_t - \overline{x}_t \| \\ \text{(Eqn. 7)} &= 2L \sum_{t=1}^{T} \frac{\alpha_t^2}{A_t} \|x_{t-1} - x_t\| \|x$$

Therefore,

$$\alpha - \operatorname{REG}^{y} \le 2L \sum_{t=1}^{T} \frac{\alpha_{t}^{2}}{A_{t}} \|x_{t-1} - x_{t}\|^{2}.$$
(22)

For the x-player, its loss function in round t is $\alpha_t \ell_t(x) := \alpha_t(\mu \phi(x) + \langle x, y_t \rangle)$, where $\phi(x) := \frac{1}{2} ||x||_2^2$. Assume the x-player plays BETHEREGULARIZEDLEADER,

$$x_t \leftarrow \arg\min_{x \in \mathcal{X}} \sum_{s=0}^t \alpha_s \ell_s(x), \tag{23}$$

where $\alpha_0 \ell_0(x) := \alpha_0 \mu \phi(x)$. Denote

$$\tilde{A}_t := \sum_{s=0}^t \alpha_s. \tag{24}$$

Notice that this is different from $A_t := \sum_{s=1}^t \alpha_s$. Then, its regret is (proof is on the next page)

$$\boldsymbol{\alpha} - \operatorname{REG}^{x} := \sum_{t=1}^{T} \alpha_{t} \ell_{t}(x_{t}) - \alpha_{t} \ell_{t}(x^{*}) \leq \alpha_{0} \mu L_{0} \|x^{*} - x_{0}\| - \sum_{t=1}^{T} \frac{\mu \tilde{A}_{t-1}}{2} \|x_{t-1} - x_{t}\|^{2}, \quad (25)$$

where L_0 is the Lipchitz constant of the 1-strongly convex function $\phi(x)$ and $x_0 = \arg \min_x \phi(x)$. Summing (22) and (25), we have

$$\boldsymbol{\alpha} - \operatorname{ReG}^{y} + \boldsymbol{\alpha} - \operatorname{ReG}^{x} \le \alpha_{0} \mu L_{0} \| x^{*} - x_{0} \| + \sum_{t=1}^{T} \left(\frac{2L\alpha_{t}^{2}}{A_{t}} - \frac{\mu \tilde{A}_{t-1}}{2} \right) \| x_{t-1} - x_{t} \|^{2}.$$
(26)

We want to let the distance terms cancel out.

$$\frac{2L\alpha_t^2}{\tilde{A}_t - a_0} - \frac{\mu \tilde{A}_{t-1}}{2} \le 0,$$
(27)

which is equivalent to

$$4L\alpha_t^2 \le \mu \tilde{A}_t \tilde{A}_{t-1} - \mu \alpha_0 \tilde{A}_{t-1}.$$

$$4L\frac{\alpha_t^2}{\tilde{A}_t^2} \le \mu \frac{\tilde{A}_{t-1}}{\tilde{A}_t} - \mu \alpha_0 \frac{\tilde{A}_{t-1}}{\tilde{A}_t} \frac{1}{\tilde{A}_t}$$

$$4L\frac{\alpha_t^2}{\tilde{A}_t^2} \le \mu (1 - \frac{\alpha_0}{\tilde{A}_t})(1 - \frac{\alpha_t}{\tilde{A}_t})$$
(28)

Let us denote the constant $\theta := \frac{\alpha_t}{\tilde{A_t}} > 0.$

$$\theta^{2} + \frac{\mu}{4L} (1 - \frac{\alpha_{0}}{\tilde{A}_{t}})\theta - \frac{\mu}{4L} (1 - \frac{\alpha_{0}}{\tilde{A}_{t}}) \le 0.$$
(29)

Notice that $0 < \frac{\alpha_0}{\tilde{A}_t} \leq 1$. It suffices to show that

$$\theta^2 + \frac{\mu}{4L} \left(1 - \frac{\alpha_0}{\tilde{A}_t}\right)\theta - \frac{\mu}{4L} \le 0.$$
(30)

Yet, we would expect that $\frac{\alpha_0}{\bar{A}_t}$ is a decreasing function of t, so it suffices to show that

$$\theta^2 + \frac{\mu}{4L} (1 - \frac{\alpha_0}{\tilde{A}_1})\theta - \frac{\mu}{4L} \le 0, \tag{31}$$

which is equivalent to

$$\theta^{2} + \frac{\mu}{4L} \frac{\alpha_{1}}{\tilde{A}_{1}} \theta - \frac{\mu}{4L} \leq 0$$

$$\theta^{2} (1 + \frac{\mu}{4L}) - \frac{\mu}{4L} \leq 0.$$
(32)

It turns out that $\theta = \sqrt{\frac{\mu}{6L}} = \frac{1}{\sqrt{6\kappa}}$ satisfies the above inequality, combining the fact that $\frac{\mu}{L} \le 1$. Therefore, the optimization error ϵ after T iterations is

$$\begin{aligned} \epsilon &\leq \frac{\alpha \cdot \operatorname{REG}^{y} + \alpha \cdot \operatorname{REG}^{x}}{A_{T}} \leq \frac{1}{A_{1}} \frac{A_{1}}{A_{2}} \cdots \frac{A_{T-1}}{A_{T}} (\alpha_{0} \mu L_{0} \| x^{*} - x_{0} \|) \\ &= \frac{1}{A_{1}} (1 - \frac{\alpha_{2}}{A_{2}}) \cdots (1 - \frac{\alpha_{T}}{A_{T}}) (\alpha_{0} \mu L_{0} \| x^{*} - x_{0} \|) \\ &\leq \frac{1}{A_{1}} (1 - \frac{\alpha_{2}}{\tilde{A}_{2}}) \cdots (1 - \frac{\alpha_{T}}{\tilde{A}_{T}}) (\alpha_{0} \mu L_{0} \| x^{*} - x_{0} \|) \\ &\leq (1 - \frac{1}{\sqrt{6\kappa}})^{T-1} \frac{\alpha_{0} \mu L_{0}}{A_{1}} \| x^{*} - x_{0} \|. \end{aligned}$$
(33)

Proof. (of (25)) First, we are going to use induction to show that

$$\sum_{t=0}^{\tau} \alpha_t \ell_t(x_t) - \alpha_t \ell_t(x^*) \le D_{\tau}, \tag{34}$$

for any $x^* \in \mathcal{X}$, where $D_{\tau} := -\sum_{t=1}^{\tau} \frac{\mu \tilde{A}_{t-1}}{2} ||x_{t-1} - x_t||^2$. For the base case t = 0, we have

$$\alpha_0 \mu \phi(x_0) - \alpha_0 \mu \phi(x^*) \le 0 = D_0,$$
(35)

where x_0 is defined as $x_0 = \arg \min_{x \in \mathcal{X}} \alpha_0 \mu \phi(x)$.

Now suppose it holds at $t = \tau - 1$.

$$\sum_{t=0}^{\tau} \alpha_t \ell_t(x_t) \stackrel{(a)}{\leq} D_{\tau-1} + \alpha_\tau \ell_\tau(x_\tau) + \sum_{t=0}^{\tau-1} \alpha_t \ell_t(x_{\tau-1}) \\ \stackrel{(b)}{\leq} D_{\tau-1} + \alpha_\tau \ell_\tau(x_\tau) + \sum_{t=0}^{\tau-1} \alpha_t \ell_t(x_\tau) - \frac{\tilde{A}_{\tau-1}\mu}{2} \|x_{\tau-1} - x_\tau\|^2 \\ = D_{\tau-1} + \sum_{t=0}^{\tau} \alpha_t \ell_t(x_\tau) - \frac{\tilde{A}_{\tau-1}\mu}{2} \|x_{\tau-1} - x_\tau\|^2$$
(36)
$$= D_{\tau} + \sum_{t=0}^{\tau} \alpha_t \ell_t(x_\tau) \\ \leq D_{\tau} + \sum_{t=0}^{\tau} \alpha_t \ell_t(x^*),$$

for any $x^* \in \mathcal{X}$, where (a) we use the induction and we let the point $x^* = x_{\tau-1}$ and (b) is by the strongly convexity and that $x_{\tau-1} = \arg \min_x \sum_{t=0}^{\tau-1} \alpha_t \ell_t(x)$ so that $\sum_{t=0}^{\tau-1} \alpha_t \ell_t(x_{\tau-1}) \leq \sum_{t=0}^{\tau-1} \alpha_t \ell_t(x_{\tau}) - \frac{\tilde{A}_{\tau-1}\mu}{2} ||x_{\tau-1} - x_{\tau}||^2$ as $\sum_{t=0}^{\tau-1} \alpha_t \ell_t(x)$ is at least $\frac{\tilde{A}_{\tau-1}\mu}{2}$ -strongly convex. We have completed the proof of (34). By (34), we have

$$\boldsymbol{\alpha} \cdot \operatorname{REG}^{x} := \sum_{t=1}^{T} \alpha_{t} \ell_{t}(x_{t}) - \alpha_{t} \ell_{t}(x^{*}) \leq \alpha_{0} \mu \phi(x^{*}) - \alpha_{0} \mu \phi(x_{0}) - \sum_{t=1}^{T} \frac{\mu \tilde{A}_{t-1}}{2} \|x_{t-1} - x_{t}\|^{2}.$$

$$\leq \alpha_{0} \mu L_{0} \|x_{0} - x^{*}\| - \sum_{t=1}^{T} \frac{\mu \tilde{A}_{t-1}}{2} \|x_{t-1} - x_{t}\|^{2},$$
(37)

where we assume that $\phi(\cdot)$ is L_0 -Lipchitz.

I Analysis of Accelerated Proximal Method

First, we need a stronger result.

Lemma [Property 1 in [6]] For any proper lower semi-continuous convex function $\theta(x)$, let $x^+ = \operatorname{argmin}_{x \in \mathcal{K}} \theta(x) + V_c(x)$. Then, it satisfies that for any $x^* \in \mathcal{K}$,

$$\theta(x^{+}) - \theta(x^{*}) \le V_c(x^{*}) - V_{x^{+}}(x^{*}) - V_c(x^{+}).$$
(38)

Proof. The statement and its proof has also appeared in [2] and [4]. For completeness, we replicate the proof here. Recall that the Bregman divergence with respect to the distance generating function $\phi(\cdot)$ at a point c is: $V_c(x) := \phi(x) - \langle \nabla \phi(c), x - c \rangle - \phi(c)$.

Denote
$$F(x) := \theta(x) + V_c(x)$$
. Since x^+ is the optimal point of $\operatorname{argmin}_{x \in K} F(x)$, by optimality,

$$\langle x^* - x^+, \nabla F(x^+) \rangle = \langle x^* - x^+, \partial \theta(x^+) + \nabla \phi(x^+) - \nabla \phi(c) \rangle \ge 0, \tag{39}$$

for any $x^* \in K$.

Now using the definition of subgradient, we also have

$$\theta(x^*) \ge \theta(x^+) + \langle \partial \theta(x^+), x^* - x^+ \rangle.$$
 (40)

By combining (39) and (40), we have

$$\begin{aligned} \theta(x^{*}) &\geq \theta(x^{+}) + \langle \partial \theta(x^{+}), x^{*} - x^{+} \rangle. \\ &\geq \theta(x^{+}) + \langle x^{*} - x^{+}, \nabla \phi(c) - \nabla \phi(x^{+}) \rangle. \\ &= \theta(x^{+}) - \{ \phi(x^{*}) - \langle \nabla \phi(c), x^{*} - c \rangle - \phi(c) \} + \{ \phi(x^{*}) - \langle \nabla \phi(x^{+}), x^{*} - x^{+} \rangle - \phi(x^{+}) \} \\ &+ \{ \phi(x^{+}) - \langle \nabla \phi(c), x^{+} - c \rangle - \phi(c) \} \\ &= \theta(x^{+}) - V_{c}(x^{*}) + V_{x^{+}}(x^{*}) + V_{c}(x^{+}) \end{aligned}$$
(41)

Recall MIRRORDESCENT 's update $x_t = \operatorname{argmin}_x \gamma_t(\alpha_t h_t(x)) + V_{x_{t-1}}(x)$, where $h_t(x) = \langle x, y_t \rangle + \psi(x)$. Using the lemma with $\theta(x) = \gamma_t(\alpha_t h_t(x))$, $x^+ = x_t$ and $c = x_{t-1}$ we have that

$$\gamma_t(\alpha_t h_t(x_t)) - \gamma_t(\alpha_t h_t(x^*)) = \theta(x_t) - \theta(x^*) \le V_{x_{t-1}}(x^*) - V_{x_t}(x^*) - V_{x_{t-1}}(x_t).$$
(42)

Therefore, we have that

$$\begin{aligned} \boldsymbol{\alpha} - \operatorname{REG}^{x} &:= \sum_{t=1}^{T} \alpha_{t} h_{t}(x_{t}) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} \alpha_{t} h_{t}(x) \\ \stackrel{(42)}{\leq} \sum_{t=1}^{T} \frac{1}{\gamma_{t}} \Big(V_{x_{t-1}}(x^{*}) - V_{x_{t}}(x^{*}) - V_{x_{t-1}}(x_{t}) \Big) \\ &= \frac{1}{\gamma_{1}} V_{x_{0}}(x^{*}) - \frac{1}{\gamma_{T}} v_{x_{T}}(x^{*}) + \sum_{t=1}^{T-1} \big(\frac{1}{\gamma_{t+1}} - \frac{1}{\gamma_{t}} \big) V_{x_{t}}(x^{*}) - \frac{1}{\gamma_{t}} V_{x_{t-1}}(x_{t}) \\ \stackrel{(a)}{\leq} \frac{1}{\gamma_{1}} D + \sum_{t=1}^{T-1} \big(\frac{1}{\gamma_{t+1}} - \frac{1}{\gamma_{t}} \big) D - \frac{1}{\gamma_{t}} V_{x_{t-1}}(x_{t}) = \frac{D}{\gamma_{T}} - \sum_{t=1}^{T} \frac{1}{\gamma_{t}} V_{x_{t-1}}(x_{t}) \\ \stackrel{(b)}{\leq} \frac{D}{\gamma_{T}} - \sum_{t=1}^{T} \frac{1}{2\gamma_{t}} \|x_{t-1} - x_{t}\|^{2}, \end{aligned}$$

$$(43)$$

where (a) holds since the sequence $\{\gamma_t\}$ is non-increasing and D upper bounds the divergence terms, and (b) follows from the strong convexity of ϕ , which grants $V_{x_{t-1}}(x_t) \ge \frac{1}{2} ||x_t - x_{t-1}||^2$. Now we see that following the same lines as the proof in Section 3. We get that \bar{x}_T is an $O(\frac{1}{T^2})$ approximate optimal solution.

J Accelerated FRANKWOLFE

Algorithm 1 A new FW algorithm [[1]]1: In the weighted loss setting of Algorithm 1:2: for t = 1, 2, ..., T do3: y-player uses OPTIMISITCFTL as $OAlg^x$: $y_t = \nabla f(\tilde{x}_t)$.4: x-player uses BETHEREGULARIZEDLEADER with $R(X) := \frac{1}{2}\gamma_{\mathcal{K}}(x)^2$ as $OAlg^x$:5: Set $(\hat{x}_t, \rho_t) = \underset{x \in \mathcal{K}, \rho \in [0,1]}{\operatorname{argmin}} \sum_{s=1}^t \rho \langle x, \alpha_s y_s \rangle + \frac{1}{\eta} \rho^2$ and play $x_t = \rho_t \hat{x}_t$.6: end for

[1] proposed a FRANKWOLFE like algorithm that not only requires a linear oracle but also enjoys $O(1/T^2)$ rate on all the known examples of strongly convex constraint sets that contain the origin, like l_p ball and Schatten p ball with $p \in (1, 2]$. Their analysis requires the assumption that the underlying function is also strongly-convex to get the fast rate. To describe their algorithm, denote \mathcal{K} be any closed convex set that contains the origin. Define "gauge function" of \mathcal{K} as $\gamma_{\mathcal{K}}(x) := \inf\{c \geq 0 : \frac{x}{c} \in \mathcal{K}\}$. Notice that, for a closed convex \mathcal{K} that contains the origin, $\mathcal{K} = \{x \in \mathbb{R}^d : \gamma_{\mathcal{K}}(x) \leq 1\}$. Furthermore, the boundary points on \mathcal{K} satisfy $\gamma_{\mathcal{K}}(x) = 1$.

[1] showed that the squared of a gauge function is strongly convex on the underlying \mathcal{K} for all the known examples of strongly convex sets that contain the origin. Algorithm 1 is the algorithm. Clearly, Algorithm 1 is an instance of the meta-algorithm. We want to emphasize again that our analysis does not need the function $f(\cdot)$ to be strongly convex to show $O(1/T^2)$ rate. We've improved their analysis.

K Proof of Theorem 1

For completeness, we replicate the proof by [1] here.

Theorem 1 Assume a *T*-length sequence α are given. Suppose in Algorithm 1 the online learning algorithms $OAlg^x$ and $OAlg^y$ have the α -weighted average regret $\overline{\alpha-\text{ReG}}^x$ and $\overline{\alpha-\text{ReG}}^y$ respectively. Then the output (\bar{x}_T, \bar{y}_T) is an ϵ -equilibrium for $g(\cdot, \cdot)$, with $\epsilon = \overline{\alpha-\text{ReG}}^x + \overline{\alpha-\text{ReG}}^y$.

Proof. Suppose that the loss function of the x-player in round t is $\alpha_t h_t(\cdot) : \mathcal{X} \to \mathbb{R}$, where $h_t(\cdot) := g(\cdot, y_t)$. The y-player, on the other hand, observes her own sequence of loss functions $\alpha_t \ell_t(\cdot) : \mathcal{Y} \to \mathbb{R}$, where $\ell_t(\cdot) := -g(x_t, \cdot)$.

$$\frac{1}{\sum_{s=1}^{T} \alpha_s} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) = \frac{1}{\sum_{s=1}^{T} \alpha_s} \sum_{t=1}^{T} -\alpha_t \ell_t(y_t)$$

$$= -\frac{1}{\sum_{s=1}^{T} \alpha_s} \inf_{y \in \mathcal{Y}} \left\{ \sum_{t=1}^{T} \alpha_t \ell_t(y) \right\} - \frac{\boldsymbol{\alpha} \cdot \operatorname{REG}^y}{\sum_{s=1}^{T} \alpha_s}$$

$$= \sup_{y \in \mathcal{Y}} \left\{ \frac{1}{\sum_{s=1}^{T} \alpha_s} \sum_{t=1}^{T} \alpha_t g(x_t, y) \right\} - \overline{\boldsymbol{\alpha} \cdot \operatorname{REG}^y}$$
(Jensen) $\geq \sup_{y \in \mathcal{Y}} g\left(\frac{1}{\sum_{s=1}^{T} \alpha_s} \sum_{t=1}^{T} \alpha_t x_t, y \right) - \overline{\boldsymbol{\alpha} \cdot \operatorname{REG}^y}$
(44)
$$= \sup_{y \in \mathcal{Y}} g\left(\overline{x}_T, y \right) - \overline{\boldsymbol{\alpha} \cdot \operatorname{REG}^y}$$
(45)

$$\geq \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} g\left(x, y
ight) - \overline{oldsymbol{lpha} ext{-REG}}^y$$

Let us now apply the same argument on the right hand side, where we use the x-player's regret guarantee.

$$\frac{1}{\sum_{s=1}^{T} \alpha_s} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) = \frac{1}{\sum_{s=1}^{T} \alpha_s} \sum_{t=1}^{T} \alpha_t h_t(x_t)$$

$$= \left\{ \sum_{t=1}^{T} \frac{1}{\sum_{s=1}^{T} \alpha_s} \alpha_t h_t(x) \right\} + \frac{\boldsymbol{\alpha} \cdot \operatorname{REG}^x}{\sum_{s=1}^{T} \alpha_s}$$

$$= \left\{ \sum_{t=1}^{T} \frac{1}{\sum_{s=1}^{T} \alpha_s} \alpha_t g(x^*, y_t) \right\} + \overline{\boldsymbol{\alpha} \cdot \operatorname{REG}^x}$$

$$\leq g\left(x^*, \sum_{t=1}^{T} \frac{1}{\sum_{s=1}^{T} \alpha_s} \alpha_t y_t\right) + \overline{\boldsymbol{\alpha} \cdot \operatorname{REG}^x}$$
(46)

$$= g(x^*, \bar{y}_T) + \overline{\alpha \text{-ReG}}^x$$

$$\leq \sup_{y \in \mathcal{Y}} g(x^*, y) + \overline{\alpha \text{-ReG}}^x$$
(47)

Note that $\sup_{y \in \mathcal{Y}} g(x^*, y) = f(x^*)$ be the definition of the game $g(\cdot, \cdot)$ and by Fenchel conjugacy, hence we can conclude that $\sup_{y \in \mathcal{Y}} g(x^*, y) = \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} g(x, y) = V^* = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} g(x, y)$. Combining (45) and (47), we see that:

$$\sup_{y \in \mathcal{Y}} g\left(\bar{x}_{T}, y\right) - \overline{\alpha \operatorname{-Reg}}^{y} \leq \inf_{x \in \mathcal{X}} g\left(x, \bar{y}_{T}\right) + \overline{\alpha \operatorname{-Reg}}^{x}$$

which implies that (\bar{x}_T, \bar{y}_T) is an $\epsilon = \overline{\alpha - \text{ReG}}^x + \overline{\alpha - \text{ReG}}^y$ equilibrium.

References

[1] Jacob Abernethy, Kfir Levy, Kevin Lai, and Jun-Kun Wang. Faster rates for convex-concave games. COLT, 2018.

- [2] Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM Journal on Optimization, 1993.
- [3] Sham Kakade and Shai Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms for online optimization. NIPS, 2009.
- [4] Guanghui Lan, Zhaosong Lu, and Renato D. C. Monteiro. Primal-dual first-order methods with $o(1/\epsilon)$ iteration-complexity for cone programming. Mathematical Programming, 2011.
- [5] Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences. NIPS, 2013.
- [6] Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. 2008.