
Algorithm 1 Inverse factorization
Input the associated graph G of pG(X,Z)
Output the inverse factorizationH of qH(Z|X)
• Order the latent variables Z from leaves to roots according to G
• InitializeH as all observable variables X without any edge
for zi ∈ Z do
• Add zi toH and set paH(zi) = ∂G(zi) ∩H

end for

Algorithm 2 The global baseline for Graphical-GAN
repeat
• Get a minibatch of samples from p(X,Z)
• Get a minibatch of samples from q(X,Z)
• Estimate the divergence D(q(X,Z)||p(X,Z)) using Eqn. (1) and the current value of ψ
• Update ψ to maximize the divergence
• Get a minibatch of samples from p(X,Z)
• Get a minibatch of samples from q(X,Z)
• Estimate the divergence D(q(X,Z)||p(X,Z)) using Eqn. (1) and the current value of ψ
• Update θ and φ to minimize the divergence

until Convergence or reaching certain threshold

A Algorithm for Inverse Factorizations1

We present the formal procedure of building the inverse factorizations in Alg. 1.2

B The Global Baseline3

We can directly adopt ALI to learn Graphical-GAN. Formally, the estimate of the divergence is given4

by:5

max
ψ

Eq[log(D(X,Z))] + Ep[log(1−D(X,Z))], (1)

where D is the discriminator introduced for divergence estimation and ψ denotes the parameters in D.6

If D is Bayes optimal, then the estimate actually equals to 2DJS(q(X,Z)||p(X,Z))− log 4, which7

is equivalent to DJS(q(X,Z)||p(X,Z)). We present the formal procedure of building the inverse8

factorizations in Alg. 2.9

C The Local Approximation of the JS Divergence10

We now derive the local approximation of the JS divergence.11

DJS(q(X,Z)||p(X,Z))
≈DJS(q(A)q(A)||p(A)p(A))
≈DJS(q(A)q(A)||p(A)q(A))

=
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where m(A) = 1
2 (p(A) + q(A)). As for the approximations, we adopt two commonly used assump-12

tions: (1) q(A) ≈ p(A), and (2) p(X,Z) ≈ p(A)p(A) and q(X,Z) ≈ q(A)q(A).13

D Experimental Details14

We evaluate GMGAN on the MNIST, SVHN , CIFAR10 and CelebA datasets. The MNIST dataset15

consists of handwritten digits of size 28×28 and there are 50,000 training samples, 10,000 validation16

samples and 10,000 testing samples. The SVHN dataset consists of digit sequences of size 32×32,17

and there are 73,257 training samples and 26,032 testing samples. The CIFAR10 dataset consists of18

natural images of size 32×32 and there are 50,000 training samples and 10,000 testing samples. The19

CelebA dataset consists of 202,599 faces and we randomly sample 5,000 samples for testing. Further,20

the faces are center cropped and downsampled to size 64×64.21

We evaluate SSGAN on the Moving MNIST and 3D chairs datasets. In the Moving MNIST dataset,22

each clip contains a handwritten digit which bounces inside a 64×64 patch. The velocity of the23

digit is randomly sampled and fixed within a clip. We generate two datasets of length 4 and length24

16, respectively. To improve the sample quality, all models condition on the label information as in25

DCGAN. The 3D chairs dataset consists of 2,786 sequences of rendered chairs and each sequence is26

of length 31. We randomly sample sub-sequences if necessary. The clips in the 3D chairs dataset are27

center cropped and downsampled to size 64×64. No supervision is used on the 3D chairs dataset.28

Table 1: The generator and extractor on SVHN

GeneratorG ExtractorE

Input latent h Input image x

MLP 4096 units ReLU 5×5 conv. 64 Stride 2 lReLU
Reshape to 4x4x256 5×5 conv. 128 Stride 2 lReLU

5×5 deconv. 128 Stride 2 ReLU 5×5 conv. 256 Stride 2 lReLU
5×5 deconv. 64 Stride 2 ReLU Reshape to 4096
5×5 deconv. 3 Stride 2 Tanh MLP 128 units Linear

Output image x Output latent h

Table 2: The discriminators on SVHN

GlobalDx,h,k LocalDx,h andDh,k

Input (x, h, k) Input (x, h) and (h, k)

Get x Get x
5×5 conv. 64 Stride 2 lReLU α 0.2 5×5 conv. 64 Stride 2 lReLU α 0.2

5×5 conv. 128 Stride 2 lReLU α 0.2 5×5 conv. 128 Stride 2 lReLU α 0.2
5×5 conv. 256 Stride 2 lReLU α 0.2 5×5 conv. 256 Stride 2 lReLU α 0.2

Reshape to 4096 Reshape to 4096
Concatenate h and k Get h

MLP 512 units lReLU α 0.2 MLP 512 units lReLU α 0.2
Concatenate features of x and (h, k) Concatenate features of x and h

MLP 512 units lReLU α 0.2 MLP 512 units lReLU α 0.2
MLP 1 unit Sigmoid MLP 1 unit Sigmoid

Concatenate h and k
MLP 512 units lReLU α 0.2
MLP 512 units lReLU α 0.2
MLP 512 units lReLU α 0.2

MLP 1 unit Sigmoid
Output a binary unit Output two binary units

The model size and the usage of the batch normalization depend on the data. The size of h in both29

GMGAN and SSGAN is 128 and the size of v in SSGAN is 8. All models are trained with the ADAM30

optimizer with β1 = 0.5 and β2 = 0.999. The learning rate is fixed as 0.0002 in GMGAN and31

0.0001 in SSGAN. In GMGAN, we use the Gumbel-Softmax trick to deal with the discrete variables32

and the temperature is fixed as 0.1 throughout the experiments. In SSGAN, we use the same εt for all33

t = 1...T as the transformation between frames are equvariant on the Moving MNIST and 3D chairs34

datasets. The batch size varies from 50 to 128, depending on the data.35
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Table 3: The generator and variant feature extractor on 3D chairs

GeneratorG ExtractorE2

Input latent (h, vt) Input frame xt

MLP 4096 units ReLU 5×5 conv. 32 Stride 2 lReLU
Reshape to 4x4x256 5×5 conv. 64 Stride 2 lReLU

5×5 deconv. 128 Stride 2 ReLU 5×5 conv. 128 Stride 2 lReLU
5×5 deconv. 64 Stride 2 ReLU 5×5 conv. 256 Stride 2 lReLU
5×5 deconv. 32 Stride 2 ReLU Reshape to 4096
5×5 deconv. 3 Stride 2 Tanh MLP 8 units Linear

Output frame xt Output latent vt

Table 4: The transition operator and invariant feature extractor on 3D chairs

GeneratorO ExtractorE1

Input latent v1, noise ε Input video (x1:T )

Concatenate vt and ε Concatenate all frames along channels
MLP 256 units lReLU 5×5 conv. 32 Stride 2 lReLU
MLP 256 units lReLU 5×5 conv. 64 Stride 2 lReLU

MLP 8 units Linear 5×5 conv. 128 Stride 2 lReLU
Get vt 5×5 conv. 256 Stride 2 lReLU

MLP 8 units Linear Reshape to 4096
Add the features of (vt, ε) and vt MLP 128 units Linear

Output (v1:T ) recurrently Output latent h

We present the detailed architectures of Graphical-GAN on the SVHN and 3D chairs datasets in the36

Tab. 1, Tab. 2, Tab. 3, Tab. 4 and Tab. 5, where α denotes the ratio of dropout. The architectures on37

the other datasets are quite similar and please refer to our source code.38

E More Results of GMGAN39

We present the t-SNE visualization results of GAN-G and GMGAN-L on the test set of MNIST40

in Fig. 1 (a) and (b) respectively. Compared with GAN-G, GMGAN-L learns representations with41

clearer margin and less overlapping area among classes (e.g. top middle part of Fig. 1 (a)). The42

visualization results support that a mixture prior helps learn a spread manifold and are consistent with43

the MSE results.44

See Table 6 for the clustering accuracy on the CIFAR10 dataset. All the methods achieve low accuracy45

because the samples within each class are diverse and the background is noisy. To our best knowledge,46

no promising results have been shown yet in a pure unsupervised setting.47

Table 5: The discriminators on 3D chairs

3DCNNDx1:T ,h,v1:T
ConcatXDx1:T ,h,v1:T

LocalDxt,h,vt andDvt,vt+1

Input (x1:T , h, v1:T ) Input (x1:T , h, v1:T ) Input (xt, h, vt) and (vt, vt+1)

Get x1:T Concatenate all frames along channels Get xt

4×4×4 conv. 32 Stride 2 lReLU α 0.2 5×5 conv. 32 Stride 2 lReLU α 0.2 5×5 conv. 32 Stride 2 lReLU α 0.2
4×4×4 conv. 64 Stride 2 lReLU α 0.2 5×5 conv. 64 Stride 2 lReLU α 0.2 5×5 conv. 64 Stride 2 lReLU α 0.2

4×4×4 conv. 128 Stride 2 lReLU α 0.2 5×5 conv. 128 Stride 2 lReLU α 0.2 5×5 conv. 128 Stride 2 lReLU α 0.2
4×4×4 conv. 256 Stride 2 lReLU α 0.2 5×5 conv. 256 Stride 2 lReLU α 0.2 5×5 conv. 256 Stride 2 lReLU α 0.2

Reshape to 4096 Reshape to 4096 Reshape to 4096
Concatenate h and v1:T Concatenate h and v1:T Concatenate h and vt

MLP 512 units lReLU α 0.2 MLP 512 units lReLU α 0.2 MLP 512 units lReLU α 0.2
Concatenate features of x1:T and (h, v1:T ) Concatenate features of x1:T and (h, v1:T ) Concatenate features of x and h

MLP 512 units lReLU α 0.2 MLP 512 units lReLU α 0.2
MLP 1 unit Sigmoid MLP 1 unit Sigmoid

Concatenate vt and vt+1

MLP 512 units lReLU α 0.2
MLP 512 units lReLU α 0.2
MLP 512 units lReLU α 0.2

MLP 1 unit Sigmoid
Output a binary unit Output a binary unit Output 2T − 1 binary units
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(a) GAN-G (b) GANGM-L

Figure 1: t-SNE visualization of the latent space on MNIST.

(a) GMGAN-L (K = 50) on the SVHN dataset

(b) GMGAN-L (K = 30) on the CIFAR10 dataset

Figure 2: Samples of the GMGAN-L on the SVHN and CIFAR10 datasets. The mixture k is fixed in
each column of (a) and (b).

See Fig. 2 and Fig. 3 for the complete results of GMGAN-L on the SVHN, CIFAR10 and CelebA48

datasets, respectively. We also present the samples of GMGAN-L with 30 clusters on the MNIST49

dataset in Fig. 4 (a). With larger K, GMGAN-L can learn intra-class clusters like “2” with loop and50

“2” without loop, and avoid clustering digits in different classes into the same component. GMGAN-L51

can also generate meaningful samples given a fixed mixture and linearly distributed latent variables,52

as shown in Fig. 4 (b) and (c).53

F More Results of SSGAN54

See Fig. 5 for the samples from SSGAN-L and all baseline methods. Again, all baseline methods55

fail to converge. See Fig. 6 for the reconstruction and motion analogy results of SSGAN-L on the56

Moving MNIST dataset. See Fig. 7 for the reconstruction results on the 3D chairs datasets.57
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Figure 3: Samples of GMGAN-L (K = 100) on the CelebA dataset.

(a) MNIST (K = 30) (b) SVHN (K =
50)

(c) CelebA (K =
100)

Figure 4: (a): 30 mixtures of GMGAN-L on the MNIST dataset. (b) and (c): Interpolation results of
GMGAN-L on the SVHN and CelebA datasets, respectively. Three endpoints are randomly sampled
to construct a parallelogram and other points are linearly distributed.

Table 6: The clustering accuracy on CIFAR10 datasets.

Algorithm ACC on CIFAR10

GMM 20.36 (±0.69)
GAN-G+GMM 19.19 (±0.10)
GMGAN-G 22.63 (±1.09)

GMGAN-L (ours) 25.14 (±2.38)

SSGAN-
L

3DCNN

ConcatX

ConcatZ

Figure 5: Samples on the 3D chairs dataset when T = 31.
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(a) Reconstruction (b) Motion Analogy

Figure 6: (a) Reconstruction results. Each odd row shows a video in the testing set and the next even
row shows the reconstructed video. (b) Motion analogy results. Each odd row shows a video in the
testing set and the next even row shows the video generated with a fixed invariant feature h and the
dynamic features v inferred from the corresponding test video.

Figure 7: Reconstruction results of SSGAN-L on the 3D chairs dataset.
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