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1 Derivation of the svGPFA Variational Lower Bound

In order to arrive at a scalable variational inference algorithm, we make use of a sparse GP approxi-
mation. We introduce a set of inducing points U = [uuu1, . . . ,uuuK ] for each latent process, which are
each evaluated on a set of inducing point locations Z = [zzz1, . . . , zzzK ].

The joint-data likelihood of the full model, now including the inducing points, is hence

p(Y,xxx(·), U) = p(Y|xxx(·))
K∏
k=1

p(xk(·)|uuuk)p(uuuk|zzzk) (1)

where we have omitted explicit conditioning on model parameters to avoid cluttered notation. A
variational lower bound to the log-likelihood can be obtained by applying Jensen’s inequality:

log p(Y) ≥
∫∫

q({uuuk}Kk=1,xxx(·)) log
(p(Y|xxx(·))

∏K
k=1 p(xk(·)|uuuk)p(uuuk|zzzk)

q({uuuk}Kk=1,xxx(·))

)
duuu1 . . . duuuKdxxx

(2)
We choose a factorised approximating distribution of the form

q({uuuk}Kk=1,xxx(·)) =

K∏
k=1

q(uuuk, xk(·)) =

K∏
k=1

p(xk(·)|uuuk)q(uuuk) (3)

and choose q(uuuk) = N (mmmk, Sk) to be multivariate Gaussian. This choice of approximating distribu-
tion allows one to write the lower bound as

log p(Y) ≥
∫∫ K∏

k=1

q(uuuk)p(xk(·)|uuuk) log
(
p(Y|xxx(·))

)
duuukdxxx−

K∑
k=1

KL
[
q(uuuk)‖p(uuuk)

]
(4)

The second term is the Kullback-Leibler divergence between two Gaussian distributions, which can be
evaluated analytically. In order to manipulate the first term, let hn(·) =

∑K
k=1 cn,kxk(·) + dn denote

the affine transformation of latent GPs for the n-th neuron. We can obtain a marginal variational
distribution over hn(·) as a GP with additive structure

q(hn(·)) =

∫ K∏
k=1

q(uuuk)p(hn(·)|{uuuk})duuuk = GP(νn(·), σn(·, ·)) (5)
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where

νn(t) =

K∑
k=1

cn,k κκκk( t , zzzk) K(k)
zz

−1
mmmk + dn (6)

σn(t, t′) =

K∑
k=1

c2n,k

(
κk(t, t′) + κκκk(t, zzzk)

(
K(k)
zz

−1
SkK

(k)
zz

−1
− K(k)

zz

−1
)
κκκk(zzzk, t

′)
)

(7)

κκκk( · , zzzk) is a vector valued function taking a single time-point as an input argument and consisting
of evaluations of the kernel κk(·, ·) at the inducing point locations. K(k)

zz is the kernel Gram matrix of
the kth process evaluated at the respective inducing point locations.

To obtain the final expression for the variational lower bound, we can simply rewrite the expression
in equation (??):

log p(Y) ≥ Eq(hn) [log p(Y|hn(·))]−
K∑
k=1

KL
[
q(uuuk)‖p(uuuk)

]
(8)

2 Use of a point-process likelihood

Using a point-process likelihood in the GPFA model amounts to evaluating the expected log-likelihood
in the first term in (??):

E
q(h

(r)
n )

[
log p(ttt(r)n |h(r)

n )
]

= −E
q(h

(r)
n )

[∫
T
g(h(r)

n (t))dt

]
+

Φ(n,r)∑
in=1

E
q(h

(r)
n )

[
log g(h(r)

n (ti))
]

(9)
We can apply Fubini’s theorem to switch the order of integration in the first term:

E
q(h

(r)
n )

[
log p(ttt(r)n |h(r)

n )
]

= −
∫
T
E
q(h

(r)
n )

[
g(h(r)

n (t))
]
dt+

Φ(n,r)∑
in=1

E
q(h

(r)
n )

[
log g(h(r)

n (ti))
]

(10)
Which gives the final form of the expected log-likelihood. Depending on the choice of non-linearity
g(·), the expectation terms can either be evaluated analytically, or efficiently using Gauss-Hermite
quadrature. The first term in (??) involves one-dimensional integrals, which can be computed using
efficient numerical approximations such as Gauss-Legendre quadrature.

3 Condition-grouped model with time-warping

The full approximating distribution across trials is chosen to be of the form

q({{{ζ(r)
k ,uuu

ζ,(r)
k }Kk=1}ζ , τ (r),uuuτ,(r)}Rr=1)

=

R∏
r=1

 ∏
ζ={α,β,γ}

K∏
k=1

p(ζ
(r)
k |uuu

ζ,(r)
k , τ (r))q(uuu

ζ,(r)
k )

 p(τ (r)|uuuτ,(r))q(uuuτ,(r))
(11)

Under this approximation, the variational lower bound to the log-likelihood becomes

log p(Y) ≥
R∑
r=1

N∑
n=1

E
q(h

(r)
n )

[
log p(yyy(r)

n |h(r)
n )
]
−

R∑
r=1

KL
[
q(uuuτ,(r))‖p(uuuτ,(r))

]
−

K∑
k=1

KL
[
q(uuuαk )‖p(uuuαk )

]
−

L∑
`=1

K∑
k=1

KL
[
q(uuu

β,(`)
k )‖p(uuuβ,(`)k )

]
−

R∑
r=1

K∑
k=1

KL
[
q(uuu

γ,(r)
k )‖p(uuuγ,(r)k )

]
(12)
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Where

q(h(r)
n (t))

=

∫
duuuαkduuu

β,`(r)
k duuu

γ,(r)
k duuuτ,(r)dτ (r)

K∏
k=1

q(uuuαk )q(uuu
β,`(r)
k )q(uuu

γ,(r)
k )p(h(r)

n (t)|{uuuζ,(r)k }k,ζ , τ (r))p(τ (r)|uuuτ,(r))q(uuuτ,(r))

(13)

Letting

q(τ (r)) =

∫
duuuτ,(r)p(τ (r)|uuuτ,(r))q(uuuτ,(r)) (14)

We can marginalise out the inducing points and evaluate q(h(r)
n (t)) as an additive Gaussian Process

with mean and covariance function:

ν(r)
n (t) =

∑
ζ,k

cζn,k Ψ
ζ,(r)
k,1 (t, zzzζk) Kζ,(k)

zz

−1
mmm
ζ,(r)
k + dn

σ(r)
n (t, t) =

∑
ζ,k

cζn,k
2
(

Ψ
ζ,(r)
k,0 (t) + Tr

[(
Kζ,(k)
zz

−1
S
ζ,(r)
k Kζ,(k)

zz

−1
− Kζ,(k)

zz

−1
)

Ψ
ζ,(r)
k,2 (t, zzzζk)

] )
(15)

where
Ψ
ζ,(r)
k,0 (t) = Eq(τ(r))

[
κκκζk( τ (r)(t) , τ (r)(t))

]
Ψ
ζ,(r)
k,1 (t, zzzζk) = Eq(τ(r))

[
κκκζk( τ (r)(t) , zzzζk)

]
Ψ
ζ,(r)
k,2 (t, zzzζk) = Eq(τ(r))

[
κκκζk(zzzζk, τ

(r)(t))κκκζk(τ (r)(t), zzzζk)
] (16)
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