Domain-Invariant Projection Learning for Zero-Shot Recognition (Supplementary Material)

An Zhao^{1,•} Mingyu Ding^{1,•} Jiechao Guan^{1,•} Zhiwu Lu^{1,*} Tao Xiang^{2,3} Ji-Rong Wen¹ ¹Beijing Key Laboratory of Big Data Management and Analysis Methods School of Information, Renmin University of China, Beijing 100872, China ²School of EECS, Queen Mary University of London, London E1 4NS, U.K. ³Samsung AI Centre, Cambridge, U.K. zhiwu.lu@gmail.com t.xiang@qmul.ac.uk • Equal contribution * Corresponding author

1 Algorithm Analysis

In this section, we provide a rigorous analysis on the properties and behaviours of the optimisation algorithm formulated in Section 3.3 (Algorithm 1) of the main paper.

Proposition 1 Eq. (9) has and only has one solution.

Proof. Because $\beta > 0$, $\widehat{\mathbf{A}}^{(t)}$ is positive definite, i.e., $\lambda_i^a \ge \beta > 0$ (i = 1, ..., d). Similarly, $\widehat{\mathbf{B}}^{(t)}$ is positive semidefinite, i.e., all of its eigenvalues satisfy: $\lambda_j^b \ge 0$ (j = 1, ..., k). The eigenvalue decompositions of $\widehat{\mathbf{A}}^{(t)}$ and $\widehat{\mathbf{B}}^{(t)}$ are denoted as: $\widehat{\mathbf{A}}^{(t)} = V \Sigma_A V^T$ ($\Sigma_A = \text{diag}\{\lambda_1^a, ..., \lambda_d^a\}, V^T V = I$), $\widehat{\mathbf{B}}^{(t)} = U \Sigma_B U^T$ ($\Sigma_B = \text{diag}\{\lambda_1^b, ..., \lambda_k^b\}, U^T U = I$). Therefore, Eq. (9) is reformulated as: $\Sigma_A V^T \mathbf{W}^{(t+1)} U + V^T \mathbf{W}^{(t+1)} U \Sigma_B = V^T \widehat{\mathbf{C}}^{(t)} U$. Let $\overline{\mathbf{W}} = V^T \mathbf{W}^{(t+1)} U$ and $\overline{\mathbf{C}} = V^T \widehat{\mathbf{C}}^{(t)} U$. We have: $\Sigma_A \overline{\mathbf{W}} + \overline{\mathbf{W}} \Sigma_B = \overline{\mathbf{C}}$, i.e., $(\lambda_i^a + \lambda_j^b) \overline{w}_{ij} = \overline{c}_{ij}$ (i = 1, ..., d; j = 1, ..., k). Since $\lambda_i^a + \lambda_j^b > 0$ and $\overline{\mathbf{W}} = V^T \mathbf{W}^{(t+1)} U$, Eq. (9) has and only has one solution. \Box

Proposition 2 Given $\Delta \mathbf{W}^{(t)} = \mathbf{W}^{(t+1)} - \mathbf{W}^{(t)}$, we have: $\lim_{t \to +\infty} \|\Delta \mathbf{W}^{(t)}\|_F^2 = 0$, i.e., Algorithm 1 is a convergent iterative algorithm.

Proof. Without loss of generality, we normalize all of $\|\mathbf{x}_{i}^{(s)}\|_{2}^{2}$, $\|\mathbf{x}_{i}^{(u)}\|_{2}^{2}$, $\|\mathbf{y}_{j}^{(s)}\|_{2}^{2}$, and $\|\mathbf{y}_{j}^{(u)}\|_{2}^{2}$ to 1 (see Eqs. (6)–(8)). We can easily have: $\|\Delta \widehat{\mathbf{A}}^{(t-1)}\|_{F}^{2} = \|\widehat{\mathbf{A}}^{(t)} - \widehat{\mathbf{A}}^{(t-1)}\|_{F}^{2} \leq \alpha_{t-1}\Delta \widehat{\mathbf{A}}$, $\|\Delta \widehat{\mathbf{B}}^{(t-1)}\|_{F}^{2} = \|\widehat{\mathbf{B}}^{(t)} - \widehat{\mathbf{C}}^{(t-1)}\|_{F}^{2} \leq \alpha_{t-1}\Delta \widehat{\mathbf{C}}$, where $\Delta \widehat{\mathbf{A}}$, $\Delta \widehat{\mathbf{B}}$, and $\Delta \widehat{\mathbf{C}}$ are all positive constants. Moreover, according to the proof of Prop. 1, we have: $(\lambda_{i}^{a} + \lambda_{j}^{b})\overline{w}_{ij} = \overline{c}_{ij}$ (i = 1, ..., d; j = 1, ..., k). Given that $\lambda_{i}^{a} + \lambda_{j}^{b} \geq \beta > 0$, we have: $|\overline{w}_{ij}| \leq |\overline{c}_{ij}|/\beta$. Since $\overline{\mathbf{W}} = V^T \mathbf{W}^{(t+1)}U$ and $\overline{\mathbf{C}} = V^T \widehat{\mathbf{C}}^{(t)}U$, we have: $\|\mathbf{W}^{(t+1)}\|_{F}^{2} \leq \|\widehat{\mathbf{C}}^{(t)}\|_{F}^{2}/\beta^{2} \leq M_{C}/\beta^{2}$, where M_{C} is a positive constant. By subtracting Eq. (9) at t - 1 from Eq. (9) at t, we thus obtain: $\widehat{\mathbf{A}}^{(t)}\Delta\mathbf{W}^{(t)} + \Delta\mathbf{W}^{(t)}\widehat{\mathbf{B}}^{(t)} = \Delta\widehat{\mathbf{D}}^{(t-1)}$, where $\Delta\widehat{\mathbf{D}}^{(t-1)} = \Delta\widehat{\mathbf{C}}^{(t-1)} - \Delta\widehat{\mathbf{A}}^{(t-1)}\mathbf{W}^{(t)} - \mathbf{W}^{(t)}\Delta\widehat{\mathbf{B}}^{(t-1)}$. According to the proof that $\|\mathbf{W}^{(t+1)}\|_{F}^{2} \leq \|\widehat{\mathbf{C}}^{(t)}\|_{F}^{2}/\beta^{2}$, we can similarly obtain: $\|\Delta\mathbf{W}^{(t)}\|_{F}^{2} \leq \|\Delta\widehat{\mathbf{D}}^{(t-1)}\|_{F}^{2}/\beta^{2}$. Since $\|\Delta\widehat{\mathbf{D}}^{(t-1)}\|_{F}^{2} \leq \alpha_{t-1}[\Delta\widehat{\mathbf{C}} + (\Delta\widehat{\mathbf{A}} + \Delta\widehat{\mathbf{B}})M_{C}/\beta^{2}]$ and $\lim_{t\to+\infty} \alpha_{t-1} = 0$, we have: $\lim_{t\to+\infty} \|\Delta\mathbf{W}^{(t)}\|_{F}^{2} = 0$.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.