
Supplementary material for
Learning Gaussian Processes by

Minimizing Generalization Bounds

A Inverse binary KL-divergence and its derivatives, Pinsker’s inequality

The function kl−1(q, ε) ∈ [q, 1], defined in Eq. (3), can easily be computed numerically for any
q ∈ [0, 1), ε ∈ [0,∞) to any desired accuracy ∆ > 0 via the bisection method, since the function
kl(q ‖ p) = q ln q

p + (1 − q) ln 1−q
1−p is strictly monotonically increasing in p ∈ [q, 1] from 0 to∞

(for q = 1 or ε =∞, we set kl−1(q, ε) := 1). Note that the monotonicity in p implies further that
kl−1(q, ε) is monotonically increasing in ε ∈ [0,∞]. Fig. 4 shows a plot of kl−1(q, ε) for various
values of ε ≥ 0, and states a few special function values of kl−1(q, ε). By Pinsker’s inequality, it
holds that kl(q ‖ p) ≥ 2|p− q|2, which implies that kl−1(q, ε) ≤ q +

√
ε/2.
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Figure 4: Inverse binary KL-divergence. The figure shows plots of kl−1(q, ε) for ε ∈
{0, 0.1, 0.2, 0.5, 1, 2, 5} in different colors, the curves for larger ε lying higher. For ε = 0 it is
kl−1(q, ε = 0) = q (staight blue line). At q = 0 the curves start at kl−1(q = 0, ε) = 1 − e−ε. At
q = 1 we have kl−1(q = 1, ε) = 1 for any ε ≥ 0.

When applying gradient descent on the RHS of the generalization bound (5) (which includes (4)
as a special case), as we propose and do, one further needs, besides the evaluation of kl−1, also
the derivatives of kl−1 w.r.t. both of its arguments. These can be easily derived by differentiating
the identity kl(q ‖ kl−1(q, ε)) = ε w.r.t. q and ε, plugging in the easily computed derivatives of
kl(q ‖ p) = q ln q

p + (1− q) ln 1−q
1−p . The result is:

∂ kl−1(q, ε)

∂q
=

ln 1−q
1−kl−1(q,ε) − ln q

kl−1(q,ε)

1−q
1−kl−1(q,ε) −

q
kl−1(q,ε)

, (12)

∂ kl−1(q, ε)

∂ε
=

1
1−q

1−kl−1(q,ε) −
q

kl−1(q,ε)

. (13)

The derivative of the RHS of (5) with respect to parameters ξ (which may include the hyperparameters
θ, the noise level σ2

n, the inducing points zi, or any other parameters of P and Q such as aM , BMM ,
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or α from Section 3.2) thus reads:

d

dξ
kl−1

RS(Qξ),
KL(Qξ ‖ Pξ) + ln 1

pξ
+ ln 2

√
N
δ

N

 =

=

 ∂ kl−1(q, ε)

∂q

∣∣∣∣ q=RS(Qξ)

ε=(KL(Qξ ‖ Pξ)+ln 2
√
N

δpξ
)/N

 · d
dξ
RS(Qξ)

+

 ∂ kl−1(q, ε)

∂ε

∣∣∣∣ q=RS(Qξ)

ε=(KL(Qξ ‖ Pξ)+ln 2
√
N

δpξ
)/N

 · d
dξ

KL(Qξ ‖ Pξ) + ln 1
pξ

+ ln 2
√
N
δ

N
,

(14)

using the partial derivatives of kl−1 in parentheses from (12)–(13).

We use the expression (14) for our gradient-based optimization of the parameters ξ in Sect. 4. Note
that we treat all components of ξ as continuous parameters during this optimization, despite the fact
that the hyperparameters θ ∈ Θ for the prior Pθ have to come from a countable set Θ (see around Eq.
(5) and App. B). It is only after the optimization that we discretize all of those parameters θ onto a
pre-defined grid (chosen before seeing the training sample S), as described in Sect. 3.1.

Note that d
dξKL(Qξ ‖Pξ) in (14) can be computed analytically in our proposed methods PAC-GP and

PAC-SGP by using standard matrix algebra (e.g., [1, App. A]) for differentiating the matrix-analytic
expressions of KL(Qξ ‖ Pξ) in (7) or (10) (possibly with the parametrization (11)). Furthermore, the
derivative d

dξ ln 1
pξ

= − 1
pξ

d
dξpξ is easily computed for common distributions pθ (Sect. 2.2), again

treating ξ first as a continuous parameter in the optimization as explained in the previous paragraph;
in our paper, we always discretize the hyperparameter set Θ to be finite and choose pξ = 1

|Θ| as the
uniform distribution, so pξ is independent of ξ and d

dξ ln 1
pξ

= 0. Lastly, we show in App. C how to

effectively compute d
dξRS(Qξ) in the expression (14) for relevant loss functions `.

To our knowledge, the parameter-free PAC-Bayes bound from Theorem 1 or Eq. (5) has never
before been used for learning, as we do in our paper here, ostensibly due to the perceived diffi-
culty of handling the derivatives of kl−1 [14]. Instead, when a PAC-Bayes bound was used to
guide learning in prior works [13, 14], then a simple sum of RS(Q) and a penalty term involv-
ing KL(Q ‖ P ) and log 1

pθ
was employed as an upper bound, either obtained from alternative

PAC-Bayes theorems [9, 13] or from loosening the upper bound in Eq. (5) to an expression of the

form RS(Q) +

√(
KL(Q ‖ P ) + ln 2

√
N
δ

)
/(2N) by a use of Pinsker’s inequality [14] or by looser

derivations (some of which are mentioned in [13, 21]). We show in our work how to perform the
learning directly with the kl−1-bound (5) using the derivative from Eq. (14), and demonstrate that its
optimization is robust and stable and has better performance than the optimization of looser bounds
(see Sect. 4).
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B Proof of Eq. (5) — KL-divergence inequality and union bound

Let Θ be a countable set (i.e. a finite set or a countably infinite set), and let pθ be any probability
distribution over its elements θ ∈ Θ. Further, let P θ be a family of probability distributions indexed
by the θ ∈ Θ, and define their mixture P :=

∑
θ′ pθ′P

θ′ . Then it holds for each θ ∈ Θ and Q:

KL(Q ‖ P ) =

∫
dxQ(x) ln

Q(x)

P (x)
(15)

=

∫
dxQ(x) ln

Q(x)∑
θ′ pθ′P

θ′(x)

≤
∫
dxQ(x) ln

Q(x)

pθP θ(x)
(16)

=

∫
dxQ(x) ln

1

pθ
+

∫
dxQ(x) ln

Q(x)

P θ(x)

= ln
1

pθ
+ KL(Q ‖ P θ). (17)

The inequality (16) follows from the simple fact that the sum
∑
θ′ pθ′P

θ′(x) contains only nonneg-
ative terms and is therefore at least as large as any of its summands,

∑
θ′ pθ′P

θ′(x) ≥ pθP
θ(x),

together with the monotonicity of the logarithm ln. This inequality would not generally hold when∑
θ′ were replaced by an integral

∫
θ′

over a continuous index θ′, which explains the requirement of a
countable index set Θ. The inequality KL(Q ‖ P ) ≤ ln 1

pθ
+ KL(Q ‖ P θ) holds also for pθ = 0

with the interpretation ln 1
0 =∞.

The inequality KL(Q ‖ P ) ≤ ln 1
pθ

+KL(Q ‖ P θ) from (15)–(17), together with fact that kl−1 is
monotonically increasing in its second argument, shows how to obtain Eq. (5) from Theorem 1.

Remark 2. Using the value KL(Q‖P ) with P =
∑
θ′ pθ′P

θ′ directly in (4) would of course yield a
better bound than (5), but this KL(Q ‖ P ) is generally difficult to evaluate, e.g. when P is a mixture
of Gaussians. Furthermore, the alternative bound KL(Q ‖

∑
θ′ pθ′P

θ′) ≤
∑
θ′ pθ′KL(Q ‖ P θ′),

coming from convexity of KL, would require the value of KL(Q ‖ P θ′) for each θ′ ∈ Θ; but
KL(Q ‖ P θ′) cannot be computed by the automatic method of Sections 3.1–3.2 when Q originates
from different hyperparameters than P θ

′
.

As an alternative derivation of Eq. (5) from Theorem 1, one may use the ordinary union bound
argument: For a given probability distribution pθ on the countable set Θ and a given δ ∈ (0, 1], define
δθ := δpθ. Now consider the statement of Theorem 1 for each prior P θ individually with confidence
parameter δθ; this gives that, for each θ ∈ Θ, the statement

∀Q : R(Q) ≤ kl−1

(
RS(Q),

KL(Q ‖ P θ) + ln 2
√
N

δθ

N

)

= kl−1

RS(Q),
KL(Q ‖ P θ) + ln 1

pθ
+ ln 2

√
N
δ

N


fails with probability at most δθ (over S ∼ µN ). By the union bound, the statement fails for one
θ ∈ Θ with probability at most

∑
θ δθ =

∑
θ δpθ = δ

∑
θ pθ = δ · 1 = δ. Thus, the statement of Eq.

(5) (containing the quantifier ∀θ) holds with probability at least 1− δ over S ∼ µN .
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Figure 5: Various regression loss functions. Shown are three bounded loss functions `, which
are appropriate for the regression setting and which allow for an effective computation of the
empirical risk RS(Q) when Q is a GP. Each of these three functions `(y, ŷ) depends only on the
absolute deviation y − ŷ (horizontal axis), and contains a scale parameter ε > 0 which is set to
ε = 1 in the plots: `1(y, ŷ) = 1|y−ŷ|>ε = 1ŷ /∈[y−ε,y+ε] (blue), which we use in our experiments,
`2(y, ŷ) = min{[(y − ŷ)/ε]2, 1} (red), and `exp(y, ŷ) = 1− exp[−((y − ŷ)/ε)2] (yellow).

C Loss functions, the empirical risk RS(Q), and its gradient

Our proposed method requires the empirical risk RS(Q) on the training set S = {(xi, yi)}Ni=1 (see
Sect. 2.1) to be computed effectively for any considered distribution Q, along with its gradient
d
dξRS(Qξ) for gradient-based optimization. We show here that this can be done for many interesting
loss functions ` when Q is a Gaussian Process, including the following (see Fig. 5 for illustration):

`1(y, ŷ) = 1|y−ŷ|>ε = 1ŷ /∈[y−ε,y+ε] , (18)

`2(y, ŷ) = min{((y − ŷ)/ε)2, 1} , (19)

`exp(y, ŷ) = 1− exp[−((y − ŷ)/ε)2] , (20)
`±(y, ŷ) = 1ŷ /∈[r−(y),r+(y)] , (21)

where ε > 0 is a scale parameter to be chosen for the first three, and r±(y) are functions to be
specified for the last. Note that `1 specifies an additive accuracy goal ±ε and was used in our
experiments (Sect. 4), whereas we have suggested `2 and `exp as more deviation-sensitive (yet
bounded) loss functions that may yield better results on the MSE error (see Sect. 5, and Sect. 4).
The loss function `± generalizes `1 (which is obtained by using the functions r±(y) := y ± ε, see
Sect. 2.1), but could also be used to specify relative accuracy goals, e.g. setting r±(y) := y ± ε|y|.
More deviation-sensitive relative loss functions are possible as well, e.g. `(y, ŷ) := max

{∣∣∣ ŷ−yy ∣∣∣ , 1},
which we do not treat here but which allows similarly effective computation as the other ones.

Let us denote by m̂(x) and σ̂2(x) the predictive mean and variance of the predictive GP Q. In our
work we use the two forms (6) (PAC-GP) and (9) (sparse PAC-SGP); in the latter case we e.g. have:

m̂(x) = m(x) + kM (x)K−1
MM (aM −mM ), (22)

σ̂2(x) = K(x, x′)− kM (x)K−1
MM [KMM −BMM ]K−1

MMkM (x′)T . (23)

We denote by m̂i := m̂(xi), σ̂2
i := σ̂2(xi) the predictive mean and variance at the training inputs.

The empirical risk RS(Q) from (1) then reduces to a sum of one-dimensional integrals containing a
Gaussian density:

RS(Q) =
1

N

N∑
i=1

Eh∼Q
[
`
(
yi, h(xi)

)]
=

1

N

N∑
i=1

Ev∼Q(xi)

[
`
(
yi, v

)]
(24)

=
1

N

N∑
i=1

∫
dvN (v | m̂i, σ̂

2
i ) `(yi, v). (25)
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The last integral can be evaluated for each of the loss functions (18)–(21):∫
dvN (v | m̂i, σ̂

2
i ) `1(yi, v) = Φ

(
yi − ε− m̂i

σ̂i

)
+ 1− Φ

(
yi + ε− m̂i

σ̂i

)
, (26)∫

dvN (v | m̂i, σ̂
2
i ) `2(yi, v) =

(
1− (yi − m̂i)

2 + σ̂2
i

ε2

)(
Φ

(
yi − ε− m̂i

σ̂i

)
− Φ

(
yi + ε− m̂i

σ̂i

))
+ 1− σ̂i√

2πε2
(yi − ε− m̂i)e

−(yi+ε−m̂i)2/(2σ̂2
i ) (27)

− σ̂i√
2πε2

(yi + ε− m̂i)e
−(yi−ε−m̂i)2/(2σ̂2

i ),∫
dvN (v | m̂i, σ̂

2
i ) `exp(yi, v) = 1− 1√

1 +
2σ̂2
i

ε2

exp

[
− (yi − m̂i)

2

2σ̂i + ε2

]
, (28)

∫
dvN (v | m̂i, σ̂

2
i ) `±(yi, v) = Φ

(
r−(yi)− m̂i

σ̂i

)
+ 1− Φ

(
r+(yi)− m̂i

σ̂i

)
, (29)

where by

Φ(z) :=

∫ z

−∞

1√
2π
e−t

2/2dt (30)

we denote the cumulative distribution function of a standard normal, which is implemented in most
computational packages. Plugging the expressions (26)–(29) into (25) shows how RS(Q) can be
computed.

With the above expressions one can also compute gradients of RS(Q) = RS(Qξ) effectively for
gradient-based optimization: When Q = Qξ depends on parameters ξ (such as hyperparameters θ,
noise σn, inducing points {zi}, or any other free-form parameters aM , BMM or α from Sect. 3.2),
then m̂(x) = m̂ξ(x) and σ̂(x) = σ̂ξ(x) depend on ξ as well through explicit expressions, via (6)
and (9). One can thus compute the gradients d

dξ m̂
ξ
i = d

dξ m̂
ξ(xi) and d

dξ σ̂
ξ
i = d

dξ σ̂
ξ(xi) analytically,

using standard matrix analysis (e.g. [1, App. A]). With these gradients and the above expressions
(26)–(29) it is easy to compute d

dξRS(Qξ) for the above loss function; e.g. for `1 from (18) used in
our experiments:

d

dξ
R1
S(Qξ) =

1

N

N∑
i=1

[(
d

dξ

yi − ε− m̂i

σ̂i

)
e
− 1

2

(
yi−ε−m̂i

σ̂i

)2

−
(
d

dξ

yi + ε− m̂i

σ̂i

)
e
− 1

2

(
yi+ε−m̂i

σ̂i

)2
]

(31)

where we used that d
dzΦ(z) = 1√

2π
e−z

2/2.

Lastly, for the purpose of gradient-based optimization of the objective from Theorem 1 or Eq. (5),
one does not really need to compute the exact RS(Q) as a sum over N training examples, which is
possibly a large number. Rather, one could do mini-batches of size B � N and obtain a stochastic
estimate

RS(Q) ≈ 1

B

B∑
i=1

∫
dvN (v | m̂i, σ̂

2
i ) `(yi, v) =: R̂B(Q), (32)

where the sum runs over one mini-batch selected from the N training points randomly or in cyclic

order. (Hoeffding’s inequality gives that |RS(Q) − R̂B(Q)| .
√

1
2B ln 2

δ′ holds with probability
≥ 1− δ′ over mini-batches. While this statement could be incorporated into a version of Theorem 1
or Eq. (5) that is expressed in terms of R̂B(Q) instead of RS(Q), we propose stochastic estimates
R̂B(Q) only during the optimization procedure and suggest a full computation of RS(Q) for the final
evaluation of the generalization bound.) Similarly, the exact gradient d

dξRS(Qξ) is a sum over N
training examples (e.g., (31)), so one can approximate it in the same way by mini-batches to obtain a
faster stochastic estimate of the gradient which is often sufficient for optimization.
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D Training objectives of other GP methods

Here we contrast our proposed learning objective (5) with those of other common GP methods, to
which we compare in the experiments (Sect. 4).

In standard full GP regression learning [1] one selects those prior hyperparameters θ and noise level
σn which maximize the data likelihood p(yN | θ, σn) = N (yN | mN ,KNN + σ2

n1) under the prior
GP. This corresponds to the minimization objective

− ln p(yN | θ, σn) =
1

2
ln det[KNN+σ2

n1]+
N

2
ln(2π)+

1

2
(yN−mN )T (KNN+σ2

n1)−1(yN−mN ).

(33)
The optimal θ, σn are then used in (6) to make predictions.

The sparse-GP methods FITC [15], VFE [6], and DTC [16] adjust θ, σn, and the M inducing inputs
{zi} by minimizing the objective [2]

F =
1

2
ln det

[
KNMK

−1
MMKMN + σ2

n1+G
]

+
N

2
ln(2π) +

1

2σ2
n

tr[T ]

+
1

2
(yN −mN )T

(
KNMK

−1
MMKMN + σ2

n1+Gθ
)−1

(yN −mN ),

(34)

where GFITC = TV FE = diag(KNN − KNMK
−1
MMKMN ) and GVFE = GDTC = TFITC =

TDTC = 0. For DTC and FITC, F are the negative log likelihoods of approximate prior models
[24, 15], whereas F equals the exact negative log likelihood plus the KL-divergence KL(Q ‖ Q̃)

between Q and the exact Bayesian posterior Q̃ obtained from the Bayesian prior P . VFE and DTC
make predictions Q by using (11) with α = 0 in (9), whereas FITC sets α = 1.

One can compare the above expressions to the KL(Q ‖ P ) term in the PAC-Bayes bound (5). For
our full-GP training, KL(Q ‖ P ) is given in (8):

KL(Q ‖ P ) = −1

2
ln det

[
K−1
NN (KNN −KNN (KNN + σ2

n1)−1KNN )
]

+
1

2
tr[K−1

NN (KNN −KNN (KNN + σ2
n1)−1KNN )

]
− N

2

+
1

2
(yN −mN )T (KNN + σ2

n1)−1KNN (KNN + σ2
n1)−1(yN −mN ),

=
1

2
ln det

[
KNN + σ2

n1
]
− N

2
lnσ2

n −
1

2
tr
[
KNN (KNN + σ2

n1)−1
]

+
1

2
(yN −mN )T (KNN + σ2

n1)−1KNN (KNN + σ2
n1)−1(yN −mN ),

=
1

2

N∑
i=1

[
ln
λi + σ2

n

σ2
n

− λi
λi + σ2

n

]
+

1

2

N∑
i=1

λi
(λi + σ2

n)2
(ei · (y −mN ))2,

where λi ∈ R are the eigenvalues of KNN and ei ∈ RN corresponding orthonormal eigenvectors.
For our sparse-GP training with a “free-form” sparsification Q(fM ) = N (fM | aM , BMM ) with
free aM , BMM , it is from (10):

KL(Q ‖ P ) = KL(Q(fM ) ‖ P (fM )) =− 1

2
ln det

[
BMMK

−1
MM

]
+

1

2
tr
[
BMMK

−1
MM

]
− M

2

+
1

2
(aM −mM )TK−1

MM (aM −mM ),

which via aM = KMMQ
−1
MMKMN (αΛ + σ2

n1)−1yN , BMM = KMMQ
−1
MMKMM from (11) with

α = 1 can be particularized for the FITC parametrization used in our PAC-SGP work.
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E Experiment: predictive distributions of sparse GPs, and overfitting

To compare the predictive distributions of common sparse GPs to the predictive distribution obtained
from our sparse PAC-SGP method (Sect. 3.2) optimized with the PAC-Bayesian bound (5), we trained
FITC [15] and VFE [6] on the same dataset used in Fig. 1, which was also used in [15, 6] for a
comparison of methods. It can be seen in Fig. 6 that especially for small ε our PAC-SGP has a
predictive distribution more similar to FITC, whereas for larger ε, the predictive distribution becomes
closer to the full-GP, however not as close as VFE. Note that, for the full-GP, for FITC and for VFE
we include the additive observation noise σ2

n in the predictive uncertainty in Fig. 6, whereas for
our PAC-SGP variant we do not include additive observation noise σ2

n, since this is not part of the
predictive variance (see Eqs. (9,11), and similarly Eq. (6) for the non-sparse case); we instead plot
the ε-band from the 0-1-loss function (green) around the predictive PAC-SGP mean. We further refer
to the discussions in [15, 6] concerning the same dataset.

−2

−1

0

1

kl-PAC-SGP (ε= 0.5σn = 0.14) PAC (ε= 3σn) FITC VFE

Figure 6: Comparison of predictive distributions. In each plot, we show the predictive distribution
from a full-GP in red (mean ± twice the predictive variance), fitted to the data (black dots). The
blue distributions (mean ± twice the predictive variance) in the first two plots are obtained form our
sparse kl-PAC-SGP with two different values of ε (chosen relative to the noise level σn = 0.28 of
the full-GP), the third shows the predictive distribution from FITC, the fourth from VFE. For the
PAC-GP variants, we additionally plotted the ε-band as in Fig. 1. As in Fig. 1, the crosses show the
inducing point positions before and after training.

As a further comparison of our method with FITC, we now illustrate the well-known overfitting of
the FITC method on pathological datasets [2] and show how our PAC-SGP method avoids it. The
dataset for this demonstration consists of half of the datapoints (using every second one) of the above
1D-dataset [15, 6], similar to what was done in the comparison study in [2, Section 3.1]. For 100
different initializations of σ2

n ∈ [10−5, 10+1] and the M = 8 inducing inputs, we trained a FITC
model and a kl-PAC-SGP model, minimizing the (approx.) negative log-likelihood for FITC and
minimizing the BKL bound from Eq. (5) for kl-PAC-SGP (using the 0-1-loss function with ε = 0.6,
cf. Sect. 4). Fig. 7 shows, for each of the (local) optima reached in these optimizations, the optimal
learned noise variance σ2

n and the obtained values of the objective function at each local minimum.

For FITC, the learned noise variances σ2
n span five orders of magnitude, and many of them have

very small values ∼ 10−6, lying outside of the initialization interval, and clearly overfit on the data
(see [2, Figure 1]). Worse than that, the global optimum for FITC (red dot in left panel of Fig. 7)
is found at the very small value of σ2

n ∼ 10−6, reproducing the findings of [2, Section 3.1]. In
contrast to that, our kl-PAC-SGP is much better behaved: the local optima have more reasonable
σ2
n ∈ [2·10−3, 10−1] and our global optimum has σ2

n ≈ 2.1·10−2 (note however that the values of σn
learned by PAC-(S)GP will depend on the lengthscale ε chosen for the loss function `; see also Table
1 in App. G). While kl-PAC-SGP has further local optima at the small values σ2

n ∈ [10−5, 2 · 10−3],
where σ2

n does not move away from its small initialization value, these are easy to detect as the
minimization objective attains the trivial value of ≈ 1.

This shows that our PAC-GP method is more stable than FITC on these pathological datasets and
returns a more reasonable estimate of the noise level σ2

n. It also reinforces the finding from the
experiments in Sect. 4 that our PAC-GP tends to underfit rather than overfit, hedging against violations
of Theorem 1 and Eq. (5) by returning predictive GPs Q of lower complexity KL(Q‖P ) by choosing
larger σ2

n.
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Figure 7: Local minima of the optimization for different initializations. Shown are the learned
σ2
n and the achieved (local) minima for 100 different initializations of σ2

n ∈ [10−5, 10+1] for the
FITC and kl-PAC-SGP methods trained on 100 out of the 200 datapoints of the 1D-dataset from
[15, 6]. See also [2, Section 3.1].

F Experiment: dependence of the upper bound on discretization

In order to assess the effect of discretizing hyperparameters θ (see Sections 3.1 and 4) on the
performance of the resulting GP and on the upper bound, we ran our PAC-GP from Sect. 3.1 with
different discretization settings and fitted them to artificial data. The results are shown in Fig. 8.

Specifically, we generated inputs by uniformly sampling x ∈ X := [−3, 3]3 ⊂ R3. We sampled
N = 2000 training and N = 10000 test outputs by sampling from a GP on the generated inputs,
using an SE-ARD-kernel with randomly selected lengthscales for each of the d = 3 dimensions. In
more details, we sampled the kernel’s log-lengthscales uniformly between−1 and 1. To the generated
data, we fitted a PAC-GP with a discretization given by L ∈ {1, 2, 4, 8} (see Sect. 3.1) and a number
of rounding digits r ∈ {0, 1, 2, 4} (i.e. G = 2L · 10r in Sect. 3.1). For example, for L = 1, r = 0, we
only consider values log θ ∈ {−1, 0, 1} resulting in log |Θ| = (d+ 1) · ln(G+ 1) = 4 ln 3 ≈ 4.4.

To assess the contribution of the training risk RS and the KL-divergence term to the overall upper
bound (5) on the generalization performance, we plotted the mean of each of these terms as a
function of log |Θ|, averaged across 68 repetitions. Additionally, we plotted the risk on a test set
to assess whether the actual test performance R(Q) is affected by coarser discretization of the
GP hyperparameters. It can be seen in Fig. 8 that, as long as a minimal discrimination ability is
allowed, both the training as well as the test risks are not affected by discretizing to a coarse grid of
hyperparameters. Specifically, the jump that can be observed at ln |Θ| ∼ 11.3 corresponds to going
from r = 0 to r ≥ 1, thereby keeping at least one decimal place in the discretization. We see that
both the KL-divergence KL(Q‖P ) as well as the training risk RS(Q) is basically unaffected by the
discretization for r ≥ 1, so any increase in the resulting upper bound is due to the increase in log |Θ|.
From this investigation, we find the discretization with L = 6 and r = 2 to be completely sufficient
for accuracy, while the resulting ln |Θ| term is still small compared to the contribution KL(Q‖P ) in
the PAC-Bayes bound (5) as seen in our experiments (Sect. 4). For this discretization we have ln |Θ| =
(d+1) ln(1201) ≈ 7.1(d+1) for an SE-ARD kernel in d dimensions, and ln |Θ| = 2 ln(1201) ≈ 14.2
for a non-ARD SE-kernel. Note that – for any fixed rounding accuracy of ∼ log2G bits – the penalty
term ln |Θ| as well as the required storage capacity and computational effort all scale only linearly
with the input dimension d; thus, our method requires the same computational complexity as other
standard GP methods.

19



10 20 30 40 50

log(|Θ|)

0.00

0.05

0.10

0.15

0.20
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Figure 8: Analysis of the discretization effect. Upper bound (5) and its contributing terms, as
well as the training and test risks, as a function of the discretization as measured by log |Θ|. Each
line corresponds to the mean value over 68 iterations, when trained with our PAC-GP fitted to
3-dimensional data generated from an SE-ARD kernel with random lengthscales (see text, App. F).
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