
Learning Abstract Options

Matthew Riemer, Miao Liu, and Gerald Tesauro
IBM Research

T.J. Watson Research Center, Yorktown Heights, NY
{mdriemer, miao.liu1, gtesauro}@us.ibm.com

1 Derivation of Generalized Policy Gradient and Termination Gradient
Theorems

1.1 The Derivation of U

To help explain the meaning and derivation of equation (10), we separate the expression into four
primary terms. The first term is applicable for N ≥ 1 and represents the expected return from cases
where no options terminate. The second term is applicable for N ≥ 2 and represents the expected
return from cases where every option terminates. The third and fourth terms are applicable for N ≥ 3
and represent the expected return from cases where some options terminate.

We will first discuss how to estimate the return when there are no terminated options. In this case we
simply use our estimate of the value of the current state following the current options if there are any.
As we are computing the expectation, we also multiply this term by its likelihood of happening which
is equal to the probability that the lowest level option policy does not terminate. When N = 1 we can
consider the termination probability of the current policy as zero and the current option context to be
empty. As such, we estimate the value function upon arrival as VΩ(s) as we do for actor-critic policy
gradients.

Next we turn our attention to estimating the return when all options are terminated. This can be
approximated using our estimate of the return given the state VΩ(s). The likelihood of this happening
is equal to the conditional likelihood of options terminating at every level of abstraction we are
modeling. When N = 2, equation (10) simplifies to equation (3). This expression is precisely the
option value function upon arrival of the option-critic framework derived in [1].

The final quantity we will estimate bridges the gap to cases where only some options terminate. This
situation has not been explored by other work on option learning as it only arises for situations with
at least N = 3 hierarchical levels of planning. The case where some (but not all) options terminate
arises when a series of low level options terminate while a high level option does not terminate. For a
given level of abstraction, we can analyze the likelihood that at each level the lower level options
terminate while the current does not. In such a case, we multiply this likelihood by the value one
level more abstract than the current option hierarchy level. For convenience in our derivation, we
split our notation for this quantity into two separate terms accounting explicitly for the case when
only lower level options terminate.

1.2 Generalized Markov Chain and Augmented Process

We must establish the Markov chain along which we can measure performance for options with N
levels of abstraction. The natural approach is to consider the chain defined in the augmented state
space because state and active option based tuples now play the role of regular states in a usual
Markov chain. If options o1:N−1

t have been initiated or are executing at time t in state st , then the
probability of transitioning to (st+1,o1:`−1

t+1) in one step is:

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

P(st+1,o1:`−1
t+1 |st ,o1:N−1

t) = ∑
oN

t

π
N
θ N (oN

t |st ,o1:N−1
t)P(st+1|st ,oN

t)[

(1−β
N−1
φN−1(st+1,o1:N−1

t))1o1:`−1
t+1 =o1:`−1

t︸ ︷︷ ︸
none terminate

+

`

∑
q=N−1

(1−β
q−1
φq−1(st+1,o

1:q−1
t))

q

∏
z=N−1

β
z
φ z(st+1,o1:z

t)1o1:`−1
t+1 =o1:`−1

t︸ ︷︷ ︸
only lower level options terminate

+

1

∏
j=N−1

β
j

φ j(st+1,o
1: j
t)

1

∏
v=`−1

π
v
θ v(ov

t+1|st+1,o1:v−1
t)︸ ︷︷ ︸

all options terminate

+

`−2

∑
i=1

(1−β
i
φ i(st+1,o1:i

t))
N−1

∏
k=i+1

β
k
φ k(st+1,o1:k

t)
`−1

∏
p=i+1

π
p
θ p(o

p
t+1|st+1,o

1:p−1
t)︸ ︷︷ ︸

some relevant higher level options terminate

].

(1)

where primitive actions are oN . Like the Markov chain derived for the option critic architecture [1],
the process given by equation (1) is homogeneous. Additionally, when options are available at every
state, the process is ergodic with the existance of a unique stationary distribution over the augmented
state space tuples.

We continue by presenting an extension of results about augmented processes used for derivation
of learning algorithms in [1] to an option hierarchy with N levels of abstraction. If options o1:N−1

t
have been initiated or are executing at time t, then the discounted probability of transitioning to
(st+1,o1:`−1

t+1) where `≤ N is:

P(1)
γ (st+1,o1:`−1

t+1 |st ,o1:N−1
t) = ∑

oN
t

π
N
θ N (oN

t |st ,o1:N−1
t)γP(st+1|st ,oN

t)[

(1−β
N−1
φN−1(st+1,o1:N−1

t))1o1:`−1
t+1 =o1:`−1

t︸ ︷︷ ︸
none terminate

+

`

∑
q=N−1

(1−β
q−1
φq−1(st+1,o

1:q−1
t))

q

∏
z=N−1

β
z
φ z(st+1,o1:z

t)1o1:`−1
t+1 =o1:`−1

t︸ ︷︷ ︸
only lower level options terminate

+

1

∏
j=N−1

β
j

φ j(st+1,o
1: j
t)

1

∏
v=`−1

π
v
θ v(ov

t+1|st+1,o1:v−1
t)︸ ︷︷ ︸

all options terminate

+

`−2

∑
i=1

(1−β
i
φ i(st+1,o1:i

t))
N−1

∏
k=i+1

β
k
φ k(st+1,o1:k

t)
`−1

∏
p=i+1

π
p
θ p(o

p
t+1|st+1,o

1:p−1
t)︸ ︷︷ ︸

some relevant higher level options terminate

].

(2)

2

As such, when we condition the process from (st ,o1:N−1
t−1), the discounted probability of transitioning

to (st+1,o1:`−1
t) is:

P(1)
γ (st+1,o1:`−1

t |st ,o1:N−1
t−1) = ∑

oN
t

π
N
θ N (oN

t |st ,o1:N−1
t)γP(st+1|st ,oN

t)[

(1−β
N−1
φN−1(st+1,o1:N−1

t−1))1o1:`−1
t =o1:`−1

t−1︸ ︷︷ ︸
none terminate

+

`

∑
q=N−1

(1−β
q−1
φq−1(st+1,o

1:q−1
t−1))

q

∏
z=N−1

β
z
φ z(st+1,oz

1:t−1)1o1:`−1
t =o1:`−1

t−1︸ ︷︷ ︸
only lower level options terminate

+

1

∏
j=N−1

β
j

φ j(st+1,o
1: j
t−1)

1

∏
v=`−1

π
v
θ v(ov

t |st+1,o1:v−1
t−1)︸ ︷︷ ︸

all options terminate

+

`−2

∑
i=1

(1−β
i
φ i(st+1,o1:i

t−1))
N−1

∏
k=i+1

β
k
φ k(st+1,o1:k

t−1)
`−1

∏
p=i+1

π
p
θ p(o

p
t |st+1,o

1:p−1
t−1)︸ ︷︷ ︸

some relevant higher level options terminate

].

(3)

This definition will be very useful later for our derivation of the hierarchical intra-option policy
gradient. However, for the derivation of the hierarchical termination gradient theorem we should
reformulate the discounted probability of transitioning to (st+1,o1:`

t) from the view of the termination
policy at abstraction level ` explicitly separating out terms that depend on φ `:

P(1)
γ (st+1,o1:`

t |st ,o1:N−1
t−1) = ∑

oN
t

π
N
θ N (oN

t |st ,o1:N−1
t)γP(st+1|st ,oN

t)[

(1−β
N−1
φN−1(st+1,o1:N−1

t−1))1o1:`
t =o1:`

t−1︸ ︷︷ ︸
none terminate

+
`+2

∑
q=N−1

(1−β
q−1
φq−1(st+1,o

1:q−1
t−1))

q

∏
z=N−1

β
z
φ z(st+1,o1:z

t−1)1o1:`
t =o1:`

t−1︸ ︷︷ ︸
only lower level options terminate

+

(1−β
`
φ `(st+1,o1:`

t−1))
`+1

∏
z=N−1

β
z
φ z(st+1,o1:z

t−1)1o1:`
t =o1:`

t−1︸ ︷︷ ︸
`+1 terminates and ` does not

+
1

∏
j=N−1

β
j

φ j(st+1,o
1: j
t−1)

1

∏
v=`

π
v
θ v(ov

t |st+1,o1:v−1
t−1)︸ ︷︷ ︸

all options terminate

+

`−1

∑
i=1

(1−β
i
φ i(st+1,o1:i

t−1))
N−1

∏
k=i+1

β
k
φ k(st+1,o1:k

t−1)
`

∏
p=i+1

π
p
θ p(o

p
t |st+1,o

1:p−1
t−1)︸ ︷︷ ︸

some relevant higher level options terminate

].

(4)

The k-step discounted probabilities can more generally be expressed recursively:

P(k)
γ (st+k,o1:`−1

t+k |st ,o1:N−1
t) =

∑
st+1

∑
o1

t+1

... ∑
oN−1

t+1

[P(1)
γ (st+1,o1:N−1

t+1 |st ,o1:N−1
t)P(k−1)

γ (st+k−1,o1:`−1
t+k |st+1,o1:N−1

t+1)]. (5)

Or rather conditioning on t−1 as in equation (3):

P(k)
γ (st+k,o1:`−1

t+k−1|st ,o1:N−1
t−1) =

∑
st+1

∑
o1

t

... ∑
o1:N−1

t

[P(1)
γ (st+1,o1:N−1

t |st ,o1:N−1
t−1)P(k−1)

γ (st+k−1,o1:`−1
t+k−1|st+1,o1:N−1

t)]. (6)

3

1.3 Proof of the Hierarchical Intra-Option Policy Gradient Theorem

Taking the gradient of the value function with an augmented state space:

∂QΩ(s,o1:`−1)

∂θ `
=

∂

∂θ ` ∑
o`

π
`
θ `(o`|s,o1:`−1)QU (s,o1:`)

= ∑
o`
(

∂π`
θ `(o`|s,o1:`−1)

∂θ `
QU (s,o1:`)+π

`
θ `(o`|s,o1:`−1)

∂QU (s,o1:`)

∂θ `
)

(7)

Then substituting in equation 9 with the assumption that θ ` only appears in the intra-option policy at
level ` and not in any policy at another level or in the termination function:

∂QΩ(s,o1:`−1)

∂θ `
= ∑

o`
(

∂π`
θ `(o`|s,o1:`−1)

∂θ `
QU (s,o1:`)+π

`
θ `(o`|s,o1:`−1)γ ∑

s′
P(s′|s,o1:`)

∂U(s′,o1:`−1)

∂θ `
)

(8)

where P(s′|s,o1:`) is the probability of transitioning to a state based on the augmented state space
(s,o1:`) considering primitive actions oN :

P(s′|s,o1:`) = ∑
oN

... ∑
o`+1

P(s′|s,oN)
N

∏
j=`+1

π
j(o j|s,o1: j−1). (9)

We continue by computing the gradient with respect to U again assuming that θ ` only appears in the
intra-option policy at level ` and not in any policy at another level or in the termination function:

∂U(s′,o1:`−1)

∂θ `
= (1−β

N−1
φN−1(s

′,o1:N−1))
∂QΩ(s′,o1:`−1)

∂θ `︸ ︷︷ ︸
none terminate

+
∂VΩ(s′)

∂θ `

1

∏
j=N−1

β
j

φ j(s
′,o1: j)︸ ︷︷ ︸

all options terminate

+

∂QΩ(s′,o1:`−1)

∂θ `

`

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

only lower level options terminate

+

`−2

∑
i=1

(1−β
i
φ i(s′,o1:i))

∂QΩ(s′,o1:i)

∂θ `

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)︸ ︷︷ ︸

some relevant higher level options terminate

(10)

Next we integrate out the lower level options so that each term is operating in the same augmented
state space:

∂U(s′,o1:`−1)

∂θ `
= (1−β

N−1
φN−1(s

′,o1:N−1))
∂QΩ(s′,o1:`−1)

∂θ `︸ ︷︷ ︸
none terminate

+

`

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)

∂QΩ(s′,o1:`−1)

∂θ `︸ ︷︷ ︸
only lower level options terminate

+

1

∏
j=N−1

β
j

φ j(s
′,o1: j)∑

o′1
... ∑

o′`−1

1

∏
v=`−1

π
v
θ v(o′v|s′,o′1:v−1)

∂QΩ(s′,o′1:`−1)

∂θ `︸ ︷︷ ︸
all options terminate

+

`−2

∑
i=1

(1−β
i
φ i(s′,o1:i))

N−1

∏
k=i+1

β
k
φ k(s′,o1:k) ∑

o′i+1

... ∑
o′`−1

`−1

∏
p=i+1

π
p
θ p(o′p|s′,o′1:p−1)

∂QΩ(s′,o′1:`−1)

∂θ `︸ ︷︷ ︸
some relevant higher level options terminate

(11)

4

We can then simplify our expression:

∂U(s′,o1:`−1)

∂θ `
= ∑

o′1
... ∑

o′`−1

[(1−β
N−1
φN−1(s

′,o1:N−1))1o′1:`−1=o1:`−1︸ ︷︷ ︸
none terminate

+

`

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N

β
z
φ z(s′,o1:z)1o′1:`−1=o1:`−1︸ ︷︷ ︸

only lower level options terminate

+

1

∏
j=N−1

β
j

φ j(s
′,o1: j)

1

∏
v=`−1

π
v
θ ′v(o

′v|s′,o′1:v−1)︸ ︷︷ ︸
all options terminate

+

`−2

∑
i=1

(1−β
i
φ i(s′,o1:i))

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)

`−1

∏
p=i+1

π
p
θ p(o′p|s′,o′1:p−1)︸ ︷︷ ︸

some relevant higher level options terminate

]
∂QΩ(s′,o′1:`−1)

∂θ `
,

(12)

We proceed by substituting (12) into (8):

∂QΩ(s,o1:`−1)

∂θ `
= ∑

o`
(

∂π`
θ `(o`|s,o1:`−1)

∂θ `
QU (s,o1:`)+

π
`
θ `(o`|s,o1:`−1)γ ∑

s′
P(s′|s,o1:`)∑

o′1
... ∑

o′`−1

[(1−β
N−1
φN−1(s

′,o1:N−1))1o′1:`−1=o1:`−1︸ ︷︷ ︸
none terminate

+

`

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N

β
z
φ z(s′,o1:z)1o′1:`−1=o1:`−1︸ ︷︷ ︸

only lower level options terminate

+

1

∏
j=N−1

β
j

φ j(s
′,o1: j)

1

∏
v=`−1

π
v
θ v(o′v|s′,o′1:v−1)︸ ︷︷ ︸

all options terminate

+

`−2

∑
i=1

(1−β
i
φ i(s′,o1:i))

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)

`−1

∏
p=i+1

π
p
θ p(o′p|s′,o′1:p−1)︸ ︷︷ ︸

some relevant higher level options terminate

]
∂QΩ(s′,o′1:`−1)

∂θ `

(13)

This yields a recursion, which can be further simplified to:

∂QΩ(s,o1:`−1)

∂θ `
=

∑
o`

∂π`
θ `(o`|s,o1:`−1)

∂θ `
QU (s,o1:`)+∑

s′
∑
o′1

... ∑
o′`−1

P(1)
γ (s′,o′1:`−1|s,o1:N−1)

∂QΩ(s′,o′1:`−1)

∂θ `

(14)

Considering the previous remarks about augmented processes and substituting in equation (3), this
expression becomes:

∂QΩ(s,o1:`−1)

∂θ `
=

∞

∑
k=0

∑
s′,o′1:`−1

P(k)
γ (s′,o′1:`−1|s,o1:N−1)∑

o`

∂π`
θ `(o′`|s′,o′1:`−1)

∂θ `
QU (s′,o′1:`) (15)

5

The gradient of the expected discounted return with respect to θ ` is then:

∂QΩ(s0,o1:`−1
0)

∂θ `
= ∑

s,o1:`−1

∞

∑
k=0

P(k)
γ (s,o1:`−1|s0,o1:N−1

0)∑
o`

∂π`
θ `(o`|s,o1:`−1)

∂θ `
QU (s,o1:`)

= ∑
s,o1:`−1

µΩ(s,o1:`−1|s0,o1:N−1
0)∑

o`

∂π`
θ `(o`|s,o1:`−1)

∂θ `
QU (s,o1:`).

(16)

1.4 Proof of the Hierarchical Termination Gradient Theorem

The expected sum of discounted rewards originating from augmented state (s1,o1:N−1
0) is defined as:

U(s1,o1:N−1
0) = E[

∞

∑
t=1

γ
t−1rt |s1,o1:N−1

0] (17)

We start by reformulating U from equation (10) at level of abstraction ` rather than `−1 as follows:

U(s′,o1:`) = (1−β
N−1
φN−1(s

′,o1:N−1))QΩ(s′,o1:`)︸ ︷︷ ︸
none terminate

+VΩ(s)
1

∏
j=N−1

β
j

φ j(s
′,o1: j)︸ ︷︷ ︸

all options terminate

+

QΩ(s′,o1:`)
`+1

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

only lower level options terminate

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))QΩ(s′,o1:i)

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)︸ ︷︷ ︸

some relevant higher level options terminate

(18)

As we will be interested in analyzing this expression with respect to φ `, we separate the term where
only lower level options terminate into two separate terms. In the special case where `+1 terminates
and ` does not, we still utilize φ ` even though it did not terminate:

U(s′,o1:`) = (1−β
N−1
φN−1(s

′,o1:N−1))QΩ(s′,o1:`)︸ ︷︷ ︸
none terminate

+VΩ(s)
1

∏
j=N−1

β
j

φ j(s
′,o1: j)︸ ︷︷ ︸

all options terminate

+

QΩ(s′,o1:`)
`+2

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

only lower level options than `+1 terminate

+

QΩ(s′,o1:`)(1−β
`
φ `(s′,o1:`))

`+1

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

`+1 terminates and ` does not

+
`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))QΩ(s′,o1:i)

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)︸ ︷︷ ︸

some relevant higher level options terminate

(19)

6

The original expression of U was more useful for the gradient with respect to θ `, which does not
depend on this case. The gradient of U with respect to φ ` is then:

∂U(s′,o1:`)

∂φ `
=VΩ(s)

∂β `
φ `(s′,o1:`)

∂φ `
[

`+1

∏
j=N−1

β
j

φ j(s
′,o1: j)][

1

∏
j=`−1

β
j

φ j(s
′,o1: j)]︸ ︷︷ ︸

(1) all options terminate

+

QΩ(s′,o1:`)(−
∂β `

φ `(s′,o1:`)

∂φ `
)

`+1

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

(2) `+1 terminates and ` does not

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))QΩ(s′,o1:i)

∂β `
φ `(s′,o1:`)

∂φ `
[
`−1

∏
k=i+1

β
k
φ k(s′,o1:k)][

N−1

∏
k=`+1

β
k
φ k(s′,o1:k)]︸ ︷︷ ︸

(3) some relevant higher level options terminate

+

(1−β
N−1
φN−1(s

′,o1:N−1))
∂QΩ(s′,o1:`)

∂φ `︸ ︷︷ ︸
(4) none terminate

+

+
∂VΩ(s)

∂φ `

1

∏
j=N−1

β
j

φ j(s
′,o1: j)︸ ︷︷ ︸

(5) all options terminate

+
∂QΩ(s′,o1:`)

∂φ `

`+2

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

(6) only lower level options than `+1 terminate

+

∂QΩ(s′,o1:`)

∂φ `
(1−β

`
φ `(s′,o1:`))

`+2

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

(7) `+1 terminates and ` does not

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))

∂QΩ(s′,o1:i)

∂φ `

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)︸ ︷︷ ︸

(8) some relevant higher level options terminate

(20)

Merging the first three terms as well as the 6th and 7th terms:

∂U(s′,o1:`)

∂φ `
=

`+1

∏
j=N−1

β
j

φ j(s
′,o1: j)

∂β `
φ `(s′,o1:`)

∂φ `
[−QΩ(s′,o1:`)︸ ︷︷ ︸
`+1 terminates and ` does not

+

VΩ(s)[
1

∏
j=`−1

β
j

φ j(s
′,o1: j)]︸ ︷︷ ︸

all options terminate

+
`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))QΩ(s′,o1:i)[

`−1

∏
k=i+1

β
k
φ k(s′,o1:k)]︸ ︷︷ ︸

some relevant higher level options terminate

]

+(1−β
N−1
φN−1(s

′,o1:N−1))
∂QΩ(s′,o1:`)

∂φ `︸ ︷︷ ︸
none terminate

+
∂VΩ(s)

∂φ `

1

∏
j=N−1

β
j

φ j(s
′,o1: j)︸ ︷︷ ︸

all options terminate

+

∂QΩ(s′,o1:`)

∂φ `

`+1

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

only lower level options terminate

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))

∂QΩ(s′,o1:i)

∂φ `

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)︸ ︷︷ ︸

some relevant higher level options terminate

(21)

7

We define the probability weighted advantage of not terminating AΩ as:

AΩ(s′,o1:`) = QΩ(s′,o1:`)−VΩ(s)[
1

∏
j=`−1

β
j

φ j(s
′,o1: j)]−

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))QΩ(s′,o1:i)[

`−1

∏
k=i+1

β
k
φ k(s′,o1:k)]

(22)

We proceed to substitute equation (22) into equation (21):

∂U(s′,o1:`)

∂φ `
=−

`+1

∏
j=N−1

β
j

φ j(s
′,o1: j)

∂β `
φ `(s′,o1:`)

∂φ `
AΩ(s′,o1:`)

+(1−β
N−1
φN−1(s

′,o1:N−1))
∂QΩ(s′,o1:`)

∂φ `︸ ︷︷ ︸
(1) none terminate

+
∂VΩ(s)

∂φ `

1

∏
j=N−1

β
j

φ j(s
′,o1: j)︸ ︷︷ ︸

(2) all options terminate

+

∂QΩ(s′,o1:`)

∂φ `

`+1

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

(3) only lower level options terminate

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))

∂QΩ(s′,o1:i)

∂φ `

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)︸ ︷︷ ︸

(4) some relevant higher level options terminate

]

(23)

Next we integrate out our last three terms so that they are in terms of a common derivative:

∂U(s′,o1:`)

∂φ `
=−

`+1

∏
j=N−1

β
j

φ j(s
′,o1: j)

∂β `
φ `(s′,o1:`)

∂φ `
AΩ(s′,o1:`)

+(1−β
N−1
φN−1(s

′,o1:N−1))
∂QΩ(s′,o1:`)

∂φ `︸ ︷︷ ︸
none terminate

+
1

∏
j=N−1

β
j

φ j(s
′,o1: j)∑

o′1
...∑

o′`

1

∏
v=`

π
v
θ v(o′v|s′,o′1:v−1)

∂QΩ(s′,o′1:`)

∂φ `︸ ︷︷ ︸
all options terminate

+

∂QΩ(s′,o1:`)

∂φ `

`+1

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)︸ ︷︷ ︸

only lower level options terminate

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))

∂QΩ(s′,o1:`)

∂φ `

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)

`

∏
p=i+1

π
p
θ p(o′p|s′,o′1:p−1)︸ ︷︷ ︸

some relevant higher level options terminate

]

(24)

8

We can then simplify the expression:

∂U(s′,o1:`)

∂φ `
=−

`+1

∏
j=N−1

β
j

φ j(s
′,o1: j)

∂β `
φ `(s′,o1:`)

∂φ `
AΩ(s′,o1:`)+

[(1−β
N−1
φN−1(s

′,o1:N−1))1o′1:`=o1:`︸ ︷︷ ︸
none terminate

+
1

∏
j=N−1

β
j

φ j(s
′,o1: j)∑

o′1
...∑

o′`

1

∏
v=`

π
v
θ v(o′v|s′,o′1:v−1)︸ ︷︷ ︸

all options terminate

+

`+1

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)1o′1:`=o1:`︸ ︷︷ ︸

only lower level options terminate

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)

`

∏
p=i+1

π
p
θ p(o′p|s′,o′1:p−1)︸ ︷︷ ︸

some relevant higher level options terminate

]
∂QΩ(s′,o′1:`)

∂φ `

(25)

We now note that substituting equation (9) into equation (12) yields:

∂QΩ(s,o1:`)

∂φ `
= γP(s′|s,o1:`)

∂U(s′,o1:`)

∂φ `
(26)

Substituting this expression into equation (25) we find that:

∂U(s′,o1:`)

∂φ `
=−

`+1

∏
j=N−1

β
j

φ j(s
′,o1: j)

∂β `
φ `(s′,o1:`)

∂φ `
AΩ(s′,o1:`)+

[(1−β
N−1
φN−1(s

′,o1:N−1))1o′1:`=o1:`︸ ︷︷ ︸
none terminate

+
1

∏
j=N−1

β
j

φ j(s
′,o1: j)∑

o′1
...∑

o′`

1

∏
v=`

π
v
θ v(o′v|s′,o′1:v−1)︸ ︷︷ ︸

all options terminate

+

`+1

∑
q=N−1

(1−β
q−1
φq−1(s

′,o1:q−1))
q

∏
z=N−1

β
z
φ z(s′,o1:z)1o′1:`=o1:`︸ ︷︷ ︸

only lower level options terminate

+

`−1

∑
i=1

(1−β
i
φ i(s′,o1:i))

N−1

∏
k=i+1

β
k
φ k(s′,o1:k)

`

∏
p=i+1

π
p
θ p(o′p|s′,o′1:p−1)︸ ︷︷ ︸

some relevant higher level options terminate

]γP(s′|s,o1:`)
∂U(s′,o1:`)

∂φ `

(27)

Leveraging the augmented process structure and substituting in equation (4):

∂U(s′,o1:`)

∂φ `
=−

N−1

∏
i=`+1

β
i
φ i(s′,o1:i)

∂β `
φ `(s′,o1:`)

∂φ `
AΩ(s′,o1:`)+∑

s′′
∑
o′1

...∑
o′`

P(1)
γ (s′′,o′1:`|s,o1:N−1)

∂UΩ(s′′,o′1:`)

∂φ `

=− ∑
s′′,o′1:`

∞

∑
k=0

P(k)
γ (s′′,o′1:`|s,o1:N−1)

N−1

∏
i=`+1

β
i
φ i(s′,o1:i)

∂β `
φ `(s′,o1:`)

∂φ `
AΩ(s′,o1:`),

(28)

9

We can then finally obtain that:

∂U(s1,o1:`
0)

∂φ `
=− ∑

s,o1:`

∞

∑
k=0

P(k)
γ (s,o1:`|s1,o1:N−1

0)
N−1

∏
i=`+1

β
i
φ i(s,o1:i)

∂β `
φ `(s,o1:`)

∂φ `
AΩ(s,o1:`)

=− ∑
s,o1:`

µΩ(s,o1:`|s1,o1:N−1
0)

N−1

∏
i=`+1

β
i
φ i(s,o1:i)

∂β `
φ `(s,o1:`)

∂φ `
AΩ(s,o1:`).

(29)

2 Additional Details for Experiments

In Algorithm 1 we provide a detailed algorithm for our learning policy in the tabular setting. This
algorithm generalizes the one presented in [1] for option-critic learning to hierarchical option-critic
learning with N levels of abstraction. In Algorithm 2 we provide the same generalization but from
the Asynchronous Advantage Option-Critic model presented in [5]. As in [5] we use an ε-soft policy
leveraging the respective critic instead of learning a separate top level actor. As in [1] we potentially
add in a regularization term η for the termination policy update rule to decrease the likelihood that
options terminate. In all of our experiments we used a discount factor of 0.99.

2.1 Exploring four rooms

Hyperparameter search: For the primitive actor-critic model our only tuned parameter is the
learning rate over the range {0.001,0.01,0.1,0.25,1.0,10.0}. For the option-critic model we search
over the number of options {4,8,16} and for the hierarchical option-critic model we use two options
per layer of abstraction. All of our option models search over a intra-option learning rate shared among
policies in the range {0.01,0.1,0.5}, a termination policy learning rate in the range {0.01,0.1,0.25,1.0}
and a learning rate for critic models in the range {0.1,0.5}.

Selected hyperparameters: For actor-critic learning we found it best to use a learning rate of 0.01,
and a temperature of 0.1. For option-critic and hierarchical option critic learning we found it optimal
to use a temperature of 1.0, a learning rate of 0.5 for the critics and intra-options policies, and a
learning rate of 0.25 for the termination policies. It was best to use 4 options for option-critic learning.

Learning curve details: We report the average number of steps taken in the last 100 episodes every
100 episodes, reporting the average of 50 runs with different random seeds for each algorithm.

2.2 Discrete stochastic decision process

Hyperparameter search: For the primitive actor-critic model our only tuned parameter is the
learning rate over the range {0.001,0.01,0.1,0.25,1.0,10.0}. For the option-critic model we search
over the number of options {4,8,16} and for the hierarchical option-critic model we use two options per
layer of abstraction. All of our option models search over an intra-option learning rate shared among
policies in the range {0.01,0.1,0.5}, a termination policy learning rate in the range {0.01,0.1,0.25,1.0}
and a learning rate for critic models in the range {0.1,0.5}.

Selected hyperparameters: A learning rate of 0.25 is used for actor-critic learning and the critics of
the option architectures have a learning rate of 0.5. We found it beneficial to use higher temperatures
with higher levels of abstraction using 0.01 for one level, 0.1 for two levels and 1.0 for three levels.
For the option-critic architecture we found it optimal to use an intra-option learning rate of 0.1, and a
termination learning rate of 0.01. For the hierarchical option-critic architecture we found it optimal
to use an intra-option learning rate of 1.0, and a termination learning rate of 10.0. 4 options was best
for the option-critic model.

Learning curve details: We report the average reward over the last 100 episodes every 100 episodes,
reporting the average of 10 runs with different random seeds for each algorithm.

2.3 Multistory building navigation

Architecture details: A core perceptual and contextualization model is shared across all policies
and critics for each model to transform observations into conceptual states that can be processed

10

Algorithm 1 Hierarchical Option-Critic with Tabular Intra-option Q-Learning
procedure LEARNEPISODE(env,N,α,γ,π,β ,η)

// get initial state
s← s0
// select options for initial state
for j = 1, ...,N−1 do

o j← π j(s,o1: j−1)

repeat
// take an action and step through the environment
a← πN(a|s,o1:N−1)

s
′
,r← env.step(a)

// calculate the expected discounted return
r
′ ← r

if s
′

is non-terminal then
r
′ ← r

′
+ γU(s′,o1:N−1) (see equation (10))

// update the critic networks
for j = 1, ...,N−1 do

δ j← r′−QU (s,o1: j)

QU (s,o1: j)← QU (s,o1: j)+αδ j

δN ← r′−QU (s,o1:N−1,a)
QU (s,o1:N−1,a)← QU (s,o1:N−1,a)+αδN
// update the intra-option policies
for j = 1, ...,N−1 do

θ j← θ j +αθ
∂ logπ j(o j |s,o1: j−1)

∂θ j QU (s,o1: j)

θ N ← θ N +αθ
∂ logπN(a|s,o1:N−1)

∂θ N QU (s,o1:N−1,a)
// update the termination policies
for j = 1, ...,N−1 do

φ j← φ j−αφ ∏
N−1
i= j+1 β i(s,o1:i) ∂β j(s,o1: j)

∂φ j (A(s,o1: j)+η)

// check which options have terminated and select new ones
o1:N−1← chooseTerminatedOptions(s′,o1:N−1,π,β ,N)
// update the next state to now be the current state
s← s′

until s
′

is terminal
procedure CHOOSETERMINATEDOPTIONS(s,o1:k,π,β ,k)

if β k(s,o1:k) = 1
if k−1 = 1

o1← π1(s)
else

o1:k−1← chooseTerminatedOptions(s,o1:k−1,π,β ,k−1)
ok← πk−1(s,o1:k−1)

return o1:k

11

Algorithm 2 Asynchronous Advantage Hierarchical Option-Critic
procedure LEARNEPISODE(env,N,α,γ,π,β ,η ,Tmax, tmin, tmax)

initialize global counter T ← 1
initialize thread counter t← 1
repeat

tstart = t
st ← s0
// reset gradients
dw← 0
dθ ← 0
dφ ← 0
// select options for initial state
for j = 1, ...,N−1 do

o j
t ← π j(st ,o

1: j−1
t)

repeat
// take an action and step through the environment
at ← πN(st ,o1:N−1

t)
st+1,rt ← env.step(at)
// check which options have terminated and select new ones
o1:N−1

t ← chooseTerminatedOptions(st+1,o1:N−1
t−1 ,π,β ,N)

t← t +1
T ← T +1

until episode ends or t− tstart == tmax or (t− tstart > tmin)
G =V (st)
for k = t−1, ..., tstart do

// accumulate thread specific gradients
G← rk + γG
// update the critic policies
for j = 1, ...,N−1 do

dw j← dw j +αw
∂ (G−Q(s,o1: j))2

∂w j

// update the intra-option policies
for j = 1, ...,N−1 do

dθ j← dθ j +αθ
∂ logπ j(o j |s,o1: j−1)

∂θ j (G−Q(s,o1: j−1))

dθ N ← dθ N +αθ
∂ logπN(a|s,o1:N−1)

∂θ N (G−Q(s,o1:N−1,a))
// update the termination policies
for j = 1, ...,N−1 do

dφ j← dφ j−αφ ∏
N−1
i= j+1 β i(s,o1:i) ∂β j(s,o1: j)

∂φ j (A(s,o1: j)+η)

update global parameters with thread gradients
until T > Tmax

procedure CHOOSETERMINATEDOPTIONS(s,o1:k,π,β ,k)
if β k(s,o1:k) = 1

if k−1 = 1
o1← π1(s)

else
o1:k−1← chooseTerminatedOptions(s,o1:k−1,π,β ,k−1)

ok← πk−1(s,o1:k−1)
return o1:k

12

to produce an option policy. The perceptual module was a 100 unit fully connected layer with
ReLU activations. This perceptual module is processed by a 256 unit LSTM network with gradients
truncated at 20 steps. Every intra-option policy, termination policy, and critic simply consists of one
linear layer on top of this core module followed by a softmax in the case of intra-option policies and
a sigmoid in the case of termination policies.

Hyperparameters: We found optimal to use a learning rate of 1e-4 for all models a well as 16
parallel asynchronous threads and entropy regularization of 0.01 on the intra-option policies [1, 5]

Learning curve details: We set our implementation of A3C to report recent learning performance
after approximately 1 minute of training. Each minute we report the rolling mean reward calculated
using a horizon of 0.99. To plot learning performance we take the average and standard deviation of
the reported rewards over the past 1 million frames.

2.4 Atari multi-task learning

Experiment details: In our Atari experiments we leverage the standard Open AI Gym v0 environ-
ments. A core perceptual and contextualization model is shared across all policies and critics for each
model to transform observations into conceptual states that can be processed to produce primitive
action and option policies. We follow architecture conventions for Atari games from [9] to implement
this module consisting of a convolutional layer with 16 filters of size 8x8 with stride 4, followed by
a convolutional layer with with 32 filters of size 4x4 with stride 2, followed by a fully connected
layer with 256 hidden units. All three hidden layers were followed by a ReLU nonlinearity. This
hidden representation is fed to a 256 unit LSTM network with gradients truncated at 20 steps. Every
intra-option policy, termination policy, and critic simply consists of one linear layer on top of this
core module followed by a softmax in the case of intra-option policies and a sigmoid in the case
of termination policies. The primitive action policy for each game is implemented with its own
linear layer followed by a softmax as the games have different action spaces. In our experiments on
Atari we followed conventions from past work using 16 parallel asynchronous threads and entropy
regularization of 0.01 on the intra-option policies [1, 5]. We use a learning rate of 1e-4 for each
model.

Analysis of learned options for multi-task learning: In Table 1 we detail the average option
switching frequencies for each of the 21 Atari games when we train in a many task learning setting.
For the option-critic architecture and three-level hierarchical option-critic architecture we define a
switch as terminating an option at a particular level and choosing a new different option at that level.
We can see that the hierarchical option-critic architecture displays much greater variation in its option
switching frequencies across games.

Details on figures analyzing options: In the main text we provide option specialization across Atari
games for all 9 possible option combinations for the hierarchical option-critic architecture and the top
9 most used options for the option-critic architecture to save space. In Figure 1 we provide detailed
information including the specialization of all learned options for the option-critic architecture. In
all of our option analysis figures we use a heat-map where each option is assigned a color. This
way options can be clearly separated from the surrounding options on the grid. We keep cells for
options that are used on a game less than 1% of the time white. We then add a light color that gets
progressively darker at 5% specialization, 10% specialization, and 25% specialization.

2.5 Comparison with methods for multi-task and lifelong learning

In this work we explore a relatively straightforward application of multi-task learning on the Atari
games. Following conventions in multi-task learning [2], as the action space is different with varying
sizes across games, all parts of the network are shared with the exception of a task specific layer in
the last layer of the policy over primitive actions. This a somewhat arbitrary choice of the extent of
weight sharing in light of recent work that focuses on more dynamic sharing patterns in multi-task
learning, lifelong learning, and continual learning settings [10, 8, 13, 15, 3, 14, 6, 7, 11, 12]. A more
dynamic weight sharing pattern should allow the hierarchical option-critic architecture to potentially
achieve better sample efficiency in a multi-task learning setting. However, we leave analysis of the
proper way to achieve this in a general sense to future work as it is largely orthogonal to our main
contribution of presenting policy gradient theorems to optimize a deep hierarchy of options.

13

Environment OC HOC (o1) HOC (o2)
Alien 5.4 7.7 1.5

Amidar 5.5 6.5 1.7
Assault 4.0 3.3 1.9
Atlantis 5.3 6.9 1.7

BankHeist 5.5 7.8 2.6
BattleZone 5.0 6.6 1.8
BeamRider 5.4 3.2 1.8

Berzerk 5.4 6.6 1.9
Carnival 5.5 4.4 2.0

Centipede 4.3 6.7 3.1
ChopperCommand 5.5 6.3 1.6

DemonAttack 5.4 3.4 1.7
Jamesbond 4.8 6.5 1.7
MsPacman 5.5 7.6 7.5

Phoenix 4.5 3.2 1.9
Riverraid 5.0 7.7 1.5
Solaris 3.4 5.6 2.7

SpaceInvaders 4.1 6.0 2.6
Tutankham 5.2 9.7 7.8

WizardOfWor 3.9 9.1 2.2
Zaxxon 5.5 4.2 1.7

Table 1: The average number of steps before switching options by game for the median performance
option-critic (OC) and hierarchical option-critic (HOC) architectures during the evaluation period.
For our three level model, we detail statistics for high level option o1 as well as low level option o2.

Figure 1: Option specialization across Atari games for a 16 option Option-Critic architecture trained
in the many task learning setting.

14

Our approach is also orthogonal to recent approaches improving the efficiency of multi-task learning
through a learned curriculum learning process [16, 4]. In the setting we explore, all models train on
the games in a balanced fashion throughout time and the agent is not assumed to have any control
over which environment it trains on. Controlling the curriculum of games to train on could also
potentially improve the efficacy of our approach.

References
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. 2017.

[2] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997. doi: 10.1023/A:
1007379606734. URL http://dx.doi.org/10.1023/A:1007379606734.

[3] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

[4] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Auto-
mated curriculum learning for neural networks. ICML, 2018.

[5] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an
option: Learning options with a deliberation cost. arXiv preprint arXiv:1709.04571, 2017.

[6] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, page 201611835, 2017.

[7] Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on
Computer Vision, pages 614–629. Springer, 2016.

[8] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks
for multi-task learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3994–4003, 2016.

[9] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International Conference on Machine Learning, pages 1928–1937,
2016.

[10] Matthew Riemer, Sophia Krasikov, and Harini Srinivasan. A deep learning and knowledge
transfer based architecture for social media user characteristic determination. In Proceedings
of the third International Workshop on Natural Language Processing for Social Media, pages
39–47, 2015.

[11] Matthew Riemer, Elham Khabiri, and Richard Goodwin. Representation stability as a regularizer
for improved text analytics transfer learning. arXiv preprint arXiv:1704.03617, 2016.

[12] Matthew Riemer, Michele Franceschini, Djallel Bouneffouf, and Tim Klinger. Generative
knowledge distillation for general purpose function compression. NIPS 2017 Workshop on
Teaching Machines, Robots, and Humans, 5:30, 2017.

[13] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection
of non-linear functions for multi-task learning. ICLR, 2018.

[14] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

[15] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[16] S. Sharma, A. Jha, P. Hegde, and B. Ravindran. Learning to multi-task by active sampling.
arXiv preprint arXiv:1702.06053, 2017.

15

http://dx.doi.org/10.1023/A:1007379606734

	Derivation of Generalized Policy Gradient and Termination Gradient Theorems
	The Derivation of U
	Generalized Markov Chain and Augmented Process
	Proof of the Hierarchical Intra-Option Policy Gradient Theorem
	Proof of the Hierarchical Termination Gradient Theorem

	Additional Details for Experiments
	Exploring four rooms
	Discrete stochastic decision process
	Multistory building navigation
	Atari multi-task learning
	Comparison with methods for multi-task and lifelong learning

