
Appendix

A Stability Theory

Assumption 3. All of the following three conditions hold true.

• f is lower semi-continuous with respect to the weak topology on X and 1 Lipschitz with
respect to the metric induced by the norm.

• A is continuous or equivalently weak-to-weak continuous

• One of the following two conditions hold true

– 0 < α := infx
‖Ax‖
‖x‖

– ‖f(x)‖ → ∞ as ‖x‖ → ∞

These assumptions are standard in the classical stability theory for inverse problems [11], with the
difference that we assume f to be 1 Lipschitz instead of being bounded from below.

Next we show that in the particular setting S = dM where dM is the distance function to the manifold
M, the weak continuity assumption on is always satisfied.
Lemma 1. The map dM is weakly lower semi-continuous.

Proof. Let xn be a sequence inX with xn → xweakly. Pick any subsequence of xn, for convenience
still denoted by xn. Denote by yn elements inM such that

dM(xn) = min
y∈M

‖xn − y‖ = ‖xn − yn‖.

As all yn ∈M, we can extract a weakly convergent subsequence, denoted by ynj
, such that ynj

→ y
weakly for some y ∈M. By lower semi-continuity of the norm, estimate

lim inf
j→∞

dM(xnj ) = lim inf
j→∞

‖xnj − ynj‖ ≥ ‖x− y‖ ≥ min
y∈M

‖x− y‖ = dM(x) (22)

Lemma 2 (Coercivity). Let y ∈ Y . Then under assumptions 3,

‖Ax− y‖2 + λf(x)→∞
as ‖x‖ → ∞, uniformly in all y ∈ Y with ‖y‖ ≤ 1.

Proof. Assume first 0 < α := infx
‖Ax‖
‖x‖ . WLOG assume ‖x‖ ≥ α−1. Then

‖Ax− y‖2 + λf(x) ≥ (α‖x‖ − 1)2 + λ(f(x)− f(0) + f(0))

≥ (α‖x‖ − 1)2 − λ‖x‖+ f(0)→∞
as ‖x‖ → ∞, uniformly in y with ‖y‖ ≤ 1. The last inequality uses the assumption that f is 1
Lipschitz.
In the case ‖S(x)‖ → ∞ as ‖x‖ → ∞ the statement follows immediately.

Theorem 4 (Existence of Minimizer). Under assumptions 3, there exists a minimizer of

‖Ax− y‖2 + λf(x).

Proof. Let xn be a sequence in X such that

‖Axn − y‖2 + λf(xn)→ min
x∈X
‖Ax− y‖2 + λf(x)

as n → ∞. Then by Lemma 2, xn is bounded in norm allowing to extract a weakly convergent
subsequence xn → x. As the norm is weakly lower-semi continuous and so is f by assumption, we
obtain

min
x∈X
‖Ax− y‖2 + λf(x) = lim inf

n→∞
‖Axn − y‖2 + λf(xn) ≥ ‖Ax− y‖2 + λf(x)

thus proving that x is indeed a minimizer.
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Theorem 5 (Weak Stability in Data Term). Assume 3. Let yn be a sequence in Y with yn → y in the
norm topology and denote by xn a sequence of minimizers of the functional

argminx∈X ‖Ax− yn‖2 + λf(x)

Then xn has a weakly convergent subsequence and the limit x is a minimizer of ‖Ax− y‖2 + λf(x).

Proof. By Lemma 2, the sequence ‖xn‖ is bounded and hence contains a weakly convergent subse-
quence xn → x. Note that the map L(y) = minx ‖Ax− y‖2 + λf(x) is continuous with respect to
the norm topology. On the other hand, as A is by assumption weak to weak continuous and both the
norm and f are weakly lower semi-continuous, the overall loss L(x, y) = ‖Ax − y‖2 + λf(x) is
weakly lower semi-continuous, so

lim inf
n→∞

L(xn, yn) ≥ L(x, y).

Together we obtain

L(y) = lim
k→∞

L(yk) = lim
k→∞

L(xk, yk) ≥ L(x, y), (23)

proving that the limit point x is indeed a minimizer of ‖Ax− y‖2 + λf(x).

B Implementation details

We used a simple 8 layer convolutional neural network with a total of four strided convolution layers
with stride 2, leaky ReLU (α = 0.1) activations and two final dense layer for all experiments with
the adversarial regularizer algorithm. The network was optimized with RMSProp. We solved the
variational problem using gradient descent with fixed step size. The regularization parameter was
chosen according to the heuristic given in paper.

The comparison experiments with Post-Processing and the Denoising Neural Network used a UNet
style architecture, with four down-sampling (strided convolution, stride 2) and four up-sampling
(transposed convolution) convolutional layers with skip-connections after every down-sampling step
to the corresponding up-sampled layer of the same image resolution. Again, leaky ReLU activations
were used. The network was optimized using Adam. As training loss we used the `2 distance to the
ground truth, with no further regularization terms on the network parameters.

In the experiments with total variation, the regularization parameter was chosen using line search,
picking the parameter that leads to the best PSNR value. The minimization problem was solved using
primal-dual hybrid gradient descent (PDHG) [10].
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C Further Computational Results

Figure 3: Further denoising results on BSDS dataset.
From left to right: Ground truth, Noisy Image, TV, Denoising Neural Network, Adversarial Reg.
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Figure 4: Further CT reconstructions on LIDC dataset, high noise.
From left to right: Ground truth, FBP, TV, Post-Processing, Adversarial Reg.

(a) Ground Truth (b) Total Variation (c) Adversarial Regularizer

Figure 5: Adversarial Regularizers cause fewer artifacts around-small angle intersections of different
domains than TV. Results obtained for CT Reconstruction on synthetic ellipse data.
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Figure 6: Further CT reconstructions on LIDC dataset, low noise.
From left to right: Ground truth, FBP, TV, Post-Processing, Adversarial Reg.
Below the Sinogram used for reconstruction of the images.
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