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1 Algorithm Analysis

In this section, we provide a rigorous analysis on the properties and behaviours of the optimisation
algorithm formulated in Section 3.3 (Algorithm 1) of the main paper.

Proposition 1 Eq. (9) has and only has one solution.

Proof. Because β > 0, Â(t) is positive definite, i.e., λai ≥ β > 0 (i = 1, ..., d). Similarly, B̂(t)

is positive semidefinite, i.e., all of its eigenvalues satisfy: λbj ≥ 0 (j = 1, ..., k). The eigenvalue
decompositions of Â(t) and B̂(t) are denoted as: Â(t) = V ΣAV

T (ΣA = diag{λa1 , ..., λad}, V TV =

I), B̂(t) = UΣBU
T (ΣB = diag{λb1, ..., λbk}, UTU = I). Therefore, Eq. (9) is reformulated as:

ΣAV
TW(t+1)U+V TW(t+1)UΣB = V T Ĉ(t)U . Let W = V TW(t+1)U and C = V T Ĉ(t)U . We

have: ΣAW +WΣB = C, i.e., (λai + λbj)wij = cij (i = 1, ..., d; j = 1, ..., k). Since λai + λbj > 0

and W = V TW(t+1)U , Eq. (9) has and only has one solution. �

Proposition 2 Given ∆W(t) = W(t+1) −W(t), we have: limt→+∞ ‖∆W(t)‖2F = 0, i.e., Algo-
rithm 1 is a convergent iterative algorithm.

Proof. Without loss of generality, we normalize all of ‖x(s)
i ‖22, ‖x(u)

i ‖22, ‖y(s)
j ‖22, and ‖y(u)

j ‖22
to 1 (see Eqs. (6)–(8)). We can easily have: ‖∆Â(t−1)‖2F = ‖Â(t) − Â(t−1)‖2F ≤ αt−1∆Â,
‖∆B̂(t−1)‖2F = ‖B̂(t)−B̂(t−1)‖2F ≤ αt−1∆B̂, and ‖∆Ĉ(t−1)‖2F = ‖Ĉ(t)−Ĉ(t−1)‖2F ≤ αt−1∆Ĉ,
where ∆Â, ∆B̂, and ∆Ĉ are all positive constants. Moreover, according to the proof of Prop. 1, we
have: (λai +λbj)wij = cij (i = 1, ..., d; j = 1, ..., k). Given that λai +λbj ≥ β > 0, we have: |wij | ≤
|cij |/β. Since W = V TW(t+1)U and C = V T Ĉ(t)U , we have: ‖W(t+1)‖2F ≤ ‖Ĉ(t)‖2F /β2 ≤
MC/β

2, where MC is a positive constant. By subtracting Eq. (9) at t− 1 from Eq. (9) at t, we thus
obtain: Â(t)∆W(t) + ∆W(t)B̂(t) = ∆D̂(t−1), where ∆D̂(t−1) = ∆Ĉ(t−1) − ∆Â(t−1)W(t) −
W(t)∆B̂(t−1). According to the proof that ‖W(t+1)‖2F ≤ ‖Ĉ(t)‖2F /β2, we can similarly obtain:
‖∆W(t)‖2F ≤ ‖∆D̂(t−1)‖2F /β2. Since ‖∆D̂(t−1)‖2F ≤ αt−1[∆Ĉ + (∆Â + ∆B̂)MC/β

2] and
limt→+∞ αt−1 = 0, we have: limt→+∞ ‖∆W(t)‖2F = 0. �
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