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In Section A we restate the main theorems more precisely. In Section B we give some background on
Markov chains.

The next five sections are dedicated to the proof of the gaussian case of the main theorem (Theo-
rem A.2). In Section C we formally define the continuous simulated tempering chain. Section D
presents our main ingredient: a new Markov chain decomposition theorem. Section E applies it to
the gaussian case. Section F bounds the discretization error. Finally, in Section G we combine the
previous sections to prove the main theorem, including the analysis of the partition function estimates.

In the next two sections we generalize this result, to the log-concave case (Section H proves Theorem
A.3) and the perturbed case (Section I proves Theorem A.4).

In Section J, we give a few examples to show that simple local search heuristics do not work (e.g.
random initialization is not enough to find all the modes). In Section K we prove a lower bound when
the gaussians have different variances.

Finally, Section L collects a lot of technical calculations and inequalities, particularly inequalities for
log-concave distributions that are needed for the proof of the general log-concave case (Section H).

A Theorem statements

We restate the main theorems more precisely. First define the assumptions.

Assumptions A.1. The function 𝑓 satisfies the following. There exists a function 𝑓 that satisfies the
following properties.

1. 𝑓 , ∇𝑓 , and ∇2𝑓 are close to 𝑓 :⃦⃦⃦
𝑓 − 𝑓

⃦⃦⃦
∞

≤ ∆ ,
⃦⃦⃦
∇𝑓 −∇𝑓

⃦⃦⃦
∞

≤ 𝜏 and ∇2𝑓(𝑥) ⪯ ∇2𝑓(𝑥) + 𝜏𝐼,∀𝑥 ∈ R𝑑 (1)

2. 𝑓 is the log-pdf of a mixture:

𝑓(𝑥) = − log

(︃
𝑚∑︁
𝑖=1

𝑤𝑖𝑒
−𝑓0(𝑥−𝜇𝑖)

)︃
(2)

where ∇𝑓0(0) = 0 and

(a) 𝑓0 is 𝜅-strongly convex: ∇2𝑓0(𝑥) ⪰ 𝜅𝐼 for 𝜅 > 0.
(b) 𝑓0 is 𝐾-smooth: ∇2𝑓0(𝑥) ⪯ 𝐾𝐼 .

2



Our main theorem is the following.
Theorem A.2 (Main theorem, Gaussian version). Suppose 𝑓(𝑥) =

− ln
(︁∑︀𝑚

𝑗=1 𝑤𝑗 exp
(︁
−‖𝑥−𝜇𝑗‖2

2𝜎2

)︁)︁
on R𝑑 where

∑︀𝑚
𝑗=1 𝑤𝑗 = 1, 𝑤min = min1≤𝑗≤𝑚 𝑤𝑗 > 0, and

𝐷 = max1≤𝑗≤𝑚 ‖𝜇𝑗‖. Then Algorithm 2 with parameters satisfying 𝑡, 𝑇, 𝜂−1, 𝛽−1
1 , (𝛽𝑖−𝛽𝑖−1)−1 =

poly
(︁

1
𝑤min

, 𝐷, 𝑑, 1
𝜎2 ,

1
𝜀

)︁
produces a sample from a distribution 𝑝′ with ‖𝑝− 𝑝′‖1 ≤ 𝜀 in time

poly
(︁

1
𝑤min

, 𝐷, 𝑑, 1
𝜎2 ,

1
𝜀

)︁
.

The precise parameter choices are given in Lemma G.2.

Our more general theorem allows the mixture component to come from an arbitrary log-concave
distribution 𝑝(𝑥) ∝ 𝑒−𝑓0(𝑥).

Theorem A.3 (Main theorem). Suppose 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥) and 𝑓(𝑥) = − ln
(︀∑︀𝑚

𝑖=1 𝑤𝑖𝑒
−𝑓0(𝑥−𝜇𝑖)

)︀
on R𝑑, where function 𝑓0 satisfies Assumption A.1(2) (𝑓0 is 𝜅-strongly convex, 𝐾-smooth, and
has minimum at 0),

∑︀𝑚
𝑖=1 𝑤𝑖 = 1, 𝑤min = min1≤𝑖≤𝑚 𝑤𝑖 > 0, and 𝐷 = max1≤𝑖≤𝑛 ‖𝜇𝑖‖. Then

Algorithm 2 with parameters satisfying 𝑡, 𝑇, 𝜂−1, 𝛽−1
1 , (𝛽𝑖 − 𝛽𝑖−1)−1 = poly

(︀
𝑤min, 𝐷, 𝑑, 1

𝜀 ,
1
𝜅 ,𝐾

)︀
produces a sample from a distribution 𝑝′ with ‖𝑝− 𝑝′‖1 ≤ 𝜀 in time poly

(︀
𝑤min, 𝐷, 𝑑, 1

𝜀 ,
1
𝜅 ,𝐾

)︀
.

The precise parameter choices are given in Lemma H.3.
Theorem A.4 (Main theorem with perturbations). Keep the setup of Theorem A.3. If instead 𝑓
satisfies Assumption A.1 (𝑓 is ∆-close in 𝐿∞ norm to the log-pdf of a mixture of log-concave
distributions), then the result of Theorem A.3 holds with an additional factor of poly(𝑒Δ, 𝜏) in the
running time.

B Background on Markov chains

A discrete-time Markov chain on a state space Ω is defined by transition probabilities 𝑃 (𝑥, 𝑦) where∑︀
𝑦∈Ω 𝑃 (𝑥, 𝑦) = 1.

A continuous time Markov process is instead defined by (𝑃𝑡)𝑡≥0, and a more natural object to
consider is the generator.
Definition B.1. A continuous time Markov process is given by 𝑀 = (Ω, (𝑃𝑡)𝑡≥0) where the 𝑃𝑡

define a random proces (𝑋𝑡)𝑡≥0 by

P(𝑋𝑠+𝑡 ∈ 𝐴) = 𝑃𝑡(𝑥,𝐴) :=

∫︁
𝐴

𝑃𝑡(𝑥, 𝑦) 𝑑𝑦.

Define the action of 𝑃𝑡 on functions by

(𝑃𝑡𝑔)(𝑥) = E𝑦∼𝑃 (𝑥,·)𝑔(𝑦) =

∫︁
Ω

𝑃 (𝑥, 𝑦) 𝑑𝑦.𝑠 (3)

A stationary distribution is 𝑝(𝑥) such that if 𝑋0 ∼ 𝑝, then 𝑋𝑡 ∼ 𝑝 for all 𝑡.

Define the generator L by

L 𝑔 = lim
𝑡↘0

𝑃𝑡𝑔 − 𝑔

𝑡
. (4)

If 𝑝 is the unique stationary distribution, define the Dirichlet form and the variance by

E𝑀 (𝑔, ℎ) = −⟨𝑔,L ℎ⟩𝑝 (5)

Var𝑝(𝑔) =

⃦⃦⃦⃦
𝑔 −

∫︁
Ω

𝑔𝑝 𝑑𝑥

⃦⃦⃦⃦2
𝑝

(6)

Note that in order for (𝑃𝑡)𝑡≥0 to be a valid Markov process, it must be the case that 𝑃𝑡𝑃𝑢𝑔 = 𝑃𝑡+𝑢𝑔,
i.e., the (𝑃𝑡)𝑡≥0 forms a Markov semigroup.

We will use the shorthand E (𝑔) := E (𝑔, 𝑔).
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Definition B.2. A continuous Markov process satisfies a Poincaré inequality with constant 𝐶 if for
all 𝑔 such that E𝑀 (𝑔) is defined (finite),1

E𝑀 (𝑔) ≥ 1

𝐶
Var𝑝(𝑔). (7)

This is another way of saying that the spectral gap of the Markov process satisfies Gap(𝑀) ≥ 1
𝐶 .

For Langevin diffusion with stationary distribution 𝑝,

E𝑀 (𝑔) = ‖∇𝑔‖2𝑝 . (8)

Since this depends in a natural way on 𝑝, we will also write this as E𝑝(𝑔). A Poincaré inequality for
Langevin diffusion thus takes the form

E𝑝(𝑔) =

∫︁
Ω

‖∇𝑔‖2 𝑝 𝑑𝑥 ≥ 1

𝐶
Var𝑝(𝑔). (9)

We have the following classical result.
Theorem B.3 ([BGL13]). Let 𝑓 be 𝜌-strongly convex and differentiable. Then for 𝑔 ∈ 𝒟(E𝑝),
𝑝 ∝ 𝑒−𝑓 satisfies the Poincaré inequality

E𝑝(𝑔) ≥ 𝜌Var𝑝(𝑔).

In particular, this holds for 𝑓(𝑥) = ‖𝑥−𝜇‖2

2 with 𝜌 = 1, giving a Poincaré inequality for the gaussian
distribution.

A spectral gap, or equivalently a Poincaré inequality, implies rapid mixing:

‖𝑃𝑡𝑔 − E𝑝𝑔‖2 ≤ 𝑒−𝑡Gap(𝑀) = 𝑒−
𝑡
𝐶 . (10)

The following gives one way to prove a Poincaré inequality.
Theorem B.4 (Comparison theorem using canonical paths, [DSC93]). Let 𝑃 : Ω × Ω → R be a
function with 𝑃 (𝑥, 𝑦) ≥ 0 for 𝑦 ̸= 𝑥 and

∑︀
𝑦∈Ω 𝑃 (𝑥, 𝑦) = 1. (Think of 𝐿 as a matrix in RΩ×Ω that

operates on functions 𝑔 : Ω → R, i.e., 𝑔 ∈ RΩ.) Let 𝐿 = 𝐼−𝑃 , so that 𝐿(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) for 𝑦 ̸= 𝑥
and 𝐿(𝑥, 𝑥) = −

∑︀
𝑦∈Ω 𝑃 (𝑥, 𝑦).

Consider the Markov chain generated by 𝐿 (𝐿 acts as 𝐿𝑔(𝑗) =
∑︀

𝑘 ̸=𝑗 [𝑔(𝑘) − 𝑔(𝑗)]𝑃 (𝑗, 𝑘)); let its
Dirichlet form be E (𝑔, 𝑔) = −⟨𝑔, 𝐿𝑔⟩.
Suppose each pair 𝑥, 𝑦 ∈ Ω, 𝑥 ̸= 𝑦 is associated with a path 𝛾𝑥,𝑦 . Define the congestion to be

𝜌(𝛾) = max
𝑧,𝑤∈Ω,𝑧 ̸=𝑤

[︃∑︀
𝛾𝑥,𝑦∋(𝑧,𝑤) |𝛾𝑥,𝑦|𝑝(𝑥)𝑝(𝑦)

𝑝(𝑧)𝐿(𝑧, 𝑤)

]︃
.

Then
Var𝑝(𝑔) ≤ 𝜌(𝛾)E (𝑔, 𝑔).

Note this theorem is more commonly stated in terms of discrete-time Markov chains, where we think
of 𝑃 as the transition probabilities. In the continuous case it’s more natural to look at 𝐿.

C Simulated tempering

First we define a continuous version of the simulated tempering Markov chain (Definition C.1).
Unlike the usual definition of a simulated tempering chain in the literature, the transition times can be
arbitrary real numbers. Our definition falls out naturally from writing down the generator L as a
combination of the generators for the individual chains and for the transitions between temperatures
(Lemma C.2). Because L decomposes in this way, the Dirichlet form E will be easier to control in
Theorem D.2

1We will implicitly assume this condition whenever we discuss Poincaré inequalities. Formally, we say that
𝑔 ∈ 𝒟(E𝑀 ) is in the Dirichlet domain of E𝑀 .
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Definition C.1. Let 𝑀𝑖, 𝑖 ∈ [𝐿] be a sequence of continuous Markov chains with state space Ω. Let
𝑟𝑖, 1 ≤ 𝑖 ≤ 𝐿 satisfy

𝑟𝑖 > 0,

𝐿∑︁
𝑖=1

𝑟𝑖 = 1.

Define the continuous simulated tempering Markov chain 𝑀st with rate 𝜆 and relative probabilities
𝑟𝑖 as follows.

The states of 𝑀st are [𝐿] × Ω.

For the evolution, let (𝑇𝑛)𝑛≥0 be a Poisson point process on R≥0 with rate 𝜆, i.e., 𝑇0 = 0 and

P(𝑇𝑛+1 − 𝑇𝑛 = 𝑡|𝑇1, . . . , 𝑇𝑛) = 𝜆𝑒−𝜆𝑡. (11)

If the state at time 𝑇𝑛 is (𝑖, 𝑥), then the Markov chain evolves according to 𝑀𝑖 on the time interval
[𝑇𝑛, 𝑇𝑛+1). The state 𝑋𝑇𝑛+1 at time 𝑇𝑛+1 is obtained from the state 𝑋−

𝑇𝑛+1
:= lim𝑡→𝑇−

𝑛+1
𝑋𝑡 by a

“Type 2” transition: If 𝑋−
𝑇𝑛+1

= (𝑖, 𝑥), then transition to (𝑗 = 𝑖± 1, 𝑥) each with probability

1

2
min

{︂
𝑟𝑗𝑝𝑗(𝑥)

𝑟𝑖𝑝𝑖(𝑥)
, 1

}︂
and stay at (𝑖, 𝑥) otherwise. (If 𝑗 is out of bounds, then don’t move.)
Lemma C.2. Let 𝑀𝑖, 𝑖 ∈ [𝐿] be a sequence of continuous Markov chains with state space Ω,
generators L𝑖, and unique stationary distributions 𝑝𝑖. Then the continuous simulated tempering
Markov chain 𝑀st with rate 𝜆 and relative probabilities 𝑟𝑖 has generator L defined by the following
equation, where 𝑔 = (𝑔1, . . . , 𝑔𝐿) ∈ 𝐿2([𝐿] × Ω):

(L 𝑔)(𝑖, 𝑦) = (L𝑖𝑔𝑖)(𝑦) +
𝜆

2

⎛⎜⎜⎜⎝ ∑︁
1 ≤ 𝑗 ≤ 𝐿
𝑗 = 𝑖 ± 1

∫︁
Ω

min

{︂
𝑟𝑗𝑝𝑗(𝑥)

𝑟𝑖𝑝𝑖(𝑥)
, 1

}︂
(𝑔𝑗(𝑥) − 𝑔𝑖(𝑥)) 𝑑𝑥

⎞⎟⎟⎟⎠ . (12)

The corresponding Dirichlet form is

E (𝑔, 𝑔) = −⟨𝑔,L 𝑔⟩ =

𝐿∑︁
𝑖=1

𝑟𝑖E𝑖(𝑔𝑖, 𝑔𝑖) +
𝜆

2

∑︁
1 ≤ 𝑖, 𝑗 ≤ 𝐿
𝑗 = 𝑖 ± 1

∫︁
Ω

𝑟𝑖𝑝𝑖(𝑥) min

{︂
𝑟𝑗𝑝𝑗(𝑥)

𝑟𝑖𝑝𝑖(𝑥)
, 1

}︂
(𝑔𝑖(𝑥)2 − 𝑔𝑖(𝑥)𝑔𝑗(𝑥))

(13)

=

𝐿∑︁
𝑖=1

𝑟𝑖E𝑖(𝑔𝑖, 𝑔𝑖) +
𝜆

4

∑︁
1 ≤ 𝑖, 𝑗 ≤ 𝐿
𝑗 = 𝑖 ± 1

∫︁
Ω

(𝑔𝑖 − 𝑔𝑗)
2 min{𝑟𝑖𝑝𝑖, 𝑟𝑗𝑝𝑗} 𝑑𝑥 (14)

where E𝑖(𝑔𝑖, 𝑔𝑖) = −⟨𝑔𝑖,L𝑖𝑔𝑖⟩𝑝𝑖
.

Proof. Continuous simulated tempering is a Markov chain because the Poisson process is memoryless.
We show that its generator equals L . Let 𝐹 be the operator which acts by

𝐹𝑔(𝑥, 𝑖) = 𝑔𝑖(𝑥) +
1

2

∑︁
1 ≤ 𝑗 ≤ 𝐿
𝑗 = 𝑖 ± 1

min

{︂
𝑟𝑗𝑝𝑗(𝑥)

𝑟𝑖𝑝𝑖(𝑥)
, 1

}︂
(𝑔𝑗(𝑥) − 𝑔𝑖(𝑥)) (15)

Let 𝑁𝑡 = max {𝑛 : 𝑇𝑛 ≤ 𝑡}. Let 𝑃𝑗,𝑡 be such that (𝑃𝑗,𝑡𝑔)(𝑥) = E𝑀𝑗
[𝑔(𝑥𝑡)|𝑥0 = 𝑥], the expected

value after running 𝑀𝑗 for time 𝑡, and let 𝑃𝑡 the same operator for 𝑀 .

We have (here, 𝛿𝑗(𝑖) = 1𝑖=𝑗 is a function on [𝐿])

𝑃𝑡𝑔 = P(𝑁𝑡 = 0)

𝐿∑︁
𝑗=1

𝛿𝑗 × 𝑃𝑗,𝑡𝑔𝑗 +

∫︁ 𝑡

0

P(𝑡1 = 𝑠,𝑁𝑡 = 1)𝑃𝑡−𝑠𝐹𝑃𝑠𝑔 𝑑𝑠 + P(𝑁𝑡 ≥ 2)ℎ. (16)
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where ‖ℎ‖1 ≤ ‖𝑔‖1. By basic properties of the Poisson process, P(𝑁𝑡 = 0) = 1 − 𝜆𝑡 + 𝑂(𝑡2),
P(𝑡1 = 𝑠,𝑁𝑡 = 1) = 𝜆 + 𝑂(𝑡) for 0 ≤ 𝑠 ≤ 𝑡, and P(𝑁 ≥ 2) = 𝑂(𝑡2), so

𝑑

𝑑𝑡
(𝑃𝑡𝑔)|𝑡=0 = −𝜆

𝐿∑︁
𝑗=1

𝛿𝑗 × 𝑃𝑗,𝑡𝑔𝑗⏟  ⏞  
𝑔

+

𝐿∑︁
𝑗=1

𝛿𝑗 × L𝑗𝑔𝑗 + 𝜆𝐹𝑔 = L 𝑔. (17)

D Markov chain decomposition theorems

D.1 𝜒2 Gap-Product Theorem

The main Markov chain decomposition theorem we use to prove Theorem A.2 is Theorem D.2. As a
warm-up, we first prove a simpler gap-product theorem, Theorem D.1.

Note that Theorem D.1 is incomparable to the original by [MR02]. In their theorem, they decompose
Ω into a partition, the projected chain is on the sets of the partition, and the transition probabilities
are the probabilities of transitioning between the two sets. Here, we decompose into a sum of
probability distributions instead (a soft partition), and the transition probabilities in the projected
chain is determined by the 𝜒2-distance between the distributions.

We state the theorem for continuous Markov chains; it works for discrete chains with the appropriate
modifications.
Theorem D.1 (𝜒2 Gap-Product Theorem). Let 𝑀 = (Ω,L ) be a continuous-time Markov chain
with stationary distribution 𝑝 and Dirichlet form E (𝑔, 𝑔) = −⟨𝑔,L 𝑔⟩. Suppose the following hold.

1. There is a decomposition

𝑝L =

𝑚∑︁
𝑗=1

𝑤𝑗𝑝𝑗L𝑗 (18)

𝑝 =

𝑚∑︁
𝑗=1

𝑤𝑗𝑝𝑗 . (19)

where L𝑗 is the generator for some Markov chain 𝑀𝑗 on Ω with stationary distribution 𝑝𝑗 .

2. (Mixing for each 𝑀𝑗) The Dirichlet form E𝑗(𝑓, 𝑔) = −⟨𝑓,L𝑗𝑔⟩𝑝𝑗
satisfies the Poincaré

inequality

Var𝑝𝑗 (𝑔) ≤ 𝐶E𝑗(𝑔, 𝑔). (20)

3. (Mixing for projected chain) Define the 𝜒2-projected chain 𝑀 as the Markov chain on [𝑚]

generated by L , where L acts on 𝑔 ∈ 𝐿2([𝑚]) by

L 𝑔(𝑗) =
∑︁

1≤𝑘≤𝑚,𝑘 ̸=𝑗

[𝑔(𝑘) − 𝑔(𝑗)]𝑃 (𝑗, 𝑘) (21)

where 𝑃 (𝑗, 𝑘) =
𝑤𝑘

max{𝜒2(𝑝𝑗 ||𝑝𝑘), 𝜒2(𝑝𝑘||𝑝𝑗)}
. (22)

(I.e., the rate of diffusion from 𝑗 to 𝑘 is given by 𝑃 (𝑗, 𝑘).) Let 𝑝 be the stationary distribution
of 𝑀 . Then 𝑀 satisfies the Poincaré inequality

Var𝑝(𝑔) ≤ 𝐶E (𝑔, 𝑔). (23)

Then 𝑀 satisfies the Poincaré inequality

Var𝑝(𝑔) ≤ 𝐶

(︂
1 +

𝐶

2

)︂
E (𝑔, 𝑔). (24)

6



Proof. First, note that the stationary distribution 𝑝 of 𝑀 is given by 𝑝(𝑗) = 𝑤𝑗 , because 𝑤𝑗𝑃 (𝑗, 𝑘) =

𝑤𝑘𝑃 (𝑘, 𝑗). (Note that the reaston 𝑃 has a maximum of 𝜒2 divergences in the denominator is to make
this “detailed balance” condition hold.)

Given 𝑔 ∈ 𝐿2(Ω), define 𝑔 ∈ 𝐿2([𝑚]) by 𝑔(𝑗) = E𝑝𝑗
𝑔. Then

Var𝑝(𝑔) =

𝑚∑︁
𝑗=1

𝑤𝑗

∫︁
(𝑔 − E𝑔)2𝑝𝑗 (25)

=

𝑚∑︁
𝑗=1

𝑤𝑗

∫︁
(𝑔 − E

𝑝𝑗

𝑔)2𝑝𝑗 +

𝑚∑︁
𝑗=1

𝑤𝑗(E
𝑝𝑗

𝑔 − E
𝑝
𝑔)2 (26)

≤
𝑚∑︁
𝑗=1

𝑤𝑗

∫︁
(𝑔 − E

𝑝𝑗

𝑔)2𝑝𝑗 +

𝑚∑︁
𝑗=1

𝑝(𝑗)(𝑔(𝑗) − E
𝑝
𝑔)2 (27)

≤ 𝐶

𝑚∑︁
𝑗=1

𝑤𝑗E𝑝𝑗
(𝑔, 𝑔) + Var𝑝(𝑔) (28)

≤ 𝐶E (𝑔, 𝑔) + 𝐶E (𝑔, 𝑔). (29)

Now

E (𝑔, 𝑔) =
1

2

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

(𝑔(𝑗) − 𝑔(𝑘))2𝑤𝑗𝑃 (𝑗, 𝑘) (30)

≤ 1

2

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

(𝑔(𝑗) − 𝑔(𝑘))2𝑤𝑗
𝑤𝑘

𝜒2(𝑝𝑗 ||𝑝𝑘)
(31)

≤ 1

2

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

Var𝑝𝑗
(𝑔)𝑤𝑗𝑤𝑘 by Lemma L.1 (32)

≤ 1

2

𝑚∑︁
𝑗=1

𝑤𝑗𝐶E𝑗(𝑔, 𝑔) =
𝐶

2
E (𝑔, 𝑔). (33)

Thus

(29) ≤ 𝐶E (𝑔, 𝑔) +
𝐶𝐶

2
E (𝑔, 𝑔) (34)

as needed.

D.2 𝜒2 Gap-Product Theorem for Simulated Tempering

Theorem D.2 (𝜒2 Gap-Product Theorem for Simulated Tempering). Consider simulated tempering
𝑀 with Markov chains 𝑀𝑖 = (Ω,L𝑖), 1 ≤ 𝑖 ≤ 𝐿. Let the stationary distribution of 𝑀𝑖 be 𝑝𝑖, the
relative probabilities be 𝑟𝑖, and the rate be 𝜆. Let the Dirichlet form be E𝑖(𝑔, ℎ) = −⟨𝑔,L𝑖ℎ⟩.
Represent a function 𝑔 ∈ [𝐿]×Ω as (𝑔1, . . . , 𝑔𝐿). Let 𝑝 be the stationary distribution on [𝐿]×Ω, L
be the generator, and E (𝑔, ℎ) = −⟨𝑔,L ℎ⟩ be the Dirichlet form.

Suppose the following hold.

1. There is a decomposition

𝑝𝑖L𝑖 =

𝑚𝑖∑︁
𝑗=1

𝑤𝑖,𝑗𝑝𝑖,𝑗L𝑖𝑗 (35)

𝑝𝑖 =

𝑚𝑖∑︁
𝑗=1

𝑤𝑖,𝑗𝑝𝑖,𝑗 . (36)

where L𝑖𝑗 is the generator for some Markov chain 𝑀𝑖,𝑗 on {𝑖} × Ω with stationary
distribution 𝑝𝑖,𝑗 .
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2. (Mixing for each 𝑀𝑖,𝑗) 𝑀𝑖,𝑗 satisfies the Poincaré inequality

Var𝑝𝑖,𝑗
(𝑔) ≤ 𝐶E𝑖,𝑗(𝑔, 𝑔). (37)

3. (Mixing for projected chain) Define the 𝜒2-projected chain 𝑀 as the Markov chain on [𝑛]

generated by L , where L acts on 𝑔 ∈ 𝐿2([𝑛]) by

L 𝑔(𝑖, 𝑗) =

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝐿∑︁
𝑖′=1

𝑚𝑖′∑︁
𝑗′=1

[𝑔(𝑖′, 𝑗′) − 𝑔(𝑖, 𝑗)]𝑃 ((𝑖, 𝑗), (𝑖′, 𝑗′)) (38)

where 𝑃 ((𝑖, 𝑗), (𝑖′, 𝑗′)) =

⎧⎪⎪⎨⎪⎪⎩
𝑤𝑖,𝑗′

max{𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖,𝑗′ ),𝜒
2(𝑝𝑖,𝑗′ ||𝑝𝑖,𝑗)} , 𝑖 = 𝑖′

min
{︁ 𝑟

𝑖′𝑤𝑖′,𝑗′
𝑟𝑖𝑤𝑖,𝑗

,1
}︁

max{𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖′,𝑗′ ),𝜒
2(𝑝𝑖′,𝑗′ ||𝑝𝑖,𝑗)} , 𝑖′ = 𝑖± 1

0, else.

(39)

Let 𝑝 be the stationary distribution of 𝑀 . Then 𝑀 satisfies the Poincaré inequality

Var𝑝(𝑔) ≤ 𝐶E (𝑔, 𝑔). (40)

Then 𝑀 satisfies the Poincaré inequality

Var(𝑔) ≤ max

{︂
𝐶

(︂
1 +

13

2
𝐶

)︂
,

6𝐶

𝜆

}︂
E (𝑔, 𝑔). (41)

The proof starts as before. The new part is that the projected Markov chain involves transitions
between levels, so E will involve taking differences of functions on adjacent levels. That part will be
bounded by the second term in (13).

Proof. First, note that the stationary distribution 𝑝 of 𝑀 is given by 𝑝((𝑖, 𝑗)) = 𝑟𝑖𝑤𝑖,𝑗 , because
𝑃 ((𝑖, 𝑗), (𝑖′, 𝑗′))𝑟𝑖𝑤𝑖,𝑗 = 𝑃 ((𝑖′, 𝑗′), (𝑖, 𝑗))𝑟𝑖′𝑤𝑖′,𝑗′ .

Given 𝑔 ∈ 𝐿2([𝐿] × Ω), define 𝑔 ∈ 𝐿2
(︁⋃︀𝐿

𝑖=1({𝑖} × [𝑚𝑖])
)︁

by 𝑔(𝑖, 𝑗) = E𝑝𝑖,𝑗 𝑔𝑖.

Var𝑝(𝑔) =

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑟𝑖𝑤𝑖,𝑗

∫︁
(𝑔 − E

𝑝
𝑔)2𝑝𝑗 (42)

=

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑟𝑖𝑤𝑖,𝑗

[︂(︂∫︁
(𝑔𝑖 − E

𝑝𝑖,𝑗

𝑔𝑖)
2𝑝𝑖,𝑗

)︂
+ ( E

𝑝𝑖,𝑗

𝑔𝑖 − E
𝑝
𝑔)2
]︂

(43)

≤ 𝐶

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑟𝑖𝑤𝑖,𝑗E𝑖,𝑗(𝑔𝑖, 𝑔𝑖) + Var𝑝(𝑔) (44)

≤ 𝐶

𝐿∑︁
𝑖=1

𝑟𝑖E𝑖(𝑔𝑖, 𝑔𝑖) + 𝐶E (𝑔, 𝑔). (45)

Now E has two terms; the first is bounded in the same way as the Theorem D.1.

E (𝑔, 𝑔) =
1

2

𝐿∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑗′=1

(𝑔(𝑖, 𝑗) − 𝑔(𝑖, 𝑗′))2𝑟𝑖𝑤𝑖,𝑗𝑃 ((𝑖, 𝑗), (𝑖, 𝑗′))⏟  ⏞  
𝐴

(46)

+
1

2

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

∑︁
𝑖′ = 𝑖 ± 1
1 ≤ 𝑖′ ≤ 𝐿

𝑚𝑖′∑︁
𝑗=1

(𝑔(𝑖, 𝑗) − 𝑔(𝑖′, 𝑗′))2𝑟𝑖𝑤𝑖,𝑗𝑃 ((𝑖, 𝑗), (𝑖′, 𝑗′))

⏟  ⏞  
𝐵

(47)
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𝐴 ≤
𝐿∑︁

𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑛∑︁
𝑗′=1

(𝑔(𝑖, 𝑗) − 𝑔(𝑖, 𝑗′))2𝑟𝑖𝑤𝑖,𝑗
𝑤𝑖,𝑗′

𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖,𝑗′)
(48)

≤
𝐿∑︁

𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑟𝑖𝑤𝑖,𝑗 Var𝑝𝑖,𝑗
(𝑔𝑖) by Lemma L.1

(49)

≤
𝐿∑︁

𝑖=1

𝑟𝑖𝐶E𝑖(𝑔𝑖, 𝑔𝑖). (50)

For the second term, we use Lemma L.3.

𝐵 ≤
𝐿∑︁

𝑖=1

𝑚𝑖∑︁
𝑗=1

∑︁
𝑖′ = 𝑖 ± 1
1 ≤ 𝑖′ ≤ 𝐿

𝑚𝑖′∑︁
𝑗′=1

[︂
6 Var𝑝𝑖,𝑗

(𝑔𝑖)𝜒
2(𝑝𝑖,𝑗 ||𝑝𝑖′,𝑗′) + 3

∫︁
Ω

(𝑔𝑖 − 𝑔𝑖′)
2 min{𝑝𝑖,𝑗 , 𝑝𝑖′,𝑗′}

]︂
𝑟𝑖𝑤𝑖,𝑗𝑃 ((𝑖, 𝑗), (𝑖′, 𝑗′))

(51)

≤
𝐿∑︁

𝑖=1

𝑚𝑖∑︁
𝑗=1

∑︁
𝑖′ = 𝑖 ± 1
1 ≤ 𝑖′ ≤ 𝐿

𝑚𝑖′∑︁
𝑗′=1

[︂
6𝑟𝑖𝑤𝑖,𝑗 Var𝑝𝑖,𝑗 (𝑔𝑖)𝑤𝑖′,𝑗′ + 3𝑟𝑖𝑤𝑖,𝑗 min

{︂
𝑟𝑖′𝑤𝑖′,𝑗′

𝑟𝑖𝑤𝑖,𝑗
, 1

}︂∫︁
Ω

(𝑔𝑖 − 𝑔𝑖′)
2 min{𝑝𝑖,𝑗 , 𝑝𝑖′,𝑗′}

]︂
(52)

= 12

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

𝑟𝑖𝑤𝑖,𝑗 Var𝑝𝑖,𝑗
(𝑔𝑖) + 3

𝐿∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

∑︁
𝑖′ = 𝑖 ± 1
1 ≤ 𝑖′ ≤ 𝐿

𝑚𝑖′∑︁
𝑗=1

∫︁
Ω

(𝑔𝑖 − 𝑔𝑖′)
2 min{𝑟𝑖𝑤𝑖,𝑗𝑝𝑖,𝑗 , 𝑟𝑖′𝑤𝑖′,𝑗′𝑝𝑖′,𝑗′}

(53)

≤ 12

𝐿∑︁
𝑖=1

𝑟𝑖𝐶E𝑖(𝑔𝑖, 𝑔𝑖) + 3

𝐿∑︁
𝑖=1

∑︁
1 ≤ 𝑖′ ≤ 𝑚
𝑖′ = 𝑖 ± 1

∫︁
Ω

(𝑔𝑖 − 𝑔𝑖′)
2 min{𝑟𝑖𝑝𝑖, 𝑟𝑖′𝑝𝑖′} (54)

Then

(45) ≤ 𝐶

𝐿∑︁
𝑖=1

𝑟𝑖E𝑖(𝑔𝑖, 𝑔𝑖) +
𝐶

2

⎛⎜⎜⎜⎝13𝐶

𝐿∑︁
𝑖=1

𝑟𝑖E𝑖(𝑔𝑖, 𝑔𝑖) +
12

𝜆

𝜆

2

𝐿∑︁
𝑖=1

∑︁
1 ≤ 𝑖′ ≤ 𝐿
𝑖′ = 𝑖 ± 1

(𝑔𝑖 − 𝑔𝑖′)
2 min{𝑟𝑖𝑝𝑖, 𝑟𝑖′𝑝𝑖′}

⎞⎟⎟⎟⎠
(55)

≤ max

{︂
𝐶

(︂
1 +

13

2
𝐶

)︂
,

6𝐶

𝜆

}︂
E (𝑔, 𝑔). (56)

E Simulated tempering for gaussians with equal variance

E.1 Mixtures of gaussians all the way down

Theorem E.1. Let 𝑀 be the continuous simulated tempering chain for the distributions

𝑝𝑖 ∝
𝑚∑︁
𝑗=1

𝑤𝑗𝑒
−𝛽𝑖

‖𝑥−𝜇𝑗‖2

2𝜎2 (57)
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with rate Ω
(︀

1
𝐷2

)︀
, relative probabilities 𝑟𝑖, and temperatures 0 < 𝛽1 < · · · < 𝛽𝐿 = 1 where

𝐷 = max{max
𝑗

‖𝜇𝑗‖ , 𝜎} (58)

𝛽1 = Θ

(︂
𝜎2

𝐷2

)︂
(59)

𝛽𝑖+1

𝛽𝑖
≤ 1 +

1

𝑑
(60)

𝐿 = Θ

(︂
𝑑 ln

(︂
𝐷

𝜎

)︂
+ 1

)︂
(61)

𝑟 =
min𝑖 𝑟𝑖
max𝑖 𝑟𝑖

. (62)

Then 𝑀 satisfies the Poincaré inequality

Var(𝑔) ≤ 𝑂

(︂
𝐿2𝐷2

𝑟2

)︂
E (𝑔, 𝑔) = 𝑂

(︃(︀
𝑑 ln

(︀
𝐷
𝜎

)︀
+ 1
)︀2

𝐷2

𝑟2

)︃
E (𝑔, 𝑔). (63)

Proof of Theorem E.1. Note that forcing 𝐷 ≤ 𝜎 ensures 𝛽1 = Ω(1). We check all conditions for
Theorem D.2.

1. Consider the decomposition where

𝑝𝑖,𝑗 ∝ exp

(︃
−𝛽𝑖

‖𝑥− 𝜇𝑗‖2

2𝜎2

)︃
, (64)

𝑤𝑖,𝑗 = 𝑤𝑗 , and and 𝑀𝑖,𝑗 is the Langevin chain on 𝑝𝑖,𝑗 , so that E𝑖𝑗(𝑔𝑖, 𝑔𝑖) =
∫︀
R𝑑 ‖∇𝑔𝑖‖2 𝑝𝑖,𝑗 .

We check (36):

E𝑖(𝑔𝑖, 𝑔𝑖) =

∫︁
R𝑑

‖∇𝑔𝑖‖2 𝑝𝑖 =

∫︁
R𝑑

‖∇𝑔𝑖‖2
𝑚∑︁
𝑗=1

𝑤𝑗𝑝𝑗 =

𝑚∑︁
𝑗=1

𝑤𝑗E𝑖,𝑗(𝑔𝑖, 𝑔𝑖). (65)

2. By Theorem B.3 and the fact that 𝛽1 = Ω
(︁

𝜎2

𝐷2

)︁
, E𝑖,𝑗 satisfies the Poincaré inequality

Var𝑝𝑖,𝑗 (𝑔𝑖) ≤
𝜎2

𝛽𝑖
E𝑖,𝑗(𝑔𝑖, 𝑔𝑖) = 𝑂(𝐷2)E𝑖,𝑗(𝑔𝑖, 𝑔𝑖). (66)

3. To prove a Poincaré inequality for the projected chain, we use the method of canonical paths,
Theorem B.4. Consider the graph 𝐺 on

⋃︀𝐿
𝑖=1{𝑖} × [𝑚𝑖] that is the complete graph on the

slice 𝑖 = 1, and the only other edges are vertical edges (𝑖, 𝑗), (𝑖 ± 1, 𝑗). All the paths we
will consider are paths in 𝐺. For vertices 𝑥 = (𝑖, 𝑗) and 𝑦 = (𝑖′, 𝑗′), define the canonical
path as follows.

(a) If 𝑗 = 𝑗′, without loss of generality 𝑖 < 𝑖′. Define the path to be (𝑖, 𝑗), (𝑖 +
1, 𝑗), . . . , (𝑖′, 𝑗).

(b) Else, define the path to be (𝑖, 𝑗), (𝑖− 1, 𝑗), . . . , (1, 𝑗), (1, 𝑗′), . . . , (𝑖, 𝑗′).

We calculate the transition probabilities (39), which are given in terms of 𝜒2 distances.
Suppose that 𝛽𝑖+1

𝛽𝑖
= 1 + 𝛿 where 𝛿 ≤ 1

𝑑 . Then applying Lemma L.6 to Σ1 = 𝛽−1
𝑖 𝐼𝑑 and
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Σ2 = 𝛽−1
𝑖+1𝐼𝑑,

𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖+1,𝑗) = 𝜒2(𝑁(𝜇𝑗 , 𝛽𝑖𝐼𝑑)||𝑁(𝜇𝑗 , 𝛽𝑖+1)) (67)

=

(︂
𝛽2
𝑖+1

𝛽𝑖

)︂ 𝑑
2

(2𝛽𝑖+1 − 𝛽𝑖)
− 𝑑

2 − 1 (68)

=

(︂
𝛽𝑖+1

𝛽𝑖

)︂ 𝑑
2
(︂

2 − 𝛽𝑖

𝛽𝑖+1

)︂− 𝑑
2

− 1 (69)

= 𝑂

(︃
(1 + 𝑑𝛿)

(︂
2 −

(︂
1

1 + 𝛿

)︂)︂− 𝑑
2

− 1

)︃
= 𝑂(𝑑𝛿) = 𝑂(1) (70)

Similarly, 𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖−1,𝑗) = 𝑂(1). By Lemma L.6 with Σ1 = Σ2 = 𝛽−1
1 𝐼𝑑,

𝜒2(𝑝1,𝑗 ||𝑝1,𝑗′) = 𝜒2(𝑁(𝜇𝑗 , 𝛽1𝐼𝑑)||𝑁(𝜇𝑗′ , 𝛽1𝐼𝑑)) (71)

= 𝑒𝛽1‖𝜇1−𝜇2‖2/𝜎2

= 𝑂(1) (72)

when 𝛽1 = 𝑂
(︁

𝜎2

𝐷2

)︁
.

Note that |𝛾𝑥,𝑦| ≤ 2𝐿− 1. Consider two kinds of edges in 𝐺.

(a) 𝑧 = (𝑖, 𝑗), 𝑤 = (𝑖− 1, 𝑗). We have∑︀
𝛾𝑥,𝑦∋((𝑖,𝑗),(𝑖−1,𝑗)) |𝛾𝑥,𝑦|𝑝(𝑥)𝑝st(𝑦)

𝑝((𝑖, 𝑗))𝑃 ((𝑖, 𝑗), (𝑖− 1, 𝑗))
≤ (2𝐿− 1)𝑝(𝑆)𝑝(𝑆𝑐)

𝑝((𝑖, 𝑗))𝑃 ((𝑖, 𝑗), (𝑖− 1, 𝑗))
(73)

where 𝑆 = {𝑖, . . . , 𝐿}×{𝑗}. This follows because cutting the edge 𝑧𝑤 splits the graph
into 2 connected components, one of which is 𝑆; the paths which go through 𝑧𝑤 are
exactly those between 𝑥, 𝑦 where one of 𝑥, 𝑦 is a subset of 𝑆 and the other is not. Now
note

𝑝(𝑆)

𝑝((𝑖, 𝑗))
=

𝑝({𝑖, . . . 𝐿} × {𝑗})

𝑝((𝑖, 𝑗))
≤ 𝐿

𝑟
(74)

𝑝(𝑆𝑐) ≤ 1 (75)

𝑃 ((𝑖, 𝑗), (𝑖− 1, 𝑗)) =
min

{︁
𝑟𝑖′𝑤𝑖′,𝑗′

𝑟𝑖𝑤𝑖,𝑗
, 1
}︁

max{𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖′,𝑗′), 𝜒2(𝑝𝑖′,𝑗′ ||𝑝𝑖,𝑗)}
= Ω(𝑟)

(76)

by (70) and (39) so (73) = 𝑂
(︁

𝐿2

𝑟2

)︁
.

(b) 𝑧 = (1, 𝑗), 𝑤 = (1, 𝑘). We have∑︀
𝛾𝑥,𝑦∋((1,𝑗),(1,𝑘)) |𝛾𝑥,𝑦|𝑝(𝑥)𝑝(𝑦)

𝑝((1, 𝑗))𝑃 ((1, 𝑗), (1, 𝑘))
≤ (2𝐿− 1)𝑝st([𝐿] × {𝑗})𝑝((𝑖, 𝑗))

𝑝((𝑖, 𝑗))𝑃 ((1, 𝑗), (1, 𝑘))
. (77)

because the paths going through 𝑧𝑤 are exactly those between [𝐿]×{𝑗} and [𝐿]×{𝑘}.
Now note

𝑝([𝐿] × {𝑗})

𝑝((1, 𝑗))
≤ 𝐿

𝑟
(78)

𝑝([𝐿] × {𝑘}) = 𝑤𝑘 (79)

𝑃 ((1, 𝑗), (1, 𝑘)) =
𝑤𝑘

max{𝜒2(𝑝1,𝑗 ||𝑝1,𝑘), 𝜒2(𝑝1,𝑗 ||𝑝1,𝑘)}
= Ω(𝑤𝑘). (80)

Thus (77) = 𝑂
(︁

𝐿2

𝑟

)︁
.

By Theorem B.4, the projected chain satisfies a Poincaré inequality with constant 𝑂
(︁

𝐿2

𝑟2

)︁
.
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Thus by Theorem D.2, the simulated tempering chain satisfies a Poincaré inequality with constant

𝑂

(︂
max

{︂
𝐷2

(︂
1 +

𝐿2

𝑟2

)︂
,
𝐿2

𝑟2𝜆

}︂)︂
. (81)

Taking 𝜆 = 1
𝐷2 makes this 𝑂

(︁
𝐷2𝐿2

𝑟2

)︁
.

Remark E.2. Note there is no dependence on either 𝑤min or the number of components.

If 𝑝 ∝
∑︀𝑚

𝑗=1 𝑤𝑗𝑒
−‖𝑥−𝜇𝑗‖2

2𝜎2 and we have access to ∇ ln(𝑝 *𝑁(0, 𝜏𝐼)) for any 𝜏 , then we can sample
from 𝑝 efficiently, no matter how many components there are. In fact, passing to the continuous limit,
we can sample from any 𝑝 in the form 𝑝 = 𝑤 *𝑁(0, 𝜎2𝐼𝑑) where ‖𝑤‖1 = 1 and Supp(𝑤) ⊆ 𝐵𝐷.

In this way, Theorem E.1 says that evolution of 𝑝 under the heat kernel is the most “natural” way to
do simulated tempering. We don’t have access to 𝑝*𝑁(0, 𝜏𝐼), but we will show that 𝑝𝛽 approximates
it well (within a factor of 1

𝑤min
).

Entropy-SGD [CCSL16] attempts to estimate ∇ ln(𝑝 * 𝑁(0, 𝜏𝐼)) for use in a temperature-based
algorithm; this remark provides some heuristic justification for why this is a natural choice.

E.2 Comparing to the actual chain

The following lemma shows that changing the temperature is approximately the same as changing
the variance of the gaussian. We state it more generally, for arbitrary mixtures of distributions in the
form 𝑒−𝑓𝑖(𝑥).
Lemma E.3 (Approximately scaling the temperature). Let 𝑝𝑖(𝑥) = 𝑒−𝑓𝑖(𝑥) be probability distribu-
tions on Ω such that for all 𝛽 > 0,

∫︀
Ω
𝑒−𝛽𝑓𝑖(𝑥) 𝑑𝑥 < ∞. Let

𝑝(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖𝑝𝑖(𝑥) (82)

𝑓(𝑥) = − ln 𝑝(𝑥) (83)

where 𝑤1, . . . , 𝑤𝑛 > 0 and
∑︀𝑛

𝑖=1 𝑤𝑖 = 1. Let 𝑤min = min1≤𝑖≤𝑛 𝑤𝑖.

Define the distribution at inverse temperature 𝛽 to be 𝑝𝛽(𝑥), where

𝑔𝛽(𝑥) = 𝑒−𝛽𝑓(𝑥) (84)

𝑍𝛽 =

∫︁
Ω

𝑒−𝛽𝑓(𝑥) 𝑑𝑥 (85)

𝑝𝛽(𝑥) =
𝑔𝛽(𝑥)

𝑍𝛽
. (86)

Define the distribution ̃︀𝑝𝛽(𝑥) by

̃︀𝑔𝛽(𝑥) =

𝑛∑︁
𝑖=1

𝑤𝑖𝑒
−𝛽𝑓𝑖(𝑥) (87)

̃︀𝑍𝛽 =

∫︁
Ω

𝑛∑︁
𝑖=1

𝑤𝑖𝑒
−𝛽𝑓𝑖(𝑥) 𝑑𝑥 (88)

̃︀𝑝𝛽(𝑥) =
̃︀𝑔𝛽(𝑥)̃︀𝑍𝛽

. (89)

Then for 0 ≤ 𝛽 ≤ 1 and all 𝑥,

𝑔𝛽(𝑥) ∈
[︂
1,

1

𝑤min

]︂ ̃︀𝑔𝛽 (90)

𝑝𝛽(𝑥) ∈
[︂
1,

1

𝑤min

]︂ ̃︀𝑝𝛽 ̃︀𝑍𝛽

𝑍𝛽
⊂
[︂
𝑤min,

1

𝑤min

]︂ ̃︀𝑝𝛽 . (91)
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Proof. By the Power-Mean inequality,

𝑔𝛽(𝑥) =

(︃
𝑛∑︁

𝑖=1

𝑤𝑖𝑒
−𝑓𝑖(𝑥)

)︃𝛽

(92)

≥
𝑛∑︁

𝑖=1

𝑤𝑖𝑒
−𝛽𝑓𝑖(𝑥) = ̃︀𝑔𝛽(𝑥). (93)

On the other hand, given 𝑥, setting 𝑗 = argmin𝑖 𝑓𝑖(𝑥),

𝑔𝛽(𝑥) =

(︃
𝑛∑︁

𝑖=1

𝑤𝑖𝑒
−𝑓𝑖(𝑥)

)︃𝛽

(94)

≤ (𝑒−𝑓𝑗(𝑥))𝛽 (95)

≤ 1

𝑤min

𝑛∑︁
𝑖=1

𝑤𝑖𝑒
−𝛽𝑓𝑖(𝑥) =

1

𝑤min
̃︀𝑔𝛽(𝑥). (96)

This gives (90). This implies
̃︀𝑍𝛽

𝑍𝛽
∈ [𝑤min, 1], which gives (91).

Lemma E.4. Suppose ‖𝑓1 − 𝑓2‖∞ ≤ Δ
2 and 𝑝1 ∝ 𝑒−𝑓1 , 𝑝2 ∝ 𝑒−𝑓2 are probability distributions on

R𝑑. Then

E𝑝1(𝑔)

‖𝑔‖2𝑝1

≥ 𝑒−2Δ E𝑝2(𝑔)

‖𝑔‖2𝑝2

. (97)

Proof. The ratio between 𝑝1 and 𝑝2 is at most 𝑒Δ, so∫︀
R𝑑 ‖∇𝑔‖2 𝑝1 𝑑𝑥∫︀
R𝑑 ‖𝑔‖2 𝑝1 𝑑𝑥

≥
𝑒−Δ

∫︀
R𝑑 ‖∇𝑔‖2 𝑝2 𝑑𝑥

𝑒Δ
∫︀
R𝑑 ‖𝑔‖2 𝑝2 𝑑𝑥

. (98)

Lemma E.5. Let 𝑀 and ̃︁𝑀 be two continuous simulated tempering Langevin chains with functions
𝑓𝑖, ̃︀𝑓𝑖,, respectively, for 𝑖 ∈ [𝐿], with rate 𝜆, and with relative probabilities 𝑟𝑖. Let their Dirichlet
forms be E and ̃︀E and their stationary distributions be 𝑝 and ̃︀𝑝.

Suppose that
⃦⃦⃦
𝑓𝑖(𝑥) − ̃︀𝑓𝑖(𝑥)

⃦⃦⃦
∞

≤ Δ
2 . Then

E (𝑔, 𝑔)

Var𝑝(𝑔)
≥ 𝑒−2Δ

̃︀E (𝑔, 𝑔)

Var̃︀𝑝(𝑔)
. (99)

Proof. By Lemma E.4, ∑︀𝐿
𝑖=1 E𝑖(𝑔𝑖, 𝑔𝑖)

Var𝑝𝑖
(𝑔𝑖)

≥ 𝑒−2Δ

∑︀𝐿
𝑖=1

̃︀E𝑖(𝑔𝑖, 𝑔𝑖)

Var̃︀𝑝𝑖
(𝑔𝑖)

(100)

=⇒
∑︀𝐿

𝑖=1 𝑟𝑖E𝑖(𝑔𝑖, 𝑔𝑖)

Var𝑝(𝑔𝑖)
≥ 𝑒−2Δ

∑︀𝐿
𝑖=1 𝑟𝑖

̃︀E𝑖(𝑔𝑖, 𝑔𝑖)

Var̃︀𝑝(𝑔𝑖)
. (101)
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By Lemma E.3, we have 𝑝𝑖̃︀𝑝𝑖
∈ [𝐴,𝐴𝑒Δ], 𝑝𝑗̃︀𝑝𝑗

∈ [𝐵,𝐵𝑒Δ] for some 𝐴,𝐵, so min{𝑟𝑖𝑝𝑖,𝑟𝑗𝑝𝑗}
min{𝑟𝑖̃︀𝑝𝑖,𝑟𝑗̃︀𝑝𝑗} ∈

[𝐶,𝐶𝑒Δ] for some 𝐶. Hence, for some 𝐷,𝐸,∫︀
(𝑔𝑖 − 𝑔𝑗)

2 min{𝑟𝑖𝑝𝑖, 𝑟𝑗𝑝𝑗}∫︀
(𝑔𝑖 − 𝑔𝑗)2 min{𝑟𝑖̃︀𝑝𝑖, 𝑟𝑗̃︀𝑝𝑗} ∈ [𝐷,𝐷𝑒Δ] (102)

Var𝑝𝑖
(𝑔𝑖)

Var ̃︀𝑝𝑖
(̃︀𝑔𝑖) ∈ [𝐸,𝐸𝑒Δ] (103)

=⇒
𝜆
4

∑︀
𝑗=𝑖±1

∫︀
(𝑔𝑖 − 𝑔𝑗)

2 min{𝑟𝑖𝑝𝑖, 𝑟𝑗𝑝𝑗}
𝑟𝑖 Var𝑝𝑖

(𝑔𝑖)
≥ 𝑒−2Δ

𝜆
4

∑︀
𝑗=𝑖±1

∫︀
(𝑔𝑖 − 𝑔𝑗)

2 min{𝑟𝑖̃︀𝑝𝑖, 𝑟𝑗̃︀𝑝𝑗}
𝑟𝑗 Var𝑝𝑗

(𝑔)
(104)

𝜆
4

∑︀𝐿
𝑖=1

∑︀
𝑗=𝑖±1

∫︀
(𝑔𝑖 − 𝑔𝑗)

2 min{𝑟𝑖𝑝𝑖, 𝑟𝑗𝑝𝑗}
Var𝑝(𝑔)

≥ 𝑒−2Δ
𝜆
4

∑︀𝐿
𝑖=1

∑︀
𝑗=𝑖±1

∫︀
(𝑔𝑖 − 𝑔𝑗)

2 min{𝑟𝑖̃︀𝑝𝑖, 𝑟𝑗̃︀𝑝𝑗}
Var̃︀𝑝(𝑔)

(105)

Adding (101) and (105) gives the result.

Theorem E.6. Suppose
∑︀𝑚

𝑗=1 𝑤𝑗 = 1, 𝑤min = min1≤𝑗≤𝑚 𝑤𝑖 > 0, and 𝐷 =

max{max1≤𝑗≤𝑚 ‖𝜇𝑗‖ , 𝜎}. Let 𝑀 be the continuous simulated tempering chain for the distributions

𝑝𝑖 ∝

⎛⎝ 𝑚∑︁
𝑗=1

𝑤𝑗𝑒
−‖𝑥−𝜇𝑗‖2

2𝜎2

⎞⎠𝛽𝑖

(106)

with rate 𝑂
(︀

1
𝐷2

)︀
, relative probabilities 𝑟𝑖, and temperatures 0 < 𝛽1 < · · · < 𝛽𝐿 = 1 satisfying the

same conditions as in Theorem E.1. Then 𝑀 satisfies the Poincaré inequality

Var(𝑔) ≤ 𝑂

(︂
𝐿2𝐷2

𝑟2𝑤2
min

)︂
E (𝑔, 𝑔) = 𝑂

(︃
𝑑2
(︀
ln
(︀
𝐷
𝜎

)︀)︀2
𝐷2

𝑟2𝑤2
min

)︃
E (𝑔, 𝑔). (107)

Proof. Let ̃︀𝑝𝑖 be the probability distributions in Theorem E.1 with the same parameters as 𝑝𝑖 and
let ̃︀𝑝 be the stationary distribution of that simulated tempering chain. By Theorem E.1, Var̃︀𝑝(𝑔) =

𝑂
(︁

𝐿2𝐷2

𝑟2

)︁
E ̃︀𝑝(𝑔, 𝑔). Now use By Lemma E.3, 𝑝𝑖̃︀𝑝𝑖

∈
[︁
1, 1

𝑤min

]︁ ̃︀𝑍𝑖

𝑍𝑖
. Now use Lemma E.5 with

𝑒Δ = 1
𝑤min

.

F Discretization

Lemma F.1. Fix times 0 < 𝑇1 < · · · < 𝑇𝑛 ≤ 𝑇 .

Let 𝑝𝑇 , 𝑞𝑇 : [𝐿] × R𝑑 → R be defined as follows.

1. 𝑝𝑇 is the continuous simulated tempering Markov as in Definition C.1 but with fixed
transition times 𝑇1, . . . , 𝑇𝑛. The component chains are Langevin diffusions on 𝑝𝑖 ∝(︁∑︀𝑚

𝑗=1 𝑤𝑗𝑒
−𝑓0(𝑥−𝜇𝑖)

)︁𝛽𝑖

.

2. 𝑞𝑇 is the discretized version as in Algorithm (1), again with fixed transition times 𝑇1, . . . , 𝑇𝑛,
and with step size 𝜂 ≤ 𝜎2

2 .

Then

KL(𝑝𝑇 ||𝑞𝑇 ) . 𝜂2𝐷6𝐾7

(︂
𝐷2𝐾

2

𝜅
+ 𝑑

)︂
𝑇𝑛 + 𝜂2𝐷3𝐾3 max

𝑖
E𝑥∼𝑝0(·,𝑖)‖𝑥− 𝑥*‖22 + 𝜂𝐷2𝐾2𝑑𝑇

where 𝑥* is the maximum of
∑︀𝑚

𝑗=1 𝑤𝑗𝑒
−𝑓0(𝑥−𝜇𝑗) and satisfies ‖𝑥*‖ = 𝑂(𝐷) where 𝐷 = max ‖𝜇𝑗‖.
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Before proving the above statement, we make a note on the location of 𝑥* to make sense of
max𝑖 E𝑥∼𝑝0(·,𝑖)‖𝑥− 𝑥*‖22. Namely, we show:

Lemma F.2 (Location of minimum). Let 𝑥* = argmin𝑥∈R𝑑𝑓(𝑥). Then, ‖𝑥*‖ ≤ 𝐷
√︁

𝐾
𝜅 + 1.

Proof. Recall that 𝑓𝑖(𝑥) = 𝑓0(𝑥− 𝜇𝑖). We claim that 𝑓(0) ≤ 1
2𝐾𝐷2. Indeed, by smoothness, we

have 𝑓𝑖(0) ≤ 1
2𝐾‖𝜇𝑖‖2, which implies that 𝑓(0) ≤ 1

2𝐾𝐷2.

Hence, it follows that min𝑥∈R𝑑 𝑓(𝑥) ≤ 1
2𝐾𝐷2. However, for any 𝑥, it holds that

𝑓(𝑥) ≥ 1

2
min
𝑖

𝜅‖𝜇𝑖 − 𝑥‖2

≥ 1

2
𝜅
(︁
‖𝑥‖2 − max

𝑖
‖𝜇𝑖‖2

)︁
≥ 1

2
𝜅
(︀
‖𝑥‖2 −𝐷2

)︀
Hence, if ‖𝑥‖ > 𝐷

√︁
𝐾
𝜅 + 1, 𝑓(𝑥) > min𝑥∈R𝑑 𝑓(𝑥). This implies the statement of the lemma.

We prove a few technical lemmas. First, we prove that the continuous chain is essentially contained
in a ball of radius 𝐷. More precisely, we show:

Lemma F.3 (Reach of continuous chain). Let 𝑃 𝛽
𝑇 (𝑋) be the Markov kernel corresponding to evolving

Langevin diffusion
𝑑𝑋𝑡

𝑑𝑡
= −𝛽∇𝑓(𝑋𝑡) + 𝑑𝐵𝑡

with 𝑓 and 𝐷 are as defined in 1 for time 𝑇 . Then,

E[‖𝑋𝑡 − 𝑥*‖2] ≤ E[‖𝑋0 − 𝑥*‖2] +

(︂
400𝛽

𝐷2𝐾2

𝜅
+ 2𝑑

)︂
𝑇

Proof. Let 𝑌𝑡 = ‖𝑋𝑡 − 𝑥*‖2. By Itôs Lemma, we have

𝑑𝑌𝑡 = −2

⟨
𝑋𝑡 − 𝑥*, 𝛽

𝑚∑︁
𝑖=1

𝑤𝑖𝑒
−𝑓𝑖(𝑋𝑡)∇𝑓𝑖(𝑋𝑡)∑︀𝑚
𝑗=1 𝑤𝑗𝑒−𝑓𝑗(𝑋𝑡)

⟩
+ 2𝑑 𝑑𝑡+

√
8

𝑑∑︁
𝑖=1

(𝑋𝑡)𝑖 𝑑(𝐵𝑖)𝑡 (108)

We will show that

−⟨𝑋𝑡 − 𝑥*,∇𝑓𝑖(𝑋𝑡)⟩ ≤ 100
𝐷2𝐾2

𝜅

Indeed, since 𝑓𝑖(𝑥) = 𝑓0(𝑥− 𝜇𝑖), by (108), we have

⟨𝑋𝑡,∇𝑓𝑖(𝑋𝑡)⟩ ≥
𝜅

2
‖𝑋𝑡‖2 −

𝐷2(2𝜅 + 𝐾)2

2𝜅
−𝐾𝐷2

Also, by the Hessian bound 𝜅𝐼 ⪯ ∇2𝑓0(𝑥) ⪯ 𝐾𝐼 , we have

⟨𝑥*,∇𝑓𝑖(𝑋𝑡)⟩ ≤ ‖𝑥*‖‖∇𝑓𝑖(𝑋𝑡)‖ ≤ 𝐷

√︂
𝐾

𝜅
+ 1‖𝑋𝑡 − 𝜇𝑖‖ ≤ 𝐷

√︂
𝐾

𝜅
+ 1(‖𝑋𝑡‖ + 𝐷)

Hence,

−⟨𝑋𝑡 − 𝑥*,∇𝑓𝑖(𝑋𝑡)⟩ ≤ −𝜅

2
‖𝑋𝑡‖2 −

𝐷2(2𝜅 + 𝐾)2

2𝜅
−𝐷

√︂
𝐾

𝜅
+ 1(‖𝑋𝑡‖ + 𝐷)

Solving for the extremal values of the quadratic on the RHS, we get

−⟨𝑋𝑡 − 𝑥*,∇𝑓𝑖(𝑋𝑡)⟩ ≤ 100
𝐷2𝐾2

𝜅
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Together with (108), we get

𝑑𝑌𝑡 ≤ 100𝛽
𝐷2𝐾2

𝜅
+ 2𝑑 𝑑𝑡+

√
8

𝑑∑︁
𝑖=1

(𝑋𝑡)𝑖 𝑑(𝐵𝑖)𝑡

Integrating, we get

𝑌𝑡 ≤ 𝑌0 + 400𝛽
𝐷2𝐾2

𝜅
𝑇 + 2𝑑𝑇 +

√
8

∫︁ 𝑇

0

𝑑∑︁
𝑖=1

(𝑋𝑡)𝑖 𝑑(𝐵𝑖)𝑡

Taking expectations and using the martingale property of the Itô integral, we get the claim of the
lemma.

Next, we prove a few technical bound the drift of the discretized chain after 𝑇/𝜂 discrete steps. The
proofs follow similar calculations as those in [Dal16].

We will first need to bound the Hessian of 𝑓 .

Lemma F.4 (Hessian bound).

−2(𝐷𝐾)2𝐼 ⪯ ∇2𝑓(𝑥) ⪯ 𝐾𝐼,∀𝑥 ∈ R𝑑

Proof. For notational convenience, let 𝑝(𝑥) =
∑︀𝑚

𝑖=1 𝑤𝑖𝑒
−𝑓𝑖(𝑥). Note that 𝑓(𝑥) = − log 𝑝(𝑥). We

proceed to the upper bound first. The Hessian of 𝑓 satisfies

∇2𝑓 =

∑︀
𝑖 𝑤𝑖𝑒

−𝑓𝑖∇2𝑓𝑖
𝑝

−
1
2

∑︀
𝑖,𝑗 𝑤𝑖𝑤𝑗𝑒

−𝑓𝑖𝑒−𝑓𝑗 (∇𝑓𝑖 −∇𝑓𝑗)
⊗2

𝑝2

⪯ max
𝑖

∇2𝑓𝑖 ⪯ 𝐾𝐼

as we need. As for the lower bound, we have

∇2𝑓 ⪰ −1

2

∑︁
𝑖,𝑗

‖∇𝑓𝑖 −∇𝑓𝑗‖2

⪰ −max
𝑖,𝑗

𝑒−𝑓𝑖𝑒−𝑓𝑗 (∇𝑓𝑖 −∇𝑓𝑗)
⊗2

But notice that since 𝑓𝑖(𝑥) = 𝑓0(𝑥 + 𝜇𝑖), we have

‖∇𝑓𝑖(𝑥) −∇𝑓𝑗(𝑥)‖ = ‖∇𝑓0(𝑥 + 𝜇𝑖) −∇𝑓0(𝑥 + 𝜇𝑗)‖
≤ 𝐾‖𝜇𝑖 − 𝜇𝑗‖
≤ 2𝐷𝐾

where the next-to-last inequality follows from the strong-convexity of 𝑓0. This proves the statement
of the lemma.

We introduce the following piece of notation in the following portion: we denote by 𝑃𝑇 (𝑥, 𝑖) :
R𝑑 × [𝐿] → R,∀𝑥 ∈ R𝑑, 𝑖 ∈ [𝐿] the distribution on R𝑑 × [𝐿] corresponding to running the Langevin
diffusion chain for 𝑇 time steps on the first coordinate, starting at 𝑥× {𝑖}, and keeping the second
coordinates fixed. Let us define by ̂︁𝑃𝑇 (𝑥, 𝑖) : R𝑑 × [𝐿] → R the analogous distribution, except
running the discretized Langevin diffusion chain for 𝑇

𝜂 time steps on the first coordinate, for 𝑇
𝜂 an

integer.

Lemma F.5 (Bounding interval drift). In the setting of this section, let 𝑥 ∈ R𝑑, 𝑖 ∈ [𝐿], and let
𝜂 ≤ 1

𝐾 .

KL(𝑃𝑇 (𝑥, 𝑖)||̂︁𝑃𝑇 (𝑥, 𝑖)) ≤ 4𝐷6𝜂2𝐾7

3

(︀
‖𝑥− 𝑥*‖22 + 8𝑇𝑑

)︀
+ 𝑑𝑇𝐷2𝜂𝐾2
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Proof. Let 𝑥𝑗 , 𝑖 ∈ [0, 𝑇/𝜂−1] be a random variable distributed aŝ︂𝑃𝜂𝑗(𝑥, 𝑖). By Lemma 2 in [Dal16]
and Lemma F.4 , we have

KL(𝑃𝑇 (𝑥, 𝑖)||̂︁𝑃𝑇 (𝑥, 𝑖)) ≤ 𝜂3𝐷2𝐾2

3

𝑇/𝜂−1∑︁
𝑘=0

E[‖∇𝑓(𝑥𝑘)‖22] + 𝑑𝑇𝜂𝐷2𝐾2

Similarly, the proof of Corollary 4 in [Dal16] implies that

𝜂

𝑇/𝜂−1∑︁
𝑘=0

E[‖∇𝑓(𝑥𝑘)‖22] ≤ 4𝐷4𝐾4‖𝑥− 𝑥*‖22 + 8𝐷𝐾𝑇𝑑

Plugging this in, we get the statement of the lemma.

Finally, we prove a convenient decomposition theorem for the KL divergence of two mixtures of
distributions, in terms of the KL divergence of the weights and the components in the mixture.
Concretely:
Lemma F.6. Let 𝑤,𝑤′ : 𝐼 → R be distributions over a domain 𝐼 with full support. Let 𝑝𝑖, 𝑞𝑖 : ∀𝑖 ∈ 𝐼
be distributions over an arbitrary domain. Then:

KL
(︂∫︁

𝑖∈𝐼

𝑤𝑖𝑝𝑖||
∫︁
𝑖∈𝐼

𝑤′
𝑖𝑞𝑖

)︂
≤ KL(𝑤||𝑤′) +

∫︁
𝑖∈𝐼

𝑤𝑖KL(𝑝𝑖||𝑞𝑖)

Proof. Overloading notation, we will use 𝐾𝐿(𝑎||𝑏) for two measures 𝑎, 𝑏 even if they are not
necessarily probability distributions, with the obvious definition.

KL
(︂∫︁

𝑖∈𝐼

𝑤𝑖𝑝𝑖||
∫︁
𝑖∈𝐼

𝑤′
𝑖𝑞𝑖

)︂
= KL

(︂∫︁
𝑖∈𝐼

𝑤𝑖𝑝𝑖||
∫︁
𝑖∈𝐼

𝑤𝑖𝑞𝑖
𝑤′

𝑖

𝑤𝑖

)︂
≤
∫︁
𝑖∈𝐼

𝑤𝑖KL
(︂
𝑝𝑖||𝑞𝑖

𝑤′
𝑖

𝑤𝑖

)︂
=

∫︁
𝑖∈𝐼

𝑤𝑖 log

(︂
𝑤𝑖

𝑤′
𝑖

)︂
+ KL(𝑝𝑖||𝑞𝑖)

= KL(𝑤||𝑤′) +

∫︁
𝑖∈𝐼

𝑤𝑖KL(𝑝𝑖||𝑞𝑖)

where the first inequality holds due to the convexity of KL divergence.

With this in mind, we can prove the main claim:

Proof of F.1. Let’s denote by 𝑅 (𝑥, 𝑖) : R𝑑 × [𝐿] → R the distribution on R𝑑 × [𝐿], running the
Markov transition matrix corresponding to a Type 2 transition in the simulated tempering chain,
starting at (𝑥, 𝑖).

We will proceed by induction. Towards that, we can obviously write

𝑝𝑇𝑖+1 =
1

2

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑝𝑇𝑖(𝑥, 𝑗)𝑃𝑇𝑖+1−𝑇𝑖(𝑥, 𝑗)

⎞⎠+
1

2

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑝𝑇𝑖(𝑥, 𝑗)𝑅(𝑥, 𝑗)

⎞⎠
and similarly

𝑞𝑇𝑖+1(𝑥, 𝑗) =
1

2

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑞𝑇𝑖(𝑥, 𝑗) ̂𝑃𝑇𝑖+1−𝑇𝑖
(𝑥, 𝑗)

⎞⎠+
1

2

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑞𝑇𝑖(𝑥, 𝑗)𝑅(𝑥, 𝑗)

⎞⎠
(Note: the 𝑅 transition matrix doesn’t change in the discretized vs continuous version.)
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By convexity of KL divergence, we have

KL(𝑝𝑇𝑖+1 ||𝑞𝑇𝑖+1) ≤ 1

2
KL

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑝𝑇𝑖(𝑥, 𝑗)𝑃𝑇𝑖+1−𝑇𝑖
(𝑥, 𝑗)||

∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑞𝑇𝑖(𝑥, 𝑗) ̂𝑃𝑇𝑖+1−𝑇𝑖
(𝑥, 𝑗)

⎞⎠
+

1

2
KL

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑝𝑇𝑖(𝑥, 𝑗)𝑅(𝑥, 𝑗)||
∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑞𝑇𝑖(𝑥, 𝑗)𝑅(𝑥, 𝑗)

⎞⎠
By Lemma F.6, we have that

KL

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑝𝑇𝑖(𝑥, 𝑗)𝑅(𝑥, 𝑗)||
∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑞𝑇𝑖(𝑥, 𝑗)𝑅(𝑥, 𝑗)

⎞⎠ ≤ KL(𝑝𝑇𝑖 ||𝑞𝑇𝑖)

Similarly, by Lemma F.5 together with Lemma F.6 we have

KL

⎛⎝∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑝𝑇𝑖(𝑥, 𝑗)𝑃𝑇𝑖+1−𝑇𝑖
(𝑥, 𝑗)||

∫︁
𝑥∈R𝑑

𝐿−1∑︁
𝑗=0

𝑞𝑇𝑖(𝑥, 𝑗) ̂𝑃𝑇𝑖+1−𝑇𝑖
(𝑥, 𝑗)

⎞⎠ ≤

KL(𝑝𝑇𝑖 ||𝑞𝑇𝑖) +
4𝐷6𝐾6𝜂2

3

(︂
max

𝑗
E𝑥∼𝑝𝑡𝑖 (·,𝑗)‖𝑥− 𝑥*‖22 + 8(𝑇𝑖+1 − 𝑇𝑖)𝑑

)︂
+ 𝑑(𝑇𝑖+1 − 𝑇𝑖)𝜂𝐾

2

By Lemmas F.3 and F.2, we have that for any 𝑗 ∈ [0, 𝐿− 1],

E𝑥∼𝑝𝑇𝑖 (·,𝑗)‖𝑥− 𝑥*‖22 ≤ E𝑥∼𝑝𝑇𝑖−1 (·,𝑗)‖𝑥‖2 +

(︂
400

𝐷2𝐾2

𝜅
+ 2𝑑

)︂
(𝑇𝑖 − 𝑇𝑖−1)

Hence, inductively, we have E𝑥∼𝑝𝑇𝑖 (·,𝑗)‖𝑥− 𝑥*‖22 ≤ E𝑥∼𝑝0(·,𝑗)‖𝑥− 𝑥*‖22 +
(︁

400𝐷2𝐾2

𝜅 + 2𝑑
)︁
𝑇𝑖

Putting together, we have

KL(𝑝𝑇𝑖+1 ||𝑞𝑇𝑖+1) ≤ KL(𝑝𝑇𝑖 ||𝑞𝑇𝑖) +
4𝜂2𝐷6𝐾7

3

(︂
max

𝑗
E𝑥∼𝑝0(·,𝑗)‖𝑥− 𝑥*‖22 +

(︂
400

𝐷2𝐷2𝐾2

𝜅
+ 2𝑑

)︂
𝑇 + 8𝑇𝑑

)︂
+ 𝑑𝑇𝜂𝐷2𝐾2

By induction, we hence have

KL(𝑝𝑇 ||𝑞𝑇 ) . 𝜂2𝐷6𝐾7

(︂
𝐷2𝐾

2

𝜅
+ 𝑑

)︂
𝑇𝑛 + 𝜂2𝐷3𝐾3 max

𝑖
E𝑥∼𝑝0(·,𝑖)‖𝑥− 𝑥*‖22 + 𝜂𝐷2𝐾2𝑑𝑇

as we need.

G Proof of main theorem

Before putting everything together, we show how to estimate the partition functions. We will apply
the following to 𝑔1(𝑥) = 𝑒−𝛽ℓ𝑓(𝑥) and 𝑔2(𝑥) = 𝑒−𝛽ℓ+1𝑓(𝑥).
Lemma G.1 (Estimating the partition function to within a constant factor). Suppose that 𝑝1(𝑥) =
𝑔1(𝑥)
𝑍1

and 𝑝2(𝑥) = 𝑔2(𝑥)
𝑍2

are probability distributions on Ω. Suppose ̃︀𝑝1 is a distribution such that

𝑑𝑇𝑉 (̃︀𝑝1, 𝑝1) < 𝜀
2𝐶2 , and 𝑔2(𝑥)

𝑔1(𝑥)
∈ [0, 𝐶] for all 𝑥 ∈ Ω. Given 𝑛 samples from ̃︀𝑝1, define the random

variable

𝑟 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔2(𝑥𝑖)

𝑔1(𝑥𝑖)
. (109)

Let

𝑟 = E
𝑥∼𝑝1

𝑔2(𝑥)

𝑔1(𝑥)
=

𝑍2

𝑍1
(110)

and suppose 𝑟 ≥ 1
𝐶 . Then with probability ≥ 1 − 𝑒−

𝑛𝜀2

2𝐶4 ,⃒⃒⃒⃒
𝑟

𝑟
− 1

⃒⃒⃒⃒
≤ 𝜀. (111)
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Proof. We have that ⃒⃒⃒⃒
E

𝑥∼̃︀𝑝1

𝑔2(𝑥)

𝑔1(𝑥)
− E

𝑥∼𝑝1

𝑔2(𝑥)

𝑔1(𝑥)

⃒⃒⃒⃒
≤ 𝐶𝑑𝑇𝑉 (̃︀𝑝1, 𝑝1) ≤ 𝜀

2𝐶
. (112)

The Chernoff bound gives

P
(︂⃒⃒⃒⃒

𝑟 − E
𝑥∼̃︀𝑝1

𝑔2(𝑥)

𝑔1(𝑥)

⃒⃒⃒⃒
≥ 𝜀

2𝐶

)︂
≤ 𝑒

−
𝑛( 𝜀

2𝐶 )
2

2(𝐶
2 )

2

= 𝑒−
𝑛𝜀2

2𝐶4 . (113)

Combining (112) and (113) using the triangle inequality,

P
(︂
|𝑟 − 𝑟| ≥ 1

𝜀
𝐶

)︂
≤ 𝑒−

𝑛𝜀2

2𝐶4 . (114)

Dividing by 𝑟 and using 𝑟 ≥ 1
𝐶 gives the result.

Lemma G.2. Suppose that Algorithm 1 is run on 𝑓(𝑥) = − ln
(︁∑︀𝑚

𝑗=1 𝑤𝑗 exp
(︁
−‖𝑥−𝜇𝑗‖2

2𝜎2

)︁)︁
with

temperatures 0 < 𝛽1 < · · · < 𝛽ℓ ≤ 1, ℓ ≤ 𝐿, rate 𝜆, and with partition function estimateŝ︁𝑍1, . . . ,̂︁𝑍ℓ satisfying ⃒⃒⃒⃒
⃒ ̂︁𝑍𝑖

𝑍𝑖

⧸︃ ̂︁𝑍1

𝑍1

⃒⃒⃒⃒
⃒ ∈
[︃(︂

1 − 1

𝐿

)︂𝑖−1

,

(︂
1 +

1

𝐿

)︂𝑖−1
]︃

(115)

for all 1 ≤ 𝑖 ≤ ℓ. Suppose
∑︀𝑚

𝑗=1 𝑤𝑗 = 1, 𝑤min = min1≤𝑗≤𝑚 𝑤𝑖 > 0, and 𝐷 =

max{max1≤𝑗≤𝑚 ‖𝜇𝑗‖ , 𝜎}, and the parameters satisfy

𝜆 = Θ

(︂
1

𝐷2

)︂
(116)

𝛽1 = Θ

(︂
𝜎2

𝐷2

)︂
(117)

𝛽𝑖+1

𝛽𝑖
≤ 1 +

1

𝑑 + ln
(︁

1
𝑤min

)︁ (118)

𝐿 = Θ

(︂(︂
𝑑 + ln

(︂
1

𝑤min

)︂)︂
ln

(︂
𝐷

𝜎

)︂
+ 1

)︂
(119)

𝑇 = Ω

⎛⎝𝐿2𝐷2 ln
(︁

ℓ
𝜀𝑤min

)︁
𝑤2

min

⎞⎠ (120)

𝜂 = 𝑂

⎛⎝𝜎3𝜀

𝐷2
min

⎧⎨⎩ 𝜎4(︁
𝐷
𝜎 +

√
𝑑
)︁
𝑇
,

1

𝐷
1
2

,
𝜎𝜀

𝑑𝑇

⎫⎬⎭
⎞⎠ (121)

Let 𝑞0 be the distribution
(︁
𝑁
(︁

0, 𝜎2

𝛽1

)︁
, 1
)︁

on [ℓ] × R𝑑. Then the distribution 𝑞𝑇 after running time

𝑇 satisfies
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤ 𝜀.

Setting 𝜀 = 𝑂
(︀

1
ℓ𝐿

)︀
above and taking 𝑛 = Ω

(︀
𝐿2 ln

(︀
1
𝛿

)︀)︀
samples, with probability 1− 𝛿 the estimate

̂︀𝑍ℓ+1 = 𝑟 ̂︀𝑍ℓ, 𝑟 : =
1

𝑛

𝑛∑︁
𝑗=1

𝑒(−𝛽ℓ+1+𝛽ℓ)𝑓𝑖(𝑥𝑗) (122)

also satisfies (115).

Proof. By the triangle inequality,⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤
⃦⃦
𝑝− 𝑝𝑇

⃦⃦
1

+
⃦⃦
𝑝𝑇 − 𝑞𝑇

⃦⃦
1
. (123)
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For the first term, by Cauchy-Schwarz,⃦⃦
𝑝− 𝑝𝑇

⃦⃦
1
≤
√︁

𝜒2(𝑝||𝑝𝑇 ) ≤ 𝑒−
𝑇
2𝐶

√︀
𝜒2(𝑝||𝑝0) (124)

where 𝐶 = 𝑂

(︂
𝑑2(ln(𝐷

𝜎 ))
2
𝐷2

𝑤2
min

)︂
is an upper bound on the Poincaré constant as in Theorem E.6. (The

assumption on ̂︀𝑍𝑖 means that 𝑟 ≤ 𝑒.) Let 𝑝𝑖 be the distribution of 𝑝 on the 𝑖th temperature, and ̃︀𝑝𝑖 be
as in Lemma E.3.

To calculate 𝜒2(𝑝||𝑝0), first note by Lemma L.6, the 𝜒2 distance between 𝑁
(︁

0, 𝜎2

𝛽1
𝐼𝑑

)︁
and

𝑁(𝜇, 𝜎2

𝛽1
𝐼𝑑) is ≤ 𝑒‖𝜇‖

2𝛽1/𝜎
2

. Then

𝜒2(𝑝||𝑝0) (125)

= 𝑂(ℓ)𝜒2

(︂
𝑝1||𝑁

(︂
0,

𝜎2

𝛽1
𝐼𝑑

)︂)︂
(126)

= 𝑂

(︂
ℓ

𝑤min

)︂(︂
1 + 𝜒2

(︂̃︀𝑝1||𝑁 (︂0,
𝜎2

𝛽1
𝐼𝑑

)︂)︂)︂
by Lemma E.3 and Lemma L.5

(127)

= 𝑂

(︂
ℓ

𝑤min

)︂⎛⎝1 +

𝑚∑︁
𝑗=1

𝑤𝑗𝜒
2

(︂
𝑁

(︂
𝜇𝑗 ,

𝜎2

𝛽1
𝐼𝑑

)︂
||𝑁

(︂
0,

𝜎2

𝛽1
𝐼𝑑

)︂)︂⎞⎠ by Lemma L.4

(128)

= 𝑂

⎛⎝𝑒
𝐷2𝛽1
𝜎2 ℓ

𝑤min

⎞⎠ = 𝑂

(︂
ℓ

𝑤min

)︂
. (129)

Together with (124) this gives
⃦⃦
𝑝− 𝑝𝑇

⃦⃦
1
≤ 𝜀

3 .

For the second term
⃦⃦
𝑝𝑇 − 𝑞𝑇

⃦⃦
1
, we first condition on there not being too many transitions before

time 𝑇 . Let 𝑁𝑇 = max {𝑛 : 𝑇𝑛 ≤ 𝑇} be the number of transitions. Let 𝐶 be as in Lemma L.16. Note
that

(︀
𝐶𝑛
𝑇𝜆

)︀−𝑛 ≤ 𝜀 ⇐⇒ 𝑒𝑛(𝑇𝜆
𝐶 )−ln𝑛 ≤ 𝜀, and that this inequality holds when 𝑛 ≥ 𝑒𝑇𝜆

𝐶 + ln
(︀
1
𝜀

)︀
.

We have by Lemma L.16 that P(𝑁𝑇 ≥ 𝑒𝑇𝜆
𝐶 + ln

(︀
1
𝜀

)︀
) ≤ 𝜀

3 . With our choice of 𝑇 , ln
(︀
1
𝜀

)︀
= 𝑂(𝑇 ).

If we condition on the event 𝐴 of the 𝑇𝑖’s being a particular sequence 𝑇1, . . . , 𝑇𝑛 with 𝑛 < 𝑒𝑇𝜆
𝐶 +

ln
(︀
1
𝜀

)︀
, Pinsker’s inequality and Lemma F.1 (with 𝐾 = 𝜅 = 1

𝜎2 ) gives us⃦⃦
𝑝𝑇 (·|𝐴) − 𝑞𝑇 (·|𝐴)

⃦⃦
1
≤
√︀

2KL(𝑝𝑡(·|𝐴)||𝑞𝑡(·|𝐴)) (130)

= 𝑂

(︃
max

{︃
𝜂2𝐷6𝑇 2𝜆

𝜎14
(︀
𝐷2

𝜎2 + 𝑑
)︀ , 𝜂2𝐷3 1

𝜎6
𝐷2, 𝜂𝐷2 1

𝜎4
𝑑𝑇

}︃)︃
(131)

In order for this to be ≤ 𝜀
3 , we need (for some absolute constant 𝐶1)

𝜂 ≤ 𝐶1𝜎
3𝜀

𝐷2
min

⎧⎨⎩ 𝜎4(︁
𝐷
𝜎 +

√
𝑑
)︁
𝑇
,

1

𝐷
1
2

,
𝜎𝜀

𝑑𝑇

⎫⎬⎭ . (132)

Putting everything together,⃦⃦
𝑝𝑇 − 𝑞𝑇

⃦⃦
1
≤ P(𝑁𝑇 ≥ 𝑐𝑇𝜆) +

⃦⃦
𝑝𝑡(·|𝑁𝑇 ≥ 𝑐𝑇𝜆) − 𝑞𝑡(·|𝑁𝑇 ≥ 𝑐𝑇𝜆)

⃦⃦
1
≤ 𝜀

3
+

𝜀

3
=

2𝜀

3
. (133)

This gives
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤ 𝜀.

For the second part, setting 𝜀 = 𝑂
(︀

1
ℓ𝐿

)︀
gives that

⃦⃦
𝑝ℓ − 𝑞𝑇ℓ

⃦⃦
= 𝑂

(︀
1
𝐿

)︀
. We will apply Lemma G.1.

By Lemma L.14 the assumptions of Lemma G.1 are satisfied with 𝐶 = 𝑂(1), as we have

𝛽𝑖+1 − 𝛽𝑖

𝛽𝑖
= 𝑂

⎛⎝ 1

𝛼𝐷2

𝜎2 + 𝑑 + ln
(︁

1
𝑤min

)︁
⎞⎠ . (134)
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By Lemma G.1, after collecting 𝑛 = Ω
(︀
𝐿2 ln

(︀
1
𝛿

)︀)︀
samples, with probability ≥ 1 − 𝛿,⃒⃒⃒

𝑍ℓ+1/̂︁𝑍ℓ

𝑍ℓ+1/𝑍ℓ
− 1
⃒⃒⃒

≤ 1
𝐿 . Set 𝑍ℓ+1 = 𝑟̂︁𝑍ℓ. Then 𝑍ℓ+1̂︁𝑍ℓ

∈ [1 − 1
𝐿 , 1 + 1

𝐿 ]𝑍ℓ+1

𝑍ℓ
and 𝑍ℓ+1̂︁𝑍1

∈[︁(︀
1 − 1

𝐿

)︀ℓ
,
(︀
1 + 1

𝐿

)︀ℓ]︁ 𝑍ℓ+1

𝑍1
.

Proof of Theorem A.2. Choose 𝛿 = 𝜀
2𝐿 where 𝐿 is the number of temperatures. Use Lemma G.2

inductively, with probability 1− 𝜀
2 each estimate satisfies ̂︁𝑍ℓ̂︁𝑍1

∈ [ 1𝑒 , 𝑒]. Estimating the final distribution
within 𝜀

2 accuracy gives the desired sample.

H General log-concave densities

In this section we generalize the main theorem from gaussian to log-concave densities.

H.1 Simulated tempering for log-concave densities

First we rework Section E for log-concave densities.
Theorem H.1 (cf. Theorem E.1). Suppose 𝑓0 satisfies Assumption A.1(2) (𝑓0 is 𝜅-strongly convex,
𝐾-smooth, and has minimum at 0).

Let 𝑀 be the continuous simulated tempering chain for the distributions

𝑝𝑖 ∝
𝑚∑︁
𝑗=1

𝑤𝑗𝑒
−𝛽𝑖𝑓0(𝑥−𝜇𝑗) (135)

with rate Ω
(︀

𝑟
𝐷2

)︀
, relative probabilities 𝑟𝑖, and temperatures 0 < 𝛽1 < · · · < 𝛽𝐿 = 1 where

𝐷 = max

{︃
max

𝑗
‖𝜇𝑗‖ ,

𝜅
1
2

𝑑
1
2𝐾

}︃
(136)

𝛽1 = Θ
(︁ 𝜅

𝑑𝐾2𝐷2

)︁
(137)

𝛽𝑖+1

𝛽𝑖
≤ 1 +

𝜅

𝐾𝑑
(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀ (138)

𝐿 = Θ

(︃
𝐾𝑑

(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀2

𝜅
ln

(︂
𝑑𝐾𝐷

𝜅

)︂)︃
(139)

𝑟 =
min𝑖 𝑟𝑖
max𝑖 𝑟𝑖

. (140)

Then 𝑀 satisfies the Poincaré inequality

Var(𝑔) ≤ 𝑂

(︂
𝐿2𝐷2

𝑟2

)︂
E (𝑔, 𝑔) = 𝑂

(︃
𝐾2𝐷2 ln

(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀4

ln
(︀
𝑑𝐾𝐷
𝜅

)︀2
𝜅2𝑟2

)︃
E (𝑔, 𝑔). (141)

Proof. Note that forcing 𝐷 ≤ 𝜅
1
2

𝑑
1
2 𝐾

ensures 𝛽1 = Ω(1).

The proof follows that of Theorem E.1, except that we need to use Lemmas L.12 and L.11 to
bound the 𝜒2-divergences. Steps 1 and 2 are the same: we consider the decomposition where
𝑝𝑖,𝑗 ∝ 𝑒−𝛽𝑖𝑓0(𝑥−𝜇𝑗) and note E𝑖,𝑗 satisfies the Poincaré inequality

Var𝑝𝑖,𝑗 (𝑔𝑖) ≤
1

𝜅𝛽𝑖
E𝑖,𝑗 = 𝑂(𝐷2)E𝑖,𝑗(𝑔𝑖, 𝑔𝑖). (142)

By Lemma L.12,

𝜒2(𝑝𝑖,𝑗 ||𝑝𝑖−1,𝑗) ≤ 𝑒

1
2

⃒⃒⃒
1− 𝛽𝑖−1

𝛽𝑖

⃒⃒⃒
𝐾𝑑

𝜅−𝐾

⃒⃒⃒⃒
1−

𝛽𝑖−1
𝛽𝑖

⃒⃒⃒⃒(︂√︁
ln(𝐾

𝜅 )+5

)︂2 (︂(︂
1 − 𝐾

𝜅

⃒⃒⃒⃒
1 − 𝛽𝑖−1

𝛽𝑖

⃒⃒⃒⃒)︂(︂
1 +

⃒⃒⃒⃒
1 − 𝛽𝑖−1

𝛽𝑖

⃒⃒⃒⃒)︂)︂− 𝑑
2

− 1

(143)
= 𝑂(1). (144)
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By Lemma L.11,

𝜒2(𝑝1,𝑗 ||𝑝1,𝑗′) ≤ 𝑒
1
2𝛽1𝜅(2𝐷)2+

√
𝛽1𝐾(2𝐷)

√
𝑑
𝜅

(︂√︁
ln(𝐾

𝜅 )+5

)︂
(145)

·

(︃
𝑒𝐾(2𝐷)

√
𝑑
𝜅 +

√︀
𝛽1𝐾(2𝐷)

√︂
4𝜋

𝜅
𝑒

2
√

𝛽1𝐾(2𝐷)
√

𝑑
√

𝜅
+

𝛽1𝐾2(2𝐷)2

2𝜅

)︃
− 1 = 𝑂(1).

(146)

The rest of the proof is the same.

Theorem H.2 (cf. Theorem E.6). Suppose 𝑓0 satisfies Assumption A.1(2) (𝑓0 is 𝜅-strongly convex,
𝐾-smooth, and has minimum at 0).

Suppose
∑︀𝑚

𝑗=1 𝑤𝑗 = 1, 𝑤min = min1≤𝑗≤𝑚 𝑤𝑖 > 0, and 𝐷 = max1≤𝑗≤𝑚 ‖𝜇𝑗‖. Let 𝑀 be the
continuous simulated tempering chain for the distributions

𝑝𝑖 ∝

⎛⎝ 𝑚∑︁
𝑗=1

𝑤𝑗𝑒
−𝑓0(𝑥−𝜇𝑗)

⎞⎠𝛽𝑖

(147)

with rate 𝑂
(︀

𝑟
𝐷2

)︀
, relative probabilities 𝑟𝑖, and temperatures 0 < 𝛽1 < · · · < 𝛽𝐿 = 1 satisfying the

same conditions as in Theorem H.1. Then 𝑀 satisfies the Poincaré inequality

Var(𝑔) ≤ 𝑂

(︂
𝐿2𝐷2

𝑟2𝑤2
min

)︂
E (𝑔, 𝑔) = 𝑂

(︃
𝐾2𝑑2

(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀4

ln
(︀
𝑑𝐾𝐷
𝜅

)︀2
𝜅2𝑟2𝑤2

min

)︃
E (𝑔, 𝑔). (148)

Proof. Let ̃︀𝑝𝑖 be the probability distributions in Theorem E.1 with the same parameters as 𝑝𝑖 and
let ̃︀𝑝 be the stationary distribution of that simulated tempering chain. By Theorem H.1, Var̃︀𝑝(𝑔) =

𝑂
(︁

𝐿2𝐷2

𝑟2

)︁
E ̃︀𝑝(𝑔, 𝑔). Now use By Lemma E.3, 𝑝𝑖̃︀𝑝𝑖

∈
[︁
1, 1

𝑤min

]︁ ̃︀𝑍𝑖

𝑍𝑖
. Now use Lemma E.5 with

𝑒Δ = 1
𝑤min

.

H.2 Proof of main theorem for log-concave densities

Next we rework Section G for log-concave densities, and prove the main theorem for log-concave
densities, Theorem A.3.
Lemma H.3 (cf. Lemma G.2). Suppose 𝑓0 satisfies Assumption A.1(2) (𝑓0 is 𝜅-strongly convex,
𝐾-smooth, and has minimum at 0).

Suppose that Algorithm 1 is run on 𝑓(𝑥) = − ln
(︁∑︀𝑚

𝑗=1 𝑤𝑗𝑓0(𝑥− 𝜇𝑗)
)︁

with temperatures 0 <

𝛽1 < · · · < 𝛽ℓ ≤ 1, ℓ ≤ 𝐿 with partition function estimates ̂︁𝑍1, . . . ,̂︁𝑍ℓ satisfying⃒⃒⃒⃒
⃒ ̂︁𝑍𝑖

𝑍𝑖

⧸︃ ̂︁𝑍1

𝑍1

⃒⃒⃒⃒
⃒ ∈
[︃(︂

1 − 1

𝐿

)︂𝑖−1

,

(︂
1 +

1

𝐿

)︂𝑖−1
]︃

(149)

for all 1 ≤ 𝑖 ≤ ℓ. Suppose
∑︀𝑚

𝑗=1 𝑤𝑗 = 1, 𝑤min = min1≤𝑗≤𝑚 𝑤𝑖 > 0, and 𝐷 =

max

{︂
max𝑗 ‖𝜇𝑗‖ , 𝜅

1
2

𝑑
1
2 𝐾

}︂
, 𝐾 ≥ 1, and the parameters satisfy

𝜆 = Θ

(︂
1

𝐷2

)︂
(150)

𝛽1 = 𝑂
(︁ 𝜅

𝑑𝐾2𝐷2

)︁
(151)

𝛽𝑖+1

𝛽𝑖
≤ 1 +

𝜅

𝐾𝑑
(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀ (152)

𝐿 = Θ

(︃
𝐾𝑑

(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀2

𝜅
ln

(︂
𝑑𝐾𝐷

𝜅

)︂)︃
(153)
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𝑇 =

(︂
𝐿2𝐷2

𝑤2
min

𝑑 ln

(︂
ℓ

𝜀𝑤min

)︂
ln

(︂
𝐾

𝜅

)︂)︂
(154)

𝜂 = 𝑂

⎛⎜⎝min

⎧⎪⎨⎪⎩ 𝜀

𝐷2𝐾
7
2

(︁
𝐷 𝐾

𝜅
1
2

+ 𝑑
1
2

)︁
𝑇
,

𝜀

𝐷
5
2𝐾

3
2

(︁(︀
𝐾
𝜅

)︀ 1
2 + 1

)︁ , 𝜀

𝐷2𝐾2𝑑𝑇

⎫⎪⎬⎪⎭
⎞⎟⎠ . (155)

Let 𝑞0 be the distribution
(︁
𝑁
(︁

0, 1
𝜅𝛽1

)︁
, 1
)︁

on [ℓ] × R𝑑. The distribution 𝑞𝑇 after running time 𝑇

satisfies
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤ 𝜀.

Setting 𝜀 = 𝑂
(︀

1
ℓ𝐿

)︀
above and taking 𝑛 = Ω

(︀
𝐿2 ln

(︀
1
𝛿

)︀)︀
samples, with probability 1− 𝛿 the estimate

̂︀𝑍ℓ+1 = 𝑟 ̂︀𝑍ℓ, 𝑟 : =

⎛⎝ 1

𝑛

𝑛∑︁
𝑗=1

𝑒(−𝛽ℓ+1+𝛽ℓ)𝑓𝑖(𝑥𝑗)

⎞⎠ (156)

also satisfies (162).

Proof. Begin as in the proof of Lemma G.2. Let 𝑝𝛽,𝑖 ∝ 𝑒−𝛽1𝑓0(𝑥−𝜇𝑖) be a probability density
function.

Write
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1

≤
⃦⃦
𝑝− 𝑝𝑇

⃦⃦
1

+
⃦⃦
𝑝𝑇 − 𝑞𝑇

⃦⃦
1
. Bound the first term by

⃦⃦
𝑝− 𝑝𝑇

⃦⃦
1

≤√︀
𝜒2(𝑝||𝑝𝑇 ) ≤ 𝑒−

𝑇
2𝐶

√︀
𝜒2(𝑝||𝑝0) where 𝐶 is the upper bound on the Poincaré constant in The-

orem H.2. As in (128), we get

𝜒2(𝑝||𝑝0) = 𝑂

(︂
ℓ

𝑤min

)︂⎛⎝1 +

𝑚∑︁
𝑗=1

𝑤𝑗𝜒
2

(︂
𝑝𝛽1,𝑗 ||𝑁

(︂
0,

1

𝜅𝛽1
𝐼𝑑

)︂)︂⎞⎠ . (157)

By Lemma L.13 with strong convexity constants 𝜅𝛽1 and 𝐾𝛽1, this is

𝑂

(︃
ℓ

𝑤min

(︂
𝐾

𝜅

)︂ 𝑑
2

𝑒𝐾𝛽1𝐷
2

)︃
= 𝑂

(︃
ℓ

𝑤min

(︂
𝐾

𝜅

)︂ 𝑑
2

)︃
(158)

when 𝛽1 = 𝑂
(︀

𝐾
𝐷2

)︀
. Thus for 𝑇 = Ω

(︁
𝐶 ln

(︁
ℓ

𝜀𝑤min

)︁
𝑑 ln

(︀
𝐾
𝜅

)︀)︁
,
⃦⃦
𝑝− 𝑝𝑇

⃦⃦
1
≤ 𝜀

3 .

Again conditioning on the event 𝐴 that 𝑁𝑇 = max {𝑛 : 𝑇𝑛 ≤ 𝑇} = 𝑂(𝑇𝜆), we get by Lemma F.1
that⃦⃦

𝑝𝑇 (·|𝐴) − 𝑞𝑇 (·|𝐴)
⃦⃦
1

= 𝑂

(︂
𝜂2𝐷6𝐾7

(︂
𝐷2𝐾

2

𝜅
+ 𝑑

)︂
𝑇𝑛 + 𝜂2𝐷5

(︂
𝐾

𝜅
+ 1

)︂
+ 𝜂𝐷2𝐾2𝑑𝑇

)︂
.

(159)

Choosing 𝜂 as in the problem statement, we get
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤ 𝜀 as before. Finally, apply Lemma G.1,

checking the assumptions are satisfied using Lemma L.15. The assumptions of Lemma L.15 hold, as

𝛽𝑖+1 − 𝛽𝑖

𝛽𝑖
= 𝑂

⎛⎝ 1

𝛼𝐾𝐷2 + 𝑑
𝜅

(︀
1 + ln

(︀
𝐾
𝜅

)︀)︀
+ 1

𝜅 ln
(︁

1
𝑤min

)︁
⎞⎠ . (160)

Proof of Theorem A.3. This follows from Lemma H.3 in exactly the same way that the main theorem
for gaussians (Theorem A.2) follows from Lemma G.2.

I Perturbation tolerance

The proof of Theorem A.4 will follow immediately from Lemma I.2, which is a straightforward
analogue of Lemma G.2.
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I.1 Simulated tempering for distribution with perturbation

First, we consider the mixing time of the continuous tempering chain, analogously to Theorem H.2:
Theorem I.1 (cf. Theorem H.2). Suppose 𝑓0 satisfies Assumption A.1

Let 𝑀 be the continuous simulated tempering chain with rate 𝑂
(︀

𝑟
𝐷2

)︀
, relative probabilities 𝑟𝑖, and

temperatures 0 < 𝛽1 < · · · < 𝛽𝐿 = 1 satisfying the same conditions as in Lemma I.2. Then 𝑀
satisfies the Poincaré inequality

Var(𝑔) ≤ 𝑂

(︂
𝐿2𝐷2

𝑟2𝑤2
min

)︂
E (𝑔, 𝑔) = 𝑂

(︃
𝐾2𝑑2

(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀4

ln
(︀
𝑑𝐾𝐷
𝜅

)︀2
𝜅2𝑟2𝑒2Δ𝑤2

min

)︃
E (𝑔, 𝑔). (161)

Proof. The proof is almost the same as Let ̃︀𝑝𝑖 be the probability distributions in Theorem E.1 with
the same parameters as 𝑝𝑖 and let ̃︀𝑝 be the stationary distribution of that simulated tempering chain.
By Theorem H.1, Var̃︀𝑝(𝑔) = 𝑂

(︁
𝐿2𝐷2

𝑟2

)︁
E ̃︀𝑝(𝑔, 𝑔). Now use By Lemma E.3, 𝑝𝑖̃︀𝑝𝑖

∈
[︁
1, 1

𝑤min

]︁ ̃︀𝑍𝑖

𝑍𝑖
.

Now use Lemma E.5 with 𝑒Δ substituted to be 𝑒Δ 1
𝑤min

.

I.2 Proof of main theorem with perturbations

Lemma I.2 (cf. Lemma H.3). Suppose that Algorithm 1 is run on 𝑓(𝑥) =

− ln
(︁∑︀𝑚

𝑗=1 𝑤𝑗𝑓0(𝑥− 𝜇𝑗)
)︁

with temperatures 0 < 𝛽1 < · · · < 𝛽ℓ ≤ 1, ℓ ≤ 𝐿 with partition

function estimates ̂︁𝑍1, . . . ,̂︁𝑍ℓ satisfying⃒⃒⃒⃒
⃒ ̂︁𝑍𝑖

𝑍𝑖

⧸︃ ̂︁𝑍1

𝑍1

⃒⃒⃒⃒
⃒ ∈
[︃(︂

1 − 1

𝐿

)︂𝑖−1

,

(︂
1 +

1

𝐿

)︂𝑖−1
]︃

(162)

for all 1 ≤ 𝑖 ≤ ℓ. Suppose
∑︀𝑚

𝑗=1 𝑤𝑗 = 1, 𝑤min = min1≤𝑗≤𝑚 𝑤𝑖 > 0, and 𝐷 =

max

{︂
max𝑗 ‖𝜇𝑗‖ , 𝜅

1
2

𝑑
1
2 𝐾

}︂
, 𝐾 ≥ 1, and the parameters satisfy

𝜆 = Θ

(︂
1

𝐷2

)︂
(163)

𝛽1 = 𝑂
(︁

min
{︁

∆,
𝜅

𝑑𝐾2𝐷2

}︁)︁
(164)

𝛽𝑖+1

𝛽𝑖
≤ min

{︃
∆, 1 +

𝜅

𝐾𝑑
(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀}︃ (165)

𝐿 = Θ

(︃
𝐾𝑑

(︀
ln
(︀
𝐾
𝜅

)︀
+ 1
)︀2

𝜅
ln

(︂
𝑑𝐾𝐷

𝜅

)︂)︃
(166)

𝑇 =

(︂
𝑒2Δ

𝐿2𝐷2

𝑤2
min

𝑑 ln

(︂
ℓ

𝜀𝑤min

)︂
ln

(︂
𝐾

𝜅

)︂)︂
(167)

𝜂 = 𝑂

⎛⎜⎝min

⎧⎪⎨⎪⎩ 𝜀

𝐷2(𝐾 + 𝜏)
7
2

(︁
𝐷𝐾+𝜏

𝜅
1
2

+ 𝑑
1
2

)︁
𝑇
,

𝜀

𝐷
5
2 (𝐾 + 𝜏)

3
2

(︁(︀
𝐾+𝜏
𝜅

)︀ 1
2 + 1

)︁ , 𝜀

𝐷2(𝐾 + 𝜏)2𝑑𝑇

⎫⎪⎬⎪⎭
⎞⎟⎠ .

(168)

Let 𝑞0 be the distribution
(︁
𝑁
(︁

0, 1
𝜅𝛽1

)︁
, 1
)︁

on [ℓ] × R𝑑. The distribution 𝑞𝑇 after running time 𝑇

satisfies
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤ 𝜀.

Setting 𝜀 = 𝑂
(︀

1
ℓ𝐿

)︀
above and taking 𝑛 = Ω

(︀
𝐿2 ln

(︀
1
𝛿

)︀)︀
samples, with probability 1− 𝛿 the estimate

̂︀𝑍ℓ+1 = 𝑟 ̂︀𝑍ℓ, 𝑟 : =

⎛⎝ 1

𝑛

𝑛∑︁
𝑗=1

𝑒(−𝛽ℓ+1+𝛽ℓ)𝑓𝑖(𝑥𝑗)

⎞⎠ (169)

also satisfies (162).
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The way we prove this theorem is to prove the tolerance of each of the proof ingredients to perturba-
tions to 𝑓 .

I.2.1 Discretization

We now verify all the discretization lemmas continue to hold with perturbations.

The proof of Lemma F.3, combined with the fact that
⃦⃦⃦
∇𝑓 −∇𝑓

⃦⃦⃦
∞

≤ ∆ gives

Lemma I.3 (Perturbed reach of continuous chain). Let 𝑃 𝛽
𝑇 (𝑋) be the Markov kernel corresponding

to evolving Langevin diffusion
𝑑𝑋𝑡

𝑑𝑡
= −𝛽∇𝑓(𝑋𝑡) + 𝑑𝐵𝑡

with 𝑓 and 𝐷 are as defined in 2 for time 𝑇 . Then,

E[‖𝑋𝑡 − 𝑥*‖2] . E[‖𝑋0 − 𝑥*‖2] +

(︂
400𝛽

𝐷2𝐾2𝜏2

𝜅
+ 𝑑

)︂
𝑇

Proof. The proof proceeds exactly the same as Lemma F.3.

Furthermore, since ‖∇2𝑓(𝑥) −∇2𝑓(𝑥)‖2 ≤ 𝜏,∀𝑥 ∈ R𝑑, from Lemma F.4, we get

Lemma I.4 (Perturbed Hessian bound).

‖∇2𝑓(𝑥)‖2 ≤ 4(𝐷𝐾)2 + 𝜏,∀𝑥 ∈ R𝑑

As a consequence, the analogue of Lemma F.5 gives:

Lemma I.5 (Bounding interval drift). In the setting of Lemma F.5, let 𝑥 ∈ R𝑑, 𝑖 ∈ [𝐿], and let

𝜂 ≤ ( 1
𝜎+𝜏)2

𝛼 . Then,

KL(𝑃𝑇 (𝑥, 𝑖)||̂︁𝑃𝑇 (𝑥, 𝑖)) ≤ 4𝐷6𝜂7(𝐾 + 𝜏)7

3

(︀
‖𝑥− 𝑥*‖22 + 8𝑇𝑑

)︀
+ 𝑑𝑇𝐷2𝜂(𝐾 + 𝜏)2

Putting these together, we get the analogue of Lemma F.1:

Lemma I.6. Fix times 0 < 𝑇1 < · · · < 𝑇𝑛 ≤ 𝑇 .

Let 𝑝𝑇 , 𝑞𝑇 : [𝐿] × R𝑑 → R be defined as follows.

1. 𝑝𝑇 is the continuous simulated tempering Markov as in Definition C.1 but with fixed
transition times 𝑇1, . . . , 𝑇𝑛. The component chains are Langevin diffusions on 𝑝𝑖 ∝(︁∑︀𝑚

𝑗=1 𝑤𝑗𝑒
−𝑓0(𝑥−𝜇𝑖)

)︁𝛽𝑖

.

2. 𝑞𝑇 is the discretized version as in Algorithm (1), again with fixed transition times 𝑇1, . . . , 𝑇𝑛,
and with step size 𝜂 ≤ 𝜎2

2 .

Then

KL(𝑝𝑇 ||𝑞𝑇 ) . 𝜂2𝐷6(𝐾 + 𝜏)6
(︂
𝐷2 (𝐾 + 𝜏)2

𝜅
+ 𝑑

)︂
𝑇𝑛 + 𝜂2𝐷3(𝐾 + 𝜏)3 max

𝑖
E𝑥∼𝑝0(·,𝑖)‖𝑥− 𝑥*‖22 + 𝜂𝐷2(𝐾 + 𝜏)2𝑑𝑇

where 𝑥* is the maximum of
∑︀𝑚

𝑗=1 𝑤𝑗𝑒
−𝑓0(𝑥−𝜇𝑗) and satisfies ‖𝑥*‖ = 𝑂(𝐷) where 𝐷 = max ‖𝜇𝑗‖.

I.2.2 Putting it all together

Finally, we prove Lemma I.2.
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Proof of Lemma I.2. The proof is analogous to the one of Lemma G.2 in combination with the
Lemmas from the previous subsections, so we just point out the differences.

We bound 𝜒2(𝑝||𝑞0) as follows: by the proof of Lemma G.2, we have 𝜒2(𝑝||𝑞0) = 𝑂
(︁

ℓ
𝑤min

𝐾
𝑑
2

)︁
.

By the definition of 𝜒2, this means∫︁
𝑞0(𝑥)2

𝑝(𝑥)
𝑑𝑥 ≤ 𝑂

(︂
ℓ

𝑤min
𝐾

𝑑
2

)︂
This in turn implies that

𝜒2(𝑝||𝑞0) ≤
∫︁

(𝑞0(𝑥))2

𝑝(𝑥)
𝑑𝑥 ≤ 𝑂

(︂
ℓ

𝑤min
𝐾

𝑑
2 𝑒Δ

)︂
Then, analogously as in Lemma G.2, we get⃦⃦
𝑝𝑇 (·|𝐴) − 𝑞𝑇 (·|𝐴)

⃦⃦
1

= 𝑂

(︂
𝜂2𝐷6(𝐾 + 𝜏)7

(︂
𝐷2 (𝐾 + 𝜏)2

𝜅
+ 𝑑

)︂
𝑇𝜂 + 𝜂2𝐷5

(︂
𝐾

𝜅
+ 1

)︂
+ 𝜂𝐷2(𝐾 + 𝜏)2𝑑𝑇

)︂
.

(170)

Choosing 𝜂 as in the statement of the lemma,
⃦⃦
𝑝− 𝑞𝑇

⃦⃦
1
≤ 𝜀 follows. The rest of the lemma is

identical to Lemma G.2.

J Examples

It might be surprising that sampling a mixture of gaussians require a complicated Markov Chain such
as simulated tempering. However, many simple strategies seem to fail.

Langevin with few restarts One natural strategy to try is simply to run Langevin a polynomial
number of times from randomly chosen locations. While the time to “escape” a mode and enter
a different one could be exponential, we may hope that each of the different runs “explores” the
individual modes, and we somehow stitch the runs together. The difficulty with this is that when the
means of the gaussians are not well-separated, it’s difficult to quantify how far each of the individual
runs will reach and thus how to combine the various runs.

Recovering the means of the gaussians Another natural strategy would be to try to recover the
means of the gaussians in the mixture by performing gradient descent on the log-pdf with a polynomial
number of random restarts. The hope would be that maybe the local minima of the log-pdf correspond
to the means of the gaussians, and with enough restarts, we should be able to find them.

Unfortunately, this strategy without substantial modifications also seems to not work: for instance,
in dimension 𝑑, consider a mixture of 𝑑 + 1 gaussians, 𝑑 of them with means on the corners of a 𝑑-
dimensional simplex with a side-length substantially smaller than the diameter 𝐷 we are considering,
and one in the center of the simplex. In order to discover the mean of the gaussian in the center,
we would have to have a starting point extremely close to the center of the simplex, which in high
dimensions seems difficult.

Additionally, this doesn’t address at all the issue of robustness to perturbations. Though there are
algorithms to optimize “approximately” convex functions, they can typically handle only very small
perturbations. [BLNR15, LR16]

Gaussians with different covariance Our result requires all the gaussians to have the same vari-
ance. This is necessary, as even if the variance of the gaussians only differ by a factor of 2, there
are examples where a simulated tempering chain takes exponential time to converge [WSH+09].
Intuitively, this is illustrated in Figure 1. The figure on the left shows the distribution in low tempera-
ture – in this case the two modes are separate, and both have a significant mass. The figure on the
right shows the distribution in high temperature. Note that although in this case the two modes are
connected, the volume of the mode with smaller variance is much smaller (exponentially small in

26



𝑑). Therefore in high dimensions, even though the modes can be connected at high temperature, the
probability mass associated with a small variance mode is too small to allow fast mixing.

In the next section, we show that even if we do not restrict to the particular simulated tempering
chain, no efficient algorithm can efficiently and robustly sample from a mixture of two Gaussians
with different covariances.

Figure 1: Mixture of two gaussians with different covariance at different temperature

K Lower bound when Gaussians have different variance

In this section, we give a lower bound showing that in high dimensions, if the Gaussians can have
different covariance matrices, results similar to our Theorem A.2 cannot hold. In particular, we
construct a log density function 𝑓 that is close to the log density of mixture of two Gaussians (with
different variances), and show that any algorithm must query the function at exponentially many
locations in order to sample from the distribution. More precisely, we prove the following theorem:

Theorem K.1. There exists a function 𝑓 such that 𝑓 is close to a negative log density function 𝑓

for a mixture of two Gaussians:
⃦⃦⃦
𝑓 − 𝑓

⃦⃦⃦
∞

≤ log 2, ∀𝑥 ‖∇𝑓(𝑥) − ∇𝑓(𝑥)‖ ≤ 𝑂(𝑑), ‖∇2𝑓(𝑥) −

∇2𝑓(𝑥)‖ ≤ 𝑂(𝑑). Let 𝑝 be the distribution whose density function is proportional to exp(−𝑓).
There exists constant 𝑐 > 0, 𝐶 > 0, such that when 𝑑 ≥ 𝐶, any algorithm with at most 2𝑐𝑑 queries to
𝑓 and ∇𝑓 cannot generate a distribution that is within TV-distance 0.3 to 𝑝.

In order to prove this theorem, we will first specify the mixture of two Gaussians. Consider a uniform
mixture of two Gaussian distributions 𝑁(0, 2𝐼) and 𝑁(𝑢, 𝐼)(𝑢 ∈ R𝑑) in R𝑑.

Definition K.2. Let 𝑓1 = ‖𝑥‖2/4 + 𝑑
2 log(2

√
2𝜋) and 𝑓2 = ‖𝑥− 𝑢‖2/2 + 𝑑

2 log(2𝜋). The mixture
𝑓 used in the lower bound is

𝑓 = − log(
1

2
(𝑒−𝑓1 + 𝑒−𝑓1)).

In order to prove the lower bound, we will show that there is a function 𝑓 close to 𝑓 , such that 𝑓
behaves exactly like a single Gaussian 𝑁(0, 2𝐼) on almost all points. Intuitively, any algorithm with
only queries to 𝑓 will not be able to distinguish it with a single Gaussian, and therefore will not be
able to find the second component 𝑁(𝑢, 𝐼). More precisely, we have
Lemma K.3. When ‖𝑢‖ ≥ 4𝑑 log 2, for any point 𝑥 outside of the ball with center 2𝑢 and radius
1.5‖𝑢‖, we have 𝑒−𝑓1(𝑥) ≥ 𝑒−𝑓2(𝑥).

Proof. The Lemma follows from simple calculation. In order for 𝑒−𝑓1(𝑥) ≥ 𝑒−𝑓2(𝑥), since 𝑒𝑥 is
monotone we know

−‖𝑥− 𝑢‖2

2
≤ −‖𝑥‖2

4
− 𝑑

4
log 2.

This is a quadratic inequality in terms of 𝑥, reordering the terms we get

‖𝑥− 2𝑢‖2 ≥ 𝑑 log 2 + 2‖𝑢‖2.
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Since 𝑑 log 2 ≤ 0.25‖𝑢‖2, we know whenever ‖𝑥 − 2𝑢‖2 ≥ 1.5‖𝑢‖ this is always satisfied, and
hence 𝑒−𝑓1(𝑥) ≥ 𝑒−𝑓2(𝑥).

The lemma shows that outside of this ball, the contribution from the first Gaussian is dominating.
Intuitively, we try to make 𝑓 = 𝑓1 outside of this ball, and 𝑓 = 𝑓 inside the ball. To make the
function continuous, we shift between the two functions gradually. More precisely, we define 𝑓 as
follows:

Definition K.4. The function

𝑓(𝑥) = 𝑔(𝑥)𝑓1(𝑥) + (1 − 𝑔(𝑥))𝑓(𝑥). (171)

Here the function 𝑔(𝑥) (see Definition K.6) satisfies

𝑔(𝑥) =

{︃
1 ‖𝑥− 2𝑢‖ ≥ 1.6‖𝑢‖
0 ‖𝑥− 2𝑢‖ ≤ 1.5‖𝑢‖

∈ [0, 1] otherwise

Also 𝑔(𝑥) is twice differentiable with all first and second order derivatives bounded.

With a carefully constructed 𝑔(𝑥), it is possible to prove that 𝑓 is point-wise close to 𝑓 in function
value, gradient and Hessian, as stated in the Lemma below. Since these are just routine calculations,
we leave the construction of 𝑔(𝑥) and verification of this lemma at the end of this section.

Lemma K.5. For the functions 𝑓 and 𝑓 defined in Definitions K.2 and K.4, if ‖𝑢‖ ≥ 4𝑑 log 2, there
exists a large enough constant 𝐶 such that

|𝑓 − 𝑓 |∞ ≤ log 2

∀𝑥 ‖∇𝑓(𝑥) −∇𝑓(𝑥)‖ ≤ 𝐶‖𝑢‖
∀𝑥 ‖∇2𝑓(𝑥) −∇2𝑓(𝑥)‖ ≤ 𝐶‖𝑢‖2.

Now we are ready to prove the main theorem:

Proof of Theorem K.1. We will show that if we pick ‖𝑢‖ to be a uniform random vector with norm
8𝑑 log 2, there exists constant 𝑐 > 0 such that for any algorithm, with probability at least 1−exp(−𝑐𝑑),
in the first exp 𝑐𝑑 iterations of the algorithm there will be no vector 𝑥 ̸= 0 such that cos 𝜃(𝑥, 𝑢) ≥ 3/5.

First, by standard concentration inequalities, we know for any fixed vector 𝑥 ̸= 0 and a uniformly
random 𝑢,

Pr[cos 𝜃(𝑥, 𝑢) ≥ 3/5] ≤ exp−𝑐′𝑑,

for some constant 𝑐′ > 0 (𝑐′ = 0.01 suffices).

Now, for any algorithm, consider running the algorithm with oracle to 𝑓1 and 𝑓 respectively (if the
algorithm is randomized, we also couple the random choices of the algorithm in these two runs).
Suppose when the oracle is 𝑓1 the queries are 𝑥1, 𝑥2, ..., 𝑥𝑡 and when the oracle is 𝑓 the queries are
𝑥̃1, ..., 𝑥̃𝑡.

Let 𝑐 = 𝑐′/2, when 𝑡 ≤ exp(𝑐𝑑), by union bound we know with probability at least 1 − exp(−𝑐𝑑),
we have cos 𝜃(𝑥𝑖, 𝑢) < 3/5 for all 𝑖 ≤ 𝑡. On the other hand, every point 𝑦 in the ball with center 2‖𝑢‖
and radius 1.6‖𝑢‖ has cos 𝜃(𝑦, 𝑢) ≥ 3/5. We know ‖𝑥𝑖 − 2𝑢‖ > 1.6‖𝑢‖, hence 𝑓1(𝑥𝑖) = 𝑓(𝑥𝑖)
for all 𝑖 ≤ 𝑡 (the derivatives are also the same). Therefore, the algorithm is going to get the same
response no matter whether it has access to 𝑓1 or 𝑓 . This implies 𝑥̃𝑖 = 𝑥𝑖 for all 𝑖 ≤ 𝑡.

Now, to see why this implies the output distribution of the last point is far from 𝑝, note that when 𝑑 is
large enough 𝑝 has mass at least 0.4 in ball ‖𝑥𝑖 − 2𝑢‖ ≤ 1.6‖𝑢‖ (because essentially all the mass in
the second Gaussian is inside this ball), while the algorithm has less than 0.1 probability of having
any point in this region. Therefore the TV distance is at least 0.3 and this finishes the proof.
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K.1 Construction of 𝑔 and closeness of two functions

Now we finish the details of the proof by construction a function 𝑔.
Definition K.6. Let ℎ(𝑥) be the following function:

ℎ(𝑥) =

⎧⎨⎩ 1 𝑥 ≥ 1
0 𝑥 ≤ 0

𝑥2(1 − 𝑥)2 + (1 − (1 − 𝑥)2)2 𝑥 ∈ [0, 1]

We then define 𝑔(𝑥) to be 𝑔(𝑥) := ℎ
(︁

10
(︁

‖𝑥−2𝑢‖
‖𝑢‖ − 1.5

)︁)︁
.

For this function we can prove:
Lemma K.7. The function 𝑔 defined above satisfies

𝑔(𝑥) =

{︃
1 ‖𝑥− 2𝑢‖ ≥ 1.6‖𝑢‖
0 ‖𝑥− 2𝑢‖ ≤ 1.5‖𝑢‖

∈ [0, 1] otherwise

Also 𝑔(𝑥) is twice differentiable. There exists large enough constant 𝐶𝑔 > 0 such that for all 𝑥

‖∇𝑔(𝑥)‖ ≤ 𝐶𝑔‖𝑢‖ ‖∇2𝑔(𝑥)‖ ≤ 𝐶𝑔(‖𝑢‖2 + 1).

Proof. First we prove properties of ℎ(𝑥). Let ℎ0(𝑥) = 𝑥2(1 − 𝑥)2 + (1 − (1 − 𝑥)2)2, it is easy to
check that ℎ0(0) = ℎ′

0(0) = ℎ′′
0(0) = 0, ℎ0(1) = 1 and ℎ′

0(1) = ℎ′′
0(1) = 0. Therefore the entire

function ℎ(𝑥) is twice differentiable.

Also, we know ℎ′
0(𝑥) = 2𝑥(4𝑥2 − 9𝑥 + 5), which is always positive when 𝑥 ∈ [0, 1]. Therefore

ℎ(𝑥) is monotone in [0, 1]. The second derivative ℎ′′
0(𝑥) = 24𝑥2 − 36𝑥 + 10. Just using the naive

bound (sum of absolute values of individual terms) we can get for any 𝑥 ∈ [0, 1] |ℎ′
0(𝑥)| ≤ 36 and

|ℎ′′(𝑥)| ≤ 60. (We can of course compute better bounds but it is not important for this proof.)

Now consider the function 𝑔. We know when ‖𝑥− 2𝑢‖ ∈ [1.5, 1.6]‖𝑢‖,

∇𝑔(𝑥) = ℎ′
(︂

10

(︂
‖𝑥− 2𝑢‖

‖𝑢‖
− 1.5

)︂)︂
· 10(𝑥− 2𝑢).

Therefore ‖∇𝑔(𝑥)‖ ≤ 36 × 10 × ‖𝑥− 2𝑢‖ ≤ 𝐶𝑔‖𝑢‖ (when 𝐶𝑔 is a large enough constant).

For the second order derivative, we know

∇2𝑔(𝑥) = 100ℎ′′
(︂

10

(︂
‖𝑥− 2𝑢‖

‖𝑢‖
− 1.5

)︂)︂
(𝑥−2𝑢)(𝑥−2𝑢)⊤+10ℎ′

(︂
10

(︂
‖𝑥− 2𝑢‖

‖𝑢‖
− 1.5

)︂)︂
𝐼.

Again by bounds on ℎ′ and ℎ′′ we know there exists large enough constants so that ‖∇2𝑔(𝑥)‖ ≤
𝐶𝑔(‖𝑢‖2 + 1).

Finally we can prove Lemma K.5.

Proof of Lemma K.5. We first show that the function values are close. When ‖𝑥− 2𝑢‖ ≤ 1.5‖𝑢‖, by
definition 𝑓(𝑥) = 𝑓(𝑥). When ‖𝑥− 2𝑢‖ ≥ 1.5‖𝑢‖, by property of 𝑔 we know 𝑓(𝑥) is between 𝑓(𝑥)
and 𝑓1(𝑥). Now by Lemma K.3, in this range 𝑒−𝑓1(𝑥) ≥ 𝑒−𝑓2(𝑥), so 𝑓1(𝑥) − log 2 ≤ 𝑓(𝑥) ≤ 𝑓1(𝑥).
As a result we know |𝑓(𝑥) − 𝑓(𝑥)| ≤ log 2.

Next we consider the gradient. Again when ‖𝑥 − 2𝑢‖ ≤ 1.5‖𝑢‖ the two functions (and all their
derivatives) are the same. When ‖𝑥− 2𝑢‖ ∈ [1.5, 1.6]‖𝑢‖, we have

∇𝑓(𝑥) = 𝑔(𝑥)∇𝑓1(𝑥) + (1 − 𝑔(𝑥))∇𝑓(𝑥) + (𝑓1(𝑥) − 𝑓(𝑥))∇𝑔(𝑥).

By Lemma K.7 we have upperbounds for 𝑔(𝑥) and ‖∇𝑔(𝑥)‖, also both ‖∇𝑓1(𝑥)‖, ‖∇𝑓(𝑥)‖ can be
easily bounded by 𝑂(1)‖𝑢‖, therefore ‖∇𝑓(𝑥) −∇𝑓(𝑥)‖ ≤ 𝐶‖𝑢‖ for large enough constant 𝐶.
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When ‖𝑥− 2𝑢‖ ≥ 1.6‖𝑢‖, we know ∇𝑓(𝑥) = ∇𝑓1(𝑥). Calculation shows

∇𝑓1(𝑥) −∇𝑓(𝑥) =
𝑒−𝑓2(𝑥)

𝑒−𝑓1(𝑥) + 𝑒−𝑓2(𝑥)
(∇𝑓1(𝑥) −∇𝑓2(𝑥)).

When ‖𝑥‖ ≤ 50‖𝑢‖, we have ‖∇𝑓1(𝑥)−∇𝑓2(𝑥)‖ ≤ 2‖𝑥‖+2‖𝑢‖ ≤ 𝑂(1)‖𝑢‖. When ‖𝑥‖ ≥ 50‖𝑢‖,
it is easy to check that 𝑒−𝑓2(𝑥)

𝑒−𝑓1(𝑥)+𝑒−𝑓2(𝑥) ≤ exp−‖𝑥‖2/5 and ‖∇𝑓1(𝑥) −∇𝑓2(𝑥)‖ ≤ 2‖𝑥‖, therefore
in this case the difference in gradient bounded by exp(−𝑡2/5)2𝑡 which is always small.

Finally we can check the Hessian. Once again when ‖𝑥− 2𝑢‖ ≤ 1.5‖𝑢‖ the two functions are the
same. When ‖𝑥− 2𝑢‖ ∈ [1.5, 1.6]‖𝑢‖, we have

∇2𝑓(𝑥) =𝑔(𝑥)∇2𝑓1(𝑥) + (1 − 𝑔(𝑥))∇2𝑓(𝑥)

+ (∇𝑓1(𝑥) −∇𝑓(𝑥))(∇𝑔(𝑥))⊤ + (∇𝑔(𝑥))(∇𝑓1(𝑥) −∇𝑓(𝑥))⊤

+ (𝑓1 − 𝑓)∇2𝑔(𝑥).

In this case we get bounds for 𝑔(𝑥),∇𝑔(𝑥),∇2𝑔(𝑥) from Lemma K.7, ‖∇𝑓1(𝑥)‖, ‖∇𝑓(𝑥)‖ can still
be bounded by 𝑂(1)‖𝑢‖, ‖∇2𝑓(𝑥)‖, ‖∇2𝑓1(𝑥)‖ can be bounded by 𝑂(‖𝑢‖2) and 𝑂(1) respectively.
Therefore we know ‖∇2𝑓(𝑥) −∇2𝑓(𝑥)‖ ≤ 𝐶‖𝑢‖2 for large enough constant 𝐶.

When ‖𝑥− 2𝑢‖ ≥ 1.6‖𝑢‖, we have 𝑓(𝑥) = 𝑓1(𝑥), and

∇2𝑓1(𝑥) −∇2𝑓(𝑥) =
𝑒−𝑓2(𝑥)

𝑒−𝑓1(𝑥) + 𝑒−𝑓2(𝑥)
(∇2𝑓1(𝑥) −∇2𝑓2(𝑥))

+
𝑒−𝑓1(𝑥)−𝑓2(𝑥)(∇𝑓1(𝑥) −∇𝑓2(𝑥))(∇𝑓1(𝑥) −∇𝑓2(𝑥))⊤

(𝑒−𝑓1(𝑥) + 𝑒−𝑓2(𝑥))2
.

Here the first term is always bounded by a constant (because 𝑒−𝑓2(𝑥) is smaller, and ∇2𝑓1(𝑥) −
∇2𝑓2(𝑥) = 𝐼/2). For the second term, by arguments similar as before, we know when ‖𝑥‖ ≤
50‖𝑢‖ this is bounded by 𝑂(1)‖𝑢‖2. When ‖𝑥‖ ≥ 50‖𝑢‖ we can check 𝑒−𝑓1(𝑥)−𝑓2(𝑥)

(𝑒−𝑓1(𝑥)+𝑒−𝑓2(𝑥))2
≤

exp(−‖𝑥‖2/5) and ‖(∇𝑓1(𝑥) − ∇𝑓2(𝑥))(∇𝑓1(𝑥) − ∇𝑓2(𝑥))⊤‖ ≤ 4‖𝑥|2. Therefore the second
term is bounded by exp(−𝑡2/5) · 4𝑡2 which is no larger than a constant. Combining all the cases we
know there exists a large enough constant 𝐶 such that ‖∇2𝑓(𝑥) −∇2𝑓(𝑥)‖ ≤ 𝐶‖𝑢‖2 for all 𝑥.

L Calculations on probability distributions

L.1 Inequalities

Lemma L.1. Let 𝑝, 𝑞 be probability distributions on Ω and 𝑔 : Ω → R. Then(︂∫︁
Ω

𝑔𝑝−
∫︁
Ω

𝑔𝑞

)︂2

≤ Var𝑝(𝑔)𝜒2(𝑝||𝑞). (172)

Proof. (︂∫︁
Ω

𝑔𝑝−
∫︁
Ω

𝑔𝑞

)︂2

=

(︂∫︁
Ω

(𝑔 − E
𝑝
𝑔)(𝑝− 𝑞)

)︂2

(173)

≤
(︂∫︁

Ω

(𝑔 − E
𝑝
𝑔)2𝑝

)︂(︂∫︁
Ω

(𝑝− 𝑞)2

𝑝

)︂
(174)

= Var𝑝(𝑔)𝜒2(𝑝||𝑞). (175)

Remark L.2. Note that this lemma still works when 𝑝, 𝑞 aren’t normalized. The only difference is
that we replace E𝑝 by Ẽ︀𝑝 where ̃︀𝑝 = 𝑝∫︀

𝑝
, in defining Var𝑝(𝑔) =

∫︀
(𝑔 − Ẽ︀𝑝 𝑔)

2
𝑝. (Note we don’t

normalize the integral.)
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Lemma L.3. Let 𝑝1, 𝑝2 be probability distributions on Ω, 𝑔1, 𝑔2 : Ω → R, and 𝑞 = min{𝑝1, 𝑝2}.
Then (︂∫︁

Ω

𝑔1𝑝1 −
∫︁
Ω

𝑔2𝑝2

)︂2

≤ 6 Var𝑝1
(𝑔1)𝜒2(𝑝1||𝑝2) + 3

∫︁
Ω

(𝑔1 − 𝑔2)2𝑞

∫︁
𝑞. (176)

Proof. By Lemma L.1 (and Remark L.1) we have(︂∫︁
Ω

𝑔1𝑝1 −
∫︁
Ω

𝑔2𝑝2

)︂2

≤
(︂∫︁

Ω

𝑔1(𝑝1 − 𝑞) +

∫︁
Ω

(𝑔1 − 𝑔2)𝑞 +

∫︁
Ω

𝑔2(𝑞 − 𝑝2)

)︂2

(177)

≤ 3

[︃(︂∫︁
Ω

𝑔1(𝑝1 − 𝑞)

)︂2

+

(︂∫︁
Ω

𝑔2(𝑞 − 𝑝2)

)︂2

+

∫︁
Ω

(𝑔1 − 𝑔2)𝑞

]︃
(178)

≤ 3

[︂
Var𝑝1

(𝑔1)𝜒2(𝑝1||𝑞) + Var𝑞(𝑔2)𝜒2(𝑞||𝑝2) +

∫︁
(𝑔1 − 𝑔2)2𝑞

∫︁
𝑞

]︂
(179)

≤ 6 Var𝑝1(𝑔1)𝜒2(𝑝1||𝑝2) + 3

∫︁
(𝑔1 − 𝑔2)2𝑞

∫︁
𝑞 (180)

where in the last step we note that

Var𝑞(𝑔2) ≤ Var𝑝1(𝑔2) (181)

𝜒2(𝑝1||𝑞) =

∫︁
Ω,𝑝2<𝑝1

(𝑝1 − min{𝑝1, 𝑝2})2

𝑝1
≤
∫︁

(𝑝1 − 𝑝2)2

𝑝1
= 𝜒2(𝑝1||𝑝2) (182)

𝜒2(𝑞||𝑝2) =

∫︁
Ω,𝑝1<𝑝2

(min{𝑝1, 𝑝2} − 𝑝2)2

𝑞
≤
∫︁

(𝑝1 − 𝑝2)2

𝑝1
= 𝜒2(𝑝1||𝑝2). (183)

∙

Lemma L.4. If 𝑝 =
∑︀𝑛

𝑖=1 𝑤𝑖𝑝𝑖 where 𝑝𝑖 are probability distributions and 𝑤𝑖 > 0 sum to 1, then

𝜒2(𝑝||𝑞) ≤
𝑛∑︁

𝑖=1

𝑤𝑖𝜒
2(𝑝𝑖||𝑞). (184)

Proof. We calculate

𝜒2(𝑝||𝑞) =

𝑛∑︁
𝑖=1

𝑞(𝑥)2∑︀𝑛
𝑖=1 𝑤𝑖𝑝𝑖(𝑥)

𝑑𝑥− 1 (185)

≤
∫︁ (︃ 𝑛∑︁

𝑖=1

𝑤𝑖

)︃(︃
𝑛∑︁

𝑖=1

𝑤𝑖
𝑞(𝑥)2

𝑝𝑖(𝑥)

)︃
𝑑𝑥− 1 (186)

=

𝑛∑︁
𝑖=1

𝑤𝑖

(︂∫︁
𝑞(𝑥)2

𝑝𝑖(𝑥)
𝑑𝑥− 1

)︂
=

𝑛∑︁
𝑖=1

𝑤𝑖𝜒
2(𝑝𝑖||𝑞). (187)

Lemma L.5. Suppose 𝑝, ̃︀𝑝 are probability distributions such that 𝑝̃︀𝑝 ≤ 𝐾. Then for any probability
distribution 𝑞,

𝜒2(𝑝||𝑞) ≤ 𝐾𝜒2(̃︀𝑝||𝑞) + 𝐾 − 1. (188)

Proof.

𝜒2(𝑝||𝑞) =

∫︁
𝑞2

𝑝
− 1 ≤ 𝐾

∫︁
𝑞2̃︀𝑝 − 1 = 𝐾(𝜒2(̃︀𝑝||𝑞) + 1) − 1. (189)
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L.2 Chi-squared divergence calculations for log-concave distributions

We calculate the chi-squared divergence between log-concave distributions at different temperatures,
and at different locations. In the gaussian case there is a closed formula (Lemma L.6). The general
case is more involved (Lemmas L.11 and L.12), and the bound is in terms of the strong convexity and
smoothness constants.
Lemma L.6. For a matrix Σ, let |Σ| denote its determinant. The 𝜒2 distance between 𝑁(𝜇1,Σ1)
and 𝑁(𝜇2,Σ2) is

𝜒2(𝑁(𝜇1,Σ1)||𝑁(𝜇2,Σ2)) (190)

=
|Σ1|

1
2

|Σ2|
⃒⃒
(2Σ−1

2 − Σ−1
1 )
⃒⃒− 1

2 (191)

· exp

(︂
1

2
(2Σ−1

2 𝜇2 − Σ−1
1 𝜇1)𝑇 (2Σ−1

2 − Σ−1
1 )−1(2Σ−1

2 𝜇2 − Σ−1
1 𝜇1) +

1

2
𝜇𝑇
1 Σ−1

1 𝜇1 − 𝜇𝑇
2 Σ−1

2 𝜇2

)︂
− 1

(192)
In particular, in the cases of equal mean or equal variance,

𝜒2(𝑁(𝜇,Σ1), 𝑁(𝜇,Σ2)) =
|Σ1|

1
2

|Σ2|
⃒⃒
(2Σ−1

2 − Σ−1
1 )
⃒⃒− 1

2 − 1 (193)

𝜒2(𝑁(𝜇1,Σ), 𝑁(𝜇2,Σ)) = exp[(𝜇2 − 𝜇1)𝑇 Σ−1(𝜇2 − 𝜇1)]. (194)

Proof.
𝜒2(𝑁(𝜇,Σ1), 𝑁(𝜇,Σ2)) + 1 (195)

=
1

(2𝜋)
𝑑
2

|Σ1|
1
2

|Σ2|

∫︁
R𝑑

exp

[︂
−1

2

(︀
2(𝑥− 𝜇2)𝑇 Σ−1

2 (𝑥− 𝜇2) − (𝑥− 𝜇1)𝑇 Σ−1
1 (𝑥− 𝜇1)

)︀]︂
𝑑𝑥

(196)

=
1

(2𝜋)
𝑑
2

|Σ1|
1
2

|Σ2|

∫︁
R𝑑

exp

[︂
−1

2

(︀
𝑥𝑇 (2Σ−1

2 − Σ−1
1 )𝑥 + 2𝑥𝑇 Σ−1

1 𝜇1 − 4𝑥𝑇 Σ−1
2 𝑥− 𝜇𝑇

1 Σ−1
1 𝜇1 + 2𝜇𝑇

2 Σ−1
2 𝜇2

)︀]︂
𝑑𝑥

(197)

=
1

(2𝜋)
𝑑
2

|Σ1|
1
2

|Σ2|

∫︁
R𝑑

exp

[︂
−1

2
(𝑥′𝑇 (2Σ−1

2 − Σ−1
1 )𝑥′ + 𝑐)

]︂
(198)

𝑥′ : = 𝑥− (2Σ−1
2 − Σ−1

1 )−1(𝜇𝑇
1 Σ−1

1 − 2𝜇𝑇
2 Σ−1

2 ) (199)

𝑐 : =
1

2
(2Σ−1

2 𝜇2 − Σ−1
1 𝜇1)𝑇 (2Σ−1

2 − Σ−1
1 )−1(2Σ−1

2 𝜇2 − Σ−1
1 𝜇1) +

1

2
𝜇𝑇
1 Σ−1

1 𝜇1 − 𝜇𝑇
2 Σ−1

2 𝜇2

(200)
Integrating gives the result. For the equal variance case,

𝑐 =
1

2
(2𝜇2 − 𝜇1)Σ−1(2𝜇2 − 𝜇1) +

1

2
𝜇1Σ−1𝜇1 − 𝜇2Σ−1𝜇2 = (𝜇2 − 𝜇1)𝑇 Σ−1(𝜇2 − 𝜇1)𝑇 .

(201)

The following theorem is essential in generalizing from gaussian to log-concave densities.
Theorem L.7 (Hargé, [Har04]). Suppose the 𝑑-dimensional gaussian 𝑁(0,Σ) has density 𝛾. Let
𝑝 = ℎ · 𝛾 be a probability density, where ℎ is log-concave. Let 𝑔 : R𝑑 → R be convex. Then∫︁

R𝑑

𝑔(𝑥− E
𝑝
𝑥)𝑝(𝑥) 𝑑𝑥 ≤

∫︁
R𝑑

𝑔(𝑥)𝛾(𝑥) 𝑑𝑥. (202)

Lemma L.8 (𝜒2-tail bound). Let 𝛾 be the distribution with probability density function 𝑒−
𝜅
2 ‖𝑥‖

2

.
Then

∀𝑦 ≥
√︂

𝑑

𝑚
, P𝑥∼𝛾 (‖𝑥‖ ≥ 𝑦) ≤ 𝑒

−𝜅
2

(︁
𝑦−

√
𝑑
𝜅

)︁2

. (203)

∙
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Proof. By the 𝜒2
𝑑 tail bound in [LM00], for all 𝑡 ≥ 0,

P𝑥∼𝛾

(︂
‖𝑥‖2 ≥ 1

𝜅
(
√
𝑑 +

√
2𝑡)2

)︂
≤ P𝑥∼𝛾

(︂
‖𝑥‖2 ≥ 1

𝜅
(𝑑 + 2(

√
𝑑𝑡 + 𝑡))

)︂
≤ 𝑒−𝑡 (204)

=⇒ ∀𝑦 ≥
√︂

𝑑

𝑚
, P𝑥∼𝛾 (‖𝑥‖ ≥ 𝑦) ≤ 𝑒

−
(︁√

𝜅𝑦−
√

𝑑√
2

)︁2

= 𝑒
−𝜅

2

(︁
𝑦−

√
𝑑
𝜅

)︁2

(205)

Lemma L.9. Let 𝑓 : R𝑑 → R be a 𝜅-strongly convex and 𝐾-smooth function and let 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥)

be a probability distribution. Let 𝑥* = argmin𝑥 𝑓(𝑥) and 𝑥 = E𝑝 𝑓(𝑥). Then

‖𝑥* − 𝑥‖ ≤
√︂

𝑑

𝜅

(︃√︃
ln

(︂
𝐾

𝜅

)︂
+ 5

)︃
. (206)

Proof. We establish both concentration around the mode 𝑥* and the mean 𝑥. This will imply that the
mode and the mean are close. Without loss of generality, assume 𝑥* = 0 and 𝑓(0) = 0.

For the mode, note that by Lemma L.8, for all 𝑟 ≥ 𝑑
𝑚 ,∫︁

‖𝑥‖≥𝑟

𝑒−𝑓(𝑥) 𝑑𝑥 ≤
∫︁
‖𝑥‖≥𝑟

𝑒−
1
2𝜅𝑥

2

≤
(︂

2𝜋

𝜅

)︂ 𝑑
2

𝑒
−𝜅

2

(︁
𝑟−

√
𝑑
𝜅

)︁2

(207)

∫︁
‖𝑥‖<𝑟

𝑒−𝑓(𝑥) 𝑑𝑥 ≥
∫︁
‖𝑥‖<𝑟

𝑒−
1
2𝐾𝑥2

≥
(︂

2𝜋

𝐾

)︂ 𝑑
2
(︂

1 − 𝑒
−𝐾

2

(︁
𝑟−

√
𝑑
𝜅

)︁2
)︂
. (208)

Let 𝑟 =
√︁

𝑑
𝜅

(︁√︁
ln
(︀
𝐾
𝜅

)︀
+ 3
)︁

. Then

∫︁
‖𝑥‖≥𝑟

𝑒−𝑓(𝑥) 𝑑𝑥 ≤
(︂

2𝜋

𝜅

)︂ 𝑑
2

𝑒−
𝑑
2 (ln(𝐾

𝜅 )+2) ≤
(︂

2𝜋

𝐾

)︂ 𝑑
2

𝑒−𝑑 (209)

∫︁
‖𝑥‖<𝑟

𝑒−𝑓(𝑥) 𝑑𝑥 ≥
(︂

2𝜋

𝐾

)︂ 𝑑
2
(︂

1 − 𝑒
−𝐾

2

(︁
𝑟−

√
𝑑
𝜅

)︁2
)︂

(210)

≥
(︂

2𝜋

𝐾

)︂ 𝑑
2 (︁

1 − 𝑒−
𝐾𝑑
2𝜅 (2+ln( 𝐾

𝜅𝜅 ))
)︁
≥
(︂

2𝜋

𝐾

)︂ 𝑑
2

(1 − 𝑒−𝑑) (211)

Thus

P𝑥∼𝑝(‖𝑥‖ ≥ 𝑟) =

∫︀
‖𝑥‖≥𝑟

𝑒−𝑓(𝑥) 𝑑𝑥∫︀
‖𝑥‖≥𝑟

𝑒−𝑓(𝑥) 𝑑𝑥 +
∫︀
‖𝑥‖<𝑟

𝑒−𝑓(𝑥) 𝑑𝑥
≤ 𝑒−𝑑 ≤ 1

2
. (212)

Now we show concentration around the mean. By adding a constant to 𝑓 , we may assume that
𝑝(𝑥) = 𝑒−𝑓(𝑥). Note that because 𝑓 is 𝜅-smooth, 𝑝 is the product of 𝛾(𝑥) with a log-concave
function, where 𝛾(𝑥) is the density of 𝑁(0, 1

𝜅𝐼𝑑). note that by Hargé’s Theorem L.7,∫︁
R𝑑

‖𝑥− 𝑥‖2 𝑝(𝑥) 𝑑𝑥 ≤
∫︁
R𝑑

‖𝑥‖2 𝛾(𝑥) 𝑑𝑥 =
𝑑

𝜅
. (213)

By Markov’s inequality,

P𝑥∼𝑝

(︃
‖𝑥− 𝑥‖ ≥

√︂
2𝑑

𝜅

)︃
= P

(︂
‖𝑥− 𝑥‖2 ≥ 2𝑑

𝜅

)︂
≤ 1

2
. (214)

Let 𝐵𝑟(𝑥) denote the ball of radius 𝑟 around 𝑥. By (212) and (214), 𝐵√
𝑑
𝜅

(︂√︁
ln(𝐾

𝜅 )+3

)︂(𝑥*) and

𝐵√
2𝑑
𝜅

(𝑥) intersect. Thus ‖𝑥− 𝑥*‖ ≤
√︁

𝑑
𝜅

(︁√︁
ln
(︀
𝐾
𝜅

)︀
+ 5
)︁

.
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Lemma L.10 (Concentration around mode for log-concave distributions). Suppose 𝑓 : R𝑑 → R is
𝜅-strongly convex and 𝐾-smooth. Let 𝑝 be the probability distribution such that 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥). Let
𝑥* = argmin𝑥 𝑓(𝑥). Then

P𝑥∼𝑝

⎛⎝‖𝑥− 𝑥*‖2 ≥ 1

𝜅

(︃
√
𝑑 +

√︃
2𝑡 + 𝑑 ln

(︂
𝐾

𝜅

)︂)︃2
⎞⎠ ≤ 𝑒−𝑡. (215)

Proof. By (207) and (208),

P𝑥∼𝑝(‖𝑥‖ ≥ 𝑟) ≤
(︂
𝐾

𝜅

)︂ 𝑑
2

𝑒
−𝜅

2

(︁
𝑟−

√
𝑑
𝜅

)︁2

. (216)

Substituting in 𝑟 = 1√
𝜅

(︁√
𝑑 +

√︁
2𝑡 + 𝑑 ln

(︀
𝐾
𝜅

)︀)︁
gives the lemma.

Lemma L.11 (𝜒2-divergence between translates). Let 𝑓 : R𝑑 → R be a 𝜅-strongly convex and
𝐾-smooth function and let 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥) be a probability distribution. Let ‖𝜇‖ = 𝐷. Then

𝜒2(𝑝(𝑥− 𝜇)||𝑝(𝑥)) ≤ 𝑒
1
2𝜅𝐷

2+𝐾𝐷
√

𝑑
𝜅

(︂√︁
ln(𝐾

𝜅 )+5

)︂(︃
𝑒𝐾𝐷

√
𝑑
𝜅 + 𝐾𝐷

√︂
4𝜋

𝜅
𝑒

2𝐾𝐷
√

𝑑√
𝜅

+𝐾2𝐷2

2𝜅

)︃
− 1.

(217)

Proof. Without loss of generality, suppose 𝑓 attains minimum at 0, or equivalently, ∇𝑓(0) = 0. We
bound

𝜒2(𝑝(𝑥− 𝜇)||𝑝(𝑥)) + 1 =

∫︁
R𝑑

𝑒−2𝑓(𝑥)

𝑒−𝑓(𝑥−𝜇)
𝑑𝑥 =

∫︁
R𝑑

𝑒−𝑓(𝑥)𝑒𝑓(𝑥−𝜇)−𝑓(𝑥) 𝑑𝑥 (218)

≤
∫︁
R𝑑

𝑒−𝑓(𝑥)𝑒𝐾𝐷‖𝑥‖+ 1
2𝜅𝐷

2

𝑑𝑥 (219)

Note that because 𝑓 is 𝜅-strongly convex, 𝑝 is the product of 𝛾(𝑥) with a log-concave function, where
𝛾(𝑥) is the density of 𝑁(0, 1

𝜅𝐼𝑑). Let 𝑥 = E𝑥∼𝑝 𝑥 be the average value of 𝑥 under 𝑝. Apply Hargé’s
Theorem L.7 on 𝑔(𝑥) = 𝑒𝐾𝐷‖𝑥+𝑥‖, 𝑝(𝑥) = 𝑒−𝑓(𝑥) to get that∫︁

R𝑑

𝑒−𝑓(𝑥)𝑒𝐾𝐷‖𝑥‖ 𝑑𝑥 ≤
∫︁
R𝑑

𝛾(𝑥)𝑒𝐾𝐷‖𝑥+𝑥‖ 𝑑𝑥 (220)

= 𝑒𝐾𝐷‖𝑥‖

(︃
𝑒𝐾𝐷

√
𝑑
𝜅 +

∫︁ ∞

√
𝑑
𝜅

P𝑥∼𝛾(‖𝑥‖ ≥ 𝑦)𝐾𝐷𝑒𝐾𝐷𝑦 𝑑𝑦

)︃
(221)

where we used the identity
∫︀
R 𝑓(𝑥)𝑝(𝑥) 𝑑𝑥 = 𝑓(𝑦0) +

∫︀∞
𝑦0

P𝑥∼𝑝(𝑥 ≥ 𝑦)𝑓 ′(𝑦) 𝑑𝑦 when 𝑓(𝑥) is an
increasing function. By Lemma L.8,

∀𝑦 ≥
√︂

𝑑

𝑚
, P𝑥∼𝛾 (‖𝑥‖ ≥ 𝑦) ≤ 𝑒

−𝜅
2

(︁
𝑦−

√
𝑑
𝜅

)︁2

(222)

=⇒
∫︁ ∞

√
𝑑
𝜅

P𝑥∼𝛾(‖𝑥‖ ≥ 𝑦)𝐾𝐷𝑒𝐾𝐷𝑦 𝑑𝑦 ≤ 𝐾𝐷

∫︁ ∞

√
𝑑
𝜅

𝑒−
𝜅
2 (𝑦− 𝑑

𝜅 )
2
+𝐾𝐷𝑦 𝑑𝑦 (223)

= 𝐾𝐷

∫︁ ∞

√
𝑑
𝜅

𝑒
−𝜅

2

[︂
(𝑦− 𝑑

𝜅 )
2− 2𝐾𝐷

√
𝑑

𝜅
3
2

−𝐾2𝐷2

𝜅2

]︂
𝑑𝑦 (224)

= 𝐾𝐷

∫︁ ∞

√
𝑑
𝜅

𝑒
−𝜅

2 (𝑦− 𝑑
𝜅 )

2
+ 2𝐾𝐷

√
𝑑√

𝜅
+𝐾2𝐷2

2𝜅 𝑑𝑦 (225)

≤ 𝐾𝐷

√︂
4𝜋

𝜅
𝑒

2𝐾𝐷
√

𝑑√
𝜅

+𝐾2𝐷2

2𝜅 . (226)
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Putting together (219), (221), and (226), and using Lemma L.9,

𝜒2(𝑝(𝑥− 𝜇)||𝑝(𝑥)) ≤ 𝑒
1
2𝜅𝐷

2+𝐾𝐷
√

𝑑
𝜅

(︂√︁
ln(𝐾

𝜅 )+5

)︂(︃
𝑒𝐾𝐷

√
𝑑
𝜅 + 𝐾𝐷

√︂
4𝜋

𝜅
𝑒

2𝐾𝐷
√

𝑑√
𝜅

+𝐾2𝐷2

2𝜅

)︃
.

(227)

Lemma L.12 (𝜒2-divergence between temperatures). Let 𝑓 : R𝑑 → R be a 𝜅-strongly convex and
𝐾-smooth function and let 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥), 𝑝𝛽(𝑥) ∝ 𝑒−𝛽𝑓(𝑥) be probability distributions. Suppose
𝛽1, 𝛽2 > 0 and |𝛽2 − 𝛽1| < 𝜅

𝐾 . Then

𝜒2(𝑝𝛽1
||𝑝𝛽2

) ≤ 𝑒

1
2

⃒⃒⃒
1− 𝛽1

𝛽2

⃒⃒⃒
𝐾𝑑

𝜅−𝐾|1− 𝛽1
𝛽2
|
(︂√︁

ln(𝐾
𝜅 )+5

)︂2 (︂(︂
1 − 𝐾

𝜅

⃒⃒⃒⃒
1 − 𝛽1

𝛽2

⃒⃒⃒⃒)︂(︂
1 +

⃒⃒⃒⃒
1 − 𝛽𝑖−1

𝛽𝑖

⃒⃒⃒⃒)︂)︂− 𝑑
2

− 1.

(228)

Proof. Without loss of generality, suppose 𝑓 attains minimum at 0 (or equivalently, ∇𝑓(0) = 0), and
𝑓(0) = 0. We bound

𝜒2(𝑝𝛽1
||𝑝𝛽2

) + 1 =

∫︀
R𝑑 𝑒

−𝛽1𝑓(𝑥) 𝑑𝑥
∫︀
R𝑑 𝑒

(𝛽1−2𝛽2)𝑓(𝑥) 𝑑𝑥(︀∫︀
R𝑑 𝑒−𝛽2𝑓(𝑥) 𝑑𝑥

)︀2 . (229)

Let 𝑥 = E𝑥∼𝑝𝛽2
𝑥 be the average value of 𝑥 under 𝑝𝛽2 . Note that because 𝑓 is 𝑚-strongly

convex, 𝑒−𝛽1𝑓(𝑥) is the product of 𝛾(𝑥) with a log-concave function, where 𝛾(𝑥) is the den-
sity of 𝑁

(︁
0, 1

𝛽2𝜅
𝐼𝑑

)︁
. Applying Hargé’s Theorem L.7 on 𝑔1(𝑥) = 𝑒(𝛽2−𝛽1)𝑓(𝑥+𝑥) and 𝑔2(𝑥) =

𝑒(𝛽1−𝛽2)𝑓(𝑥+𝑥) to get

(229) ≤
∫︁

𝑒(𝛽2−𝛽1)𝑓(𝑥+𝑥) 𝑑𝛾(𝑥)

∫︁
𝑒(𝛽1−𝛽2)𝑓(𝑥+𝑥) 𝑑𝛾(𝑥). (230)

Because 𝑓 is 𝑚-strongly convex and 𝑀 -smooth, and 𝑓(0) = 0 is the minimum of 𝑓 ,

(230) ≤
∫︀
R𝑑 𝑒

−|𝛽2−𝛽1|𝐾2 ‖𝑥+𝑥‖2

𝑒−
𝛽2𝜅
2 ‖𝑥‖2

𝑑𝑥
∫︀
R𝑑 𝑒

−|𝛽2−𝛽1|𝜅2 ‖𝑥+𝑥‖2

𝑒−
𝛽2𝜅
2 ‖𝑥‖2

𝑑𝑥(︁∫︀
R𝑑 𝑒

− 𝛽2𝑚
2 ‖𝑥‖2

𝑑𝑥
)︁2 . (231)

Using the identity

𝑎 ‖𝑥 + 𝑥‖2 + 𝑏 ‖𝑥‖2 = (𝑎 + 𝑏) ‖𝑥‖2 + 2𝑎 ⟨𝑥, 𝑥⟩ +
𝑎2

𝑎 + 𝑏
‖𝑥‖2 +

𝑎𝑏

𝑎 + 𝑏
‖𝑥‖2 (232)

= (𝑎 + 𝑏)

⃦⃦⃦⃦
𝑥 +

𝑎

𝑎 + 𝑏
𝑥

⃦⃦⃦⃦2
+

𝑎𝑏

𝑎 + 𝑏
‖𝑥‖2 , (233)

we get using Lemma L.9

(231) =
𝑒

𝐾𝜅|𝛽2−𝛽1|𝛽2
2(𝜅𝛽2−𝐾|𝛽2−𝛽1|)‖𝑥‖

2 ∫︀
R𝑑 𝑒

(𝐾
2 |𝛽2−𝛽1|−𝜅

2 𝛽2)‖𝑥+···‖2

𝑑𝑥 · 𝑒
−𝜅|𝛽1−𝛽2|𝛽2

2𝜅(𝛽2−|𝛽2−𝛽1|)‖𝑥‖
2 ∫︀

R𝑑 𝑒
(−𝜅

2 𝛽2−|𝛽2−𝛽1|𝜅2 )‖𝑥+···‖2

𝑑𝑥(︁∫︀
R𝑑 𝑒

− 𝛽2𝜅
2 ‖𝑥‖2

𝑑𝑥
)︁2

(234)

≤ 𝑒
|𝛽2−𝛽1|

2
𝐾𝜅𝛽2

𝜅𝛽2−𝐾|𝛽2−𝛽1|‖𝑥‖
2
(︂

2𝜋

𝜅𝛽2 −𝐾|𝛽2 − 𝛽1|

)︂ 𝑑
2
(︂

2𝜋

𝜅(𝛽2 + |𝛽2 − 𝛽1|)

)︂ 𝑑
2
(︂

2𝜋

𝜅𝛽2

)︂−𝑑

(235)

≤ 𝑒

1
2

⃒⃒⃒
1− 𝛽1

𝛽2

⃒⃒⃒
𝐾𝑑

𝜅−𝐾|1− 𝛽1
𝛽2
|
(︂√︁

ln(𝐾
𝜅 )+5

)︂2 (︂(︂
1 − 𝐾

𝜅

⃒⃒⃒⃒
1 − 𝛽1

𝛽2

⃒⃒⃒⃒)︂(︂
1 +

⃒⃒⃒⃒
1 − 𝛽𝑖−1

𝛽𝑖

⃒⃒⃒⃒)︂)︂− 𝑑
2

. (236)
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Lemma L.13 (𝜒2 divergence between gaussian and log-concave distribution). Suppose that 𝑝(𝑥) ∝
𝑒−𝑓(𝑥−𝜇) is a probability density function, where 𝑓 is 𝜅-strongly convex, 𝐾-smooth, and attains
minimum at 0. Let 𝐷 = ‖𝜇‖. Then

𝜒2

(︂
𝑝||𝑁

(︂
0,

1

𝐾
𝐼𝑑

)︂)︂
≤
(︂
𝐾

𝜅

)︂ 𝑑
2

𝑒𝐾𝐷2

. (237)

Proof. We calculate

𝑝(𝑥) =
𝑒−𝑓0(𝑥−𝜇)∫︀

R𝑑 𝑒−𝑓0(𝑢−𝜇) 𝑑𝑢
≥ 𝑒−

𝐾
2 ‖𝑥−𝜇‖2∫︀

R𝑑 𝑒
−𝜅

2 ‖𝑢−𝜇‖2

𝑑𝑢
=
(︁ 𝜅

2𝜋

)︁ 𝑑
2

𝑒−
𝐾
2 ‖𝑥−𝜇‖2

. (238)

Then

𝜒2

(︂
𝑝||𝑁

(︂
0,

1

𝐾
𝐼𝑑

)︂)︂
=

∫︁
R𝑑

(︀
𝐾
2𝜋

)︀𝑑
𝑒−𝐾‖𝑥‖2

𝑝(𝑥)
𝑑𝑥− 1 (239)

≤
(︂
𝐾

2𝜋

)︂ 𝑑
2
(︂

2𝜋

𝜅

)︂ 𝑑
2
∫︁
R𝑑

𝑒−𝐾(‖𝑥‖2− 1
2‖𝑥−𝜇‖2) 𝑑𝑥 (240)

=

(︂
𝐾

𝜅

)︂ 𝑑
2 𝐾

2𝜋

𝑑
2
∫︁

𝑒−
𝐾
2 ‖𝑥+𝜇‖2+𝐾‖𝜇‖2

𝑑𝑥 (241)

≤
(︂
𝐾

𝜅

)︂ 𝑑
2

𝑒𝐾𝐷2

. (242)

L.3 A probability ratio calculation

Lemma L.14. Suppose that 𝑓(𝑥) = − ln

[︂∑︀𝑛
𝑖=1 𝑤𝑖𝑒

−‖𝑥−𝜇𝑖‖2

2

]︂
, 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥), and for 𝛼 ≥ 0 let

𝑝𝛼(𝑥) ∝ 𝑒−𝛼𝑓(𝑥), 𝑍𝛼 =
∫︀
R𝑑 𝑒

−𝛼𝑓(𝑥) 𝑑𝑥. Suppose that ‖𝜇𝑖‖ ≤ 𝐷 for all 𝑖.

If 𝛼 < 𝛽, then[︂∫︁
𝐴

min{𝑝𝛼(𝑥), 𝑝𝛽(𝑥)} 𝑑𝑥
]︂
/𝑝𝛽(𝐴) ≥ min

𝑥

𝑝𝛼(𝑥)

𝑝𝛽(𝑥)
≥ 𝑍𝛽

𝑍𝛼
(243)

𝑍𝛽

𝑍𝛼
∈

⎡⎣1

2
𝑒
−2(𝛽−𝛼)

(︂
𝐷+ 1√

𝛼

(︂√
𝑑+2

√︂
ln
(︁

2
𝑤min

)︁)︂)︂2

, 1

⎤⎦ . (244)

Choosing 𝛽 − 𝛼 = 𝑂

(︂
1

𝐷2+ 𝑑
𝛼+ 1

𝛼 ln
(︁

1
𝑤min

)︁)︂, this quantity is Ω(1).

This is a special case of the following more general lemma.

Lemma L.15. Suppose that 𝑓(𝑥) = − ln
[︀∑︀𝑛

𝑖=1 𝑤𝑖𝑒
−𝑓𝑖(𝑥)

]︀
, where 𝑓𝑖(𝑥) = 𝑓0(𝑥 − 𝜇𝑖), 𝑓0 is

𝜅-strongly convex and 𝐾-smooth, 𝑝(𝑥) ∝ 𝑒−𝑓(𝑥), and for 𝛼 ≥ 0 let 𝑝𝛼(𝑥) ∝ 𝑒−𝛼𝑓(𝑥), 𝑍𝛼 =∫︀
R𝑑 𝑒

−𝛼𝑓(𝑥) 𝑑𝑥. Suppose that ‖𝜇𝑖‖ ≤ 𝐷 for all 𝑖.

Let 𝐶 = 𝐷 + 1√
𝛼𝜅

(︂√
𝑑 +

√︂
𝑑 ln

(︀
𝐾
𝜅

)︀
+ 2 ln

(︁
2

𝑤min

)︁)︂
. If 𝛼 < 𝛽, then[︂∫︁

𝐴

min{𝑝𝛼(𝑥), 𝑝𝛽(𝑥)} 𝑑𝑥
]︂
/𝑝𝛽(𝐴) ≥ min

𝑥

𝑝𝛼(𝑥)

𝑝𝛽(𝑥)
≥ 𝑍𝛽

𝑍𝛼
(245)

𝑍𝛽

𝑍𝛼
∈
[︂

1

2
𝑒−

1
2 (𝛽−𝛼)𝐾𝐶2

, 1

]︂
. (246)

If 𝛽 − 𝛼 = 𝑂

(︂
1

𝐾
(︁
𝐷2+ 𝑑

𝛼𝜅 (1+ln(𝐾
𝜅 ))+ 1

𝛼𝜅 ln
(︁

1
𝑤min

)︁)︁)︂, then this quantity is Ω(1).
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Proof. Let ̃︀𝑝𝛼(𝑥) ∝
∑︀𝑛

𝑖=1 𝑤𝑖𝑒
−𝛼𝑓0(𝑥−𝜇𝑖) and 𝑝 ∝ 𝑒−𝛼𝑓0(𝑥) be probability distributions.

By Lemma E.3 and Lemma L.10, since 𝛼𝑓 is 𝛼𝜅-strongly, convex,

P𝑥∼𝑝(‖𝑥‖ ≥ 𝐶) ≤ 1

𝑤min
P𝑥∼̃︀𝑝𝛼

(‖𝑥‖ ≥ 𝐶) (247)

≤ 1

𝑤min

𝑛∑︁
𝑖=1

𝑤𝑖P𝑥∼̃︀𝑝𝛼
(‖𝑥‖ ≥ 𝐶) (248)

≤ 1

𝑤min

𝑛∑︁
𝑖=1

𝑤𝑖P𝑥∼𝑝(‖𝑥‖2 ≥ (𝐶 −𝐷)2) (249)

=
1

𝑤min
P𝑥∼𝑝

⎡⎣‖𝑥‖2 ≥ 1

𝛼𝜅

(︃
√
𝑑 +

√︃
𝑑 ln

(︂
𝐾

𝜅

)︂
+ 2 ln

(︂
2

𝑤min

)︂)︃2
⎤⎦ (250)

≤ 1

𝑤min

𝑤min

2
=

1

2
. (251)

Thus, using 𝑓(𝑥) ≥ 0,[︂∫︁
𝐴

min {𝑝𝛼(𝑥), 𝑝𝛽(𝑥)} 𝑑𝑥

]︂
/𝑝𝛽(𝐴) ≥

∫︁
𝐴

min

{︂
𝑝𝛼(𝑥)

𝑝𝛽(𝑥)
, 1

}︂
𝑝𝛽(𝑥) 𝑑𝑥

⧸︁
𝑝𝛽(𝐴) (252)

≥
∫︁
𝐴

min

{︂
𝑍𝛽

𝑍𝛼
𝑒(𝛽−𝛼)𝑓(𝑥), 1

}︂
𝑝𝛽(𝑥) 𝑑𝑥

⧸︁
𝑝𝛽(𝐴) (253)

≥ 𝑍𝛽

𝑍𝛼
(254)

=

∫︀
𝑒−𝛽𝑓(𝑥) 𝑑𝑥∫︀
𝑒−𝛼𝑓(𝑥) 𝑑𝑥

(255)

=

∫︁
R𝑑

𝑒(−𝛽+𝛼)𝑓(𝑥)𝑝𝛼(𝑥) 𝑑𝑥 (256)

≥
∫︁
‖𝑥‖≤𝐶

𝑒(−𝛽+𝛼)𝑓(𝑥)𝑝𝛼(𝑥) 𝑑𝑥 (257)

≥ 1

2
𝑒−(𝛽−𝛼)max‖𝑥‖≤𝐶(𝑓(𝑥)) (258)

≥ 1

2
𝑒−

1
2 (𝛽−𝛼)𝑀𝐶2

. (259)

L.4 Other facts

Lemma L.16. Let (𝑁𝑇 )𝑇≥0 be a Poisson process with rate 𝜆. Then there is a constant 𝐶 such that

P(𝑁𝑇 ≥ 𝑛) ≤
(︂
𝐶𝑛

𝑇𝜆

)︂−𝑛

. (260)

Proof. Assume 𝑛 > 𝑇𝜆. We have by Stirling’s formula

P(𝑁𝑇 ≥ 𝑛) = 𝑒−𝜆𝑇
∞∑︁

𝑚=𝑛

(𝜆𝑇 )𝑚

𝑚!
(261)

≤ 𝑒−𝜆𝑇 1

𝑛!

1

1 − 𝜆𝑇
𝑛

(𝜆𝑇 )𝑛 (262)

= 𝑒−𝜆𝑇𝑂

(︂
𝑛− 1

2

(︂
𝑒𝜆𝑇

𝑛

)︂𝑛)︂
(263)

≤
(︂
𝐶𝑛

𝜆𝑇

)︂𝑛

(264)
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for some 𝐶, since 𝑒−𝜆𝑇 ≥ 𝑒−𝑛.
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