
Supplementary information for: Long short-term
memory and learning-to-learn in networks of spiking

neurons

Guillaume Bellec*, Darjan Salaj*, Anand Subramoney*, Robert Legenstein & Wolfgang Maass
Institute for Theoretical Computer Science

Graz University of Technology, Austria
{bellec,salaj,subramoney,legenstein,maass}@igi.tugraz.at

* equal contributions

We provide in this supplement detailed information on the models and simulations of the main text,
structured according to the corresponding sections therein.

2 LSNN model

Neuron model: In continuous time the spike trains xi(t) and zj(t) are formalized as sums of
Dirac pulses. Neurons are modeled according to a standard adaptive leaky integrate-and-fire model.
A neuron j spikes as soon at its membrane potential Vj(t) is above its thresholdBj(t). At each spike
time t, the membrane potential Vj(t) is reset by subtracting the current threshold value Bj(t) and
the neuron enters a strict refractory period where it cannot spike again. Importantly at each spike the
threshold Bj(t) of an adaptive neuron is increased by a constant β/τa,j . Then the threshold decays
back to a baseline value b0j . Between spikes the membrane voltage Vj(t) and the threshold Bj(t)
are following the dynamics

τmV̇j(t) = −Vj(t) +RmIj(t) (1)

τa,jḂj(t) = b0j −Bj(t), (2)
where τm is the membrane time constant, τa,j is the adaptation time constant and Rm is the mem-
brane resistance. The input current Ij(t) is defined as the weighted sum of spikes from external
inputs and other neurons in the network:

Ij(t) =
∑
i

W in
ji xi(t− dinji) +

∑
i

W rec
ji zi(t− drecji), (3)

where W in
ji and W rec

ji denote respectively the input and the recurrent synaptic weights and dinji
and drecji the corresponding synaptic delays. All network neurons are connected to a population of
readout neurons with weights W out

kj . When network neuron j spikes, the output synaptic strength
W out
kj is added to the membrane voltage yk(t) of all readout neurons k. yk(t) also follows the

dynamics of a leaky integrator τmẏk(t) = −yk(t).

Implementation in discrete time: Our simulations were performed in discrete time with a time
step δt = 1 ms. In discrete time, the spike trains are modeled as binary sequences xi(t), zj(t) ∈
{0, 1

δt}, so that they converge to sums of Dirac pulses in the limit of small time steps. Neuron j
emits a spike at time t if it is currently not in a refractory period, and its membrane potential Vj(t)
is above its threshold Bj(t). During the refractory period following a spike, zj(t) is fixed to 0. The
dynamics of the threshold is defined by Bj(t) = b0j + βbj(t) where β is a constant which scales the
deviation bj(t) from the baseline b0j . The neural dynamics in discrete time reads as follows

Vj(t+ δt) = αVj(t) + (1− α)RmIj(t)−Bj(t)zj(t)δt (4)
bj(t+ δt) = ρjbj(t) + (1− ρj)zj(t), (5)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

where α = exp(− δt
τm

) and ρj = exp(− δt
τa,j

). The term Bj(t)zj(t)δt implements the reset of the
membrane voltage after each spike. The current Ij(t) is the weighted sum of the incoming spikes.
The definition of the input current in equation (3) holds also for discrete time, with the difference
that spike trains now assume values in {0, 1

δt}.

3 Applying BPTT with DEEP R to RSNNs and LSNNs

Propagation of gradients in recurrent networks of LIF neurons: In artificial recurrent neural
networks such as LSTMs, gradients can be computed with backpropagation through time (BPTT).
For BPTT in spiking neural networks, complications arise from the non-differentiability of the out-
put of spiking neurons, and from the fact that gradients need to be propagated either through contin-
uous time or through many time steps if time is discretized. Therefore, in [1, 2] it was proposed to
use a pseudo-derivative.

dzj(t)

dvj(t)
:= max{0, 1− |vj(t)|}, (6)

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Bj(t)

Bj(t)
. This made it possible

to train deep feed-forward networks of deterministic binary neurons [1, 2]. We observed that this
convention tends to be unstable for very deep (unrolled) recurrent networks of spiking neurons. To
achieve stable performance we dampened the increase of back propagated errors through spikes by
using a pseudo-derivative of amplitude γ < 1 (typically γ = 0.3):

dzj(t)

dvj(t)
:= γmax{0, 1− |vj(t)|}. (7)

Note that in adaptive neurons, gradients can propagate through many time steps in the dynamic
threshold. This propagation is not affected by the dampening.

Rewiring and weight initialization of excitatory and inhibitory neurons: In all experiments
except those reported in Fig. 2, the neurons were either excitatory or inhibitory. When the neu-
ron sign were not constrained, the initial network weights were drawn from a Gaussian distribution
Wji ∼ w0√

nin
N (0, 1), where nin is the number of afferent neurons in the considered weight matrix

(i.e., the number of columns of the matrix), N (0, 1) is the zero-mean unit-variance Gaussian dis-
tribution and w0 is a weightscaling factor chosen to be w0 = 1Volt

Rm
δt. With this choice of w0 the

resistance Rm becomes obsolete but the vanishing-exploding gradient theory [3, 4] can be used to
avoid tuning by hand the scaling of Wji. In particular the scaling 1√

nin
used above was sufficient to

initialize networks with realistic firing rates and that can be trained efficiently.

When the neuron sign were constrained, all outgoing weights W rec
ji or W out

ji of a neuron i had the
same sign. In those cases, DEEP R [5] was used as it maintains the sign of each synapse during
training. The sign is thus inherited from the initialization of the network weights. This raises the
need of an efficient initialization of weight matrices for given fractions of inhibitory and excitatory
neurons. To do so, a sign κi ∈ {−1, 1} is generated randomly for each neuron i by sampling from
a Bernoulli distribution. The weight matrix entries are then sampled from Wji ∼ κi|N (0, 1)| and
post-processed to avoid exploding gradients. Firstly, a constant is added to each weight so that
the sum of excitatory and inhibitory weights onto each neuron j (

∑
iWji) is zero [6] (if j has no

inhibitory or no excitatory incoming connections this step is omitted). To avoid exploding gradients
it is important to scale the weight so that the largest eigenvalue is lower of equal to 1 [3]. Thus,
we divided Wji by the absolute value of its largest eigenvalue. When the matrix is not square,
eigenvalues are ill-defined. Therefore, we first generated a large enough square matrix and selected
the required number of rows or columns with uniform probabilities. The final weight matrix is scaled
by w0 for the same reasons as before.

To initialize matrices with a sparse connectivity, dense matrices were generated as described above
and multiplied with a binary mask. The binary mask was generated by sampling uniformly the
neuron coordinates that were non-zero at initialization. DEEP R maintains the initial connectivity
level throughout training by dynamically disconnecting synapses and reconnecting others elsewhere.
The L1-norm regularization parameter of DEEP R was set to 0.01 and the temperature parameter of
DEEP R was left at 0.

2

4 Computational performance of LSNNs

MNIST setup: The pixels of an MNIST image were presented sequentially to the LSNN in 784
time steps. Two input encodings were considered. First, we used a population coding where the
grey scale value (which is in the range [0, 1]) of the currently presented pixel was directly used as
the firing probability of each of the 80 input neurons in that time step.

In a second type of input encoding – that is closer to the way how spiking vision sensors encode
their input – each of the 80 input neurons was associated with a particular threshold for the grey
value, and this input neuron fired whenever the grey value of the currently presented pixel crossed
its threshold. Here, we used two input neurons per threshold, one spiked at threshold crossings from
below, and one at the crossings from above. This input convention was chosen for the LSNN results
of Fig. 1.B.

The output of the network was determined by averaging the readout output over the 56 time steps
following the presentation of the digit. The network was trained by minimizing the cross entropy
error between the softmax of the averaged readout and the label distributions. The best performing
models use rewiring with a global connectivity level of 12% was used during training to optimize a
sparse network connectivity structure (i.e., when randomly picking two neurons in the network, the
probability that they would be connected is 0.12). This implies that only a fraction of the parameters
were finally used as compared to a similarly performing LSTM network.

Tables S1 and S2 contain the results and details of training runs where each time step lasted for 1
ms and 2 ms respectively.

Model # neurons conn. # params # runs mean std. max.
LSTM 128 100% 67850 12 79.8% 26.6% 98.5%

RNN 128 100% 17930 10 71.3% 24.5% 89%
LSNN 100(A), 120(R) 12% 8185 (full 68210) 12 94.2% 0.3% 94.7%
LSNN 100(A), 200(R) 12% 14041 (full 117010) 1 - - 95.7%
LSNN 350(A), 350(R) 12% 66360 (full 553000) 1 - - 96.1%
LSNN 100(A), 120(R) 100% 68210 10 92.0% 0.7% 93.3%

LIF 220 100% 68210 10 60.9% 2.7% 63.3%
Table S1: Results on the sequential MNIST task when each pixel is displayed for 1ms. For an
LSN, DEEP R is used to optimize the network under a sparse connectivity constraint, we report the
number of parameters including and not including the disconnected synapses.

Model # neurons conn. # params # runs mean std. max.
LSTM 128 100% 67850 12 48.2% 39.9% 98.0%

RNN 128 100% 17930 12 30% 23.6% 67.9%
LSNN 100(A), 120(R) 12% 8185 (full 68210) 12 93.8% 5.8% 96.4%
LSNN 350(A), 350(R) 12% 66360 (full 553000) 1 - - 97.1%
LSNN 100(A), 120(R) 100% 68210 10 90.5% 1.4% 93.7%

LIF 220 100% 68210 11 34.6% 8.8% 51.8%
Table S2: Results on the sequential MNIST task when each pixel is displayed for 2ms.

TIMIT setup: To investigate if the performance of LSNNs can scale to real world problems, we
considered the TIMIT speech recognition task. We focused on the frame-wise classification where
the LSNN has to classify each audio-frame to one of the 61 phoneme classes.

We followed the convention of Halberstadt [7] for grouping of training, validation, and testing sets
(3696, 400, and 192 sequences respectively). The performance was evaluated on the core test set
for consistency with the literature. Raw audio is preprocessed into 13 Mel Frequency Cepstral
Coefficients (MFCCs) with frame size 10 ms and on input window of 25 ms. We computed the
first and the second order derivatives of MFCCs and combined them, resulting in 39 input channels.
These 39 input channels were mapped to 39 input neurons which unlike in MNIST emit continuous
values xi(t) instead of spikes, and these values were directly used in equation 3 for the currents of
the postsynaptic neurons.

3

Since we simulated the LSNN network in 1 ms time steps, every input frame which represents 10 ms
of the input audio signal was fed to the LSNN network for 10 consecutive 1 ms steps. The softmax
output of the LSNN was averaged over every 10 steps to produce the prediction of the phone in the
current input frame. The LSNN was rewired with global connectivity level of 20%.

Parameter values: For adaptive neurons, we used βj = 1.8, and for regular spiking neurons we
used βj = 0 (i.e. Bj is constant). The baseline threshold voltage was b0j = 0.01 and the membrane
time constant τm = 20 ms. Networks were trained using the default Adam optimizer, and a learning
rate initialized at 0.01. The dampening factor for training was γ = 0.3.

For sequential MNIST, all networks were trained for 36000 iterations with a batch size of 256.
Learning rate was decayed by a factor 0.8 every 2500 iterations. The adaptive neurons in the LSNN
had an adaptation time constant τa = 700 ms (1400 ms) for 1 ms (2 ms) per pixel setup. The
baseline artificial RNN contained 128 hidden units with the hyperbolic tangent activation function.
The LIF network was formed by a fully connected population of 220 regular spiking neurons.

For TIMIT, the LSNN network consisted of 300 regular neurons and 100 adaptive neurons which
resulted in approximately 400000 parameters. Network was trained for 80 epochs with batches of
32 sequences. Adaptation time constant of adaptive neurons was set to τa = 200 ms. Refractory
period of the neurons was set to 2 ms, the membrane time constant of the output Y neurons to 3 ms,
and the synaptic delay was randomly picked from {1, 2} ms.

We note that due to the rewiring of the LSNN using DEEP R [5] method, only a small fraction of
the weights had non-zero values (8185 in MNIST, ∼ 80000 in TIMIT).

5 LSNNs learn-to-learn from a teacher

Experimental setup:

Function families: The LSNN was trained to implement a regression algorithm on a family of func-
tions F . Two specific families were considered: In the first function family, the functions were
defined by feed-forward neural networks with 2 inputs, 1 hidden layer consisting of 10 hidden neu-
rons, and 1 output, where all the parameters (weights and biases) were chosen uniformly randomly
between [−1, 1]. The inputs were between [−1, 1] and the outputs were scaled to be between [0, 1].
We call these networks Target Networks (TNs). In the second function family, the targets were de-
fined by sinusoidal functions y = A sin(φ+ x) over the domain x ∈ [−5, 5]. The specific function
to be learned was defined then by the phase φ and the amplitude A, which were chosen uniformly
random between [0, π] and [0.1, 5] respectively.

Input encoding: Analog values were transformed into spiking trains to serve as inputs to the LSNN
as follows: For each input component, 100 input neurons are assigned values m1, . . .m100 evenly
distributed between the minimum and maximum possible value of the input. Each input neuron
has a Gaussian response field with a particular mean and standard deviation, where the means are
uniformly distributed between the minimum and maximum values to be encoded, and with a constant
standard deviation. More precisely, the firing rate ri (in Hz) of each input neuron i is given by
ri = rmax exp

(
− (mi−zi)2

2σ2

)
, where rmax = 200 Hz, mi is the value assigned to that neuron, zi is

the analog value to be encoded, and σ = (mmax−mmin)
1000 , mmin with mmax being the minimum and

maximum values to be encoded.

LSNN setup and training schedule: The standard LSNN model was used, with 300 hidden neurons
for the TN family of learning tasks, and 100 for the sinusoidal family. Of these, 40% were adaptive
in all simulations. We used all-to-all connectivity between all neurons (regular and adaptive). The
output of the LSNN was a linear readout that received as input the mean firing rate of each of the
neurons per step i.e the number of spikes divided by 20 for the 20 ms time window that the step
consists of.

The network training proceeded as follows: A new target function was randomly chosen for each
episode of training, i.e., the parameters of the target function are chosen uniformly randomly from
within the ranges above (depending on whether its a TN or sinusoidal). Each episode consisted of a
sequence of 500 steps, each lasting for 20 ms. In each step, one training example from the current

4

function to be learned was presented to the LSNN. In such a step, the inputs to the LSNN consisted
of a randomly chosen vector x with its dimensionality d and range determined by the target function
being used (d = 2 for TNs, d = 1 for sinusoidal target function). In addition, at each step, the
LSNN also got the target value C(x′) from the previous step, i.e., the value of the target calculated
using the target function for the inputs given at the previous step (in the first step, C(x′) is set to 0).

All the weights of the LSNN were updated using our variant of BPTT, once per iteration, where an
iteration consists of a batch of 10 episodes, and the weight updates are accumulated across episodes
in an iteration. The Adam [8] variant of BP was used with standard parameters and a learning rate
of 0.001. The loss function for training was the mean squared error (MSE) of the LSNN predictions
over an iteration (i.e. over all the steps in an episode, and over the entire batch of episodes in an
iteration). In addition, a regularization term was used to maintain a firing rate of 20 Hz. Specifically,
the regularization term R is defined as the mean squared difference between the average neuron
firing rate in the LSNN and a target of 20 Hz. The total loss L was then given by L =MSE+30R.
In this way, we induce the LSNN to use sparse firing. We trained the LSNN for 5000 iterations in
all cases.

Parameter values: The LSNN parameters were as follows: 5 ms neuronal refractory period, de-
lays spread uniformly between 0 − 5 ms, adaptation time constants of the adaptive neurons spread
uniformly between 1 − 1000 ms, β = 1.6 for adaptive neurons (0 for regular neurons), membrane
time constant τ = 20 ms, 0.03 mV baseline threshold voltage. The dampening factor for training
was γ = 0.4.

Analysis and comparison: The linear baseline was calculated using linear regression with L2
regularization with a regularization factor of 100 (determined using grid search), using the mean
spiking trace of all the neurons. The mean spiking trace was calculated as follows: First the neuron
traces were calculated using an exponential kernel with 20 ms width and a time constant of 20 ms.
Then, for every step, the mean value of this trace was calculated to obtain the mean spiking trace. In
Fig. 2C, for each episode consisting of 500 steps, the mean spiking trace from a random subset of
450 steps was used to train the linear regressor, and the mean spiking trace from remaining 50 steps
was used to calculate the test error. The reported baseline is the mean of the test error over one batch
of 10 episodes with error bars of one standard deviation. In Fig. 2E, for each episode, after every
step k, the mean spiking traces from the first k − 1 steps were used to train the linear regressor, and
the test error was calculated using the mean spiking trace for the kth step. The reported baseline is
a mean of the test error over one batch of 10 episodes with error bars of one standard deviation.

For the case where neural networks defined the function family, the total test MSE was 0.0056 ±
0.0039 (linear baseline MSE was 0.0217± 0.0046). For the sinusoidal function family, the total test
MSE was 0.3134± 0.2293 (linear baseline MSE was 1.4592± 1.2958).

Comparison with backprop: The comparison was done for the case where the LSNN is trained on the
function family defined by target networks. A feed-forward (FF) network with 10 hidden neurons
and 1 output was constructed. The input to this FF network were the analog values that were used
to generate the spiking input and targets for the LSNN. Therefore the FF had 2 inputs, one for each
of x1 and x2. The error reported in Fig 2F is the mean training error over 10 batches with error bars
of one standard deviation.

The FF network was initialized with Xavier normal initialization [9] (which had the best perfor-
mance, compared to Xavier uniform and plain uniform between [−1, 1]). Adam [8] with AMSGrad
[10] was used with parameters η = 10−1, β1 = 0.7, β2 = 0.9, C = 10−5. These were the optimal
parameters as determined by a grid search. Together with the Xavier normal initialization and the
weight regularization parameter C, the training of the FF favoured small weights and biases.

6 LSNNs learn-to-learn from reward

Experimental setup:

Task family: An LSNN-based agent was trained on a family of navigation tasks in a two dimensional
circular arena. For all tasks, the arena is a circle with radius 1 and goals are smaller circles of radius
0.3 with centres uniformly distributed on the circle of radius 0.85. At the beginning of an episode

5

Supplementary Figure S1: Meta-RL results for an LSNN. A Samples of paths after training. B
Connectivity between sub-populations of the network after training. The global connectivity in the
network was constrained to 20%. C The network dynamics that produced the behavior shown in A.
Raster plots and thresholds are displayed as in Fig. 1.D, only 1 second and 100 neurons are shown
in each raster plots.

and after the agent reaches a goal, the agent’s position is set randomly with uniform probability
within the arena. At every timestep, the agent chooses an action by generating a small velocity
vector of Euclidean norm smaller or equal to ascale = 0.02. When the agent reaches the goal, it
receives a reward of 1. If the agent attempts to move outside the arena, the new position is given
by the intersection of the velocity vector with the border and the agent receives a negative reward of
−0.02.

Input encoding: Information of the current environmental state s(t) and the reward r(t) were pro-
vided to the LSNN at each time step t as follows: The state s(t) is given by the x and y coordinate
of the agent’s position (see top of Fig. S1C). Each position coordinate ξ(t) ∈ [−1, 1] is encoded by
40 neurons which spike according to a Gaussian population rate code defined as follows: a preferred
coordinate value ξi, is assigned to each of the 40 neurons, where ξi’s are evenly spaced between −1
and 1. The firing rate of neuron i is then given by rmax exp(−100(ξi − ξ)2) where rmax is 500 Hz.
The instantaneous reward r(t) is encoded by two groups of 40 neurons (see green row at the top of
Fig. S1C). All neuron in the first group spike in synchrony each time a reward of 1 is received (i.e.,
the goal was reached), and the second group spikes when a reward of −0.02 is received (i.e., the
agent moved into a wall).

Output decoding: The output of the LSNN is provided by five readout neurons. Their membrane
potentials yi(t) define the outputs of the LSNN. The action vector a(t) = (ax(t), ay(t))

T is sampled
from the distribution πθ which depends on the network parameters θ through the readouts yi(t) as
follows: The coordinate ax(t) (ay(t)) is sampled from a Gaussian distribution with mean µx =
tanh(y1(t)) (µy = tanh(y2(t))) and variance φx = σ(y3(t)) (φy = σ(y4(t))). The velocity vector
that updates the agent’s position is then defined as ascale a(t). If this velocity has a norm larger than
ascale, it is clipped to a norm of ascale.

The last readout output y5(t) is used to predict the value function Vθ(t). It estimates the expected
discounted sum of future rewards R(t) =

∑
t′>t η

t′−tr(t′), where η = 0.99 is the discount factor
and r(t′) denotes the reward at time t′. To enable the network to learn complex forms of exploration
we introduced current noise in the neuron model in this task. At each time step, we added a small

6

Gaussian noise with mean 0 and standard deviation 1
Rm

νj to the current Ij into neuron j. Here, νj
is a network parameter initialized at 0.03 and optimized by BPTT alongside the network weights.

Network training: To train the network we used the Proximal Policy Optimization algorithm
(PPO) [11]. For each training iteration, K full episodes of T timesteps were generated with fixed
parameters θold (here K = 10 and T = 2000). We write the clipped surrogate objective of PPO as
OPPO(θold, θ, t, k) (this is defined under the notation LCLIP in [11]). The loss with respect to θ is
then defined as follows:

L(θ) = − 1

KT

∑
k<K

∑
t<T

OPPO(θold, θ, t, k) + µv (R(t, k)− Vθ(t, k))2 (8)

−µeH(πθ(k, t)) + µfiring
1

n

∑
j

|| 1

KT

∑
k,t

zj(t, k)− f0||2, (9)

where H(πθ) is the entropy of the distribution πθ, f0 is a target firing rate of 10 Hz, and µv ,
µe, µfiring are regularization hyper-parameters. Importantly probability distributions used in the
definition of the loss L (i.e. the trajectories) are conditioned on the current noises, so that for the
same noise and infinitely small parameter change from θold to θ the trajectories and the spike trains
are the same. At each iteration this loss function L is then minimized with one step of the ADAM
optimizer.

Parameter values: In this task the LSNN had 400 hidden units (200 excitatory neurons, 80 in-
hibitory neurons and 120 adaptive neurons with adaptation time constants τa = 1200 ms) and the
network was rewired with a fixed global connectivity of 20% [5]. The membrane time constants
were similarly sampled between 15 and 30 ms. The adaptation amplitude β was set to 1.7. The
refractory period was set to 3 ms and delays were sampled uniformly between 1 and 10 ms. The
regularization parameters µv , µe and µfiring were respectively 1, 0.001, and 100. The parameter ε
of the PPO algorithm was set to 0.2. The learning rate was initialized to 0.01 and decayed by a factor
0.5 every 5000 iterations. We used the default parameters for ADAM, except for the parameter ε
which we set to 10−5.

References
[1] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural

networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830, 2016.

[2] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy,
Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch,
Carmelo di Nolfo, Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flickner, and Dharmendra S. Modha.
Convolutional networks for fast, energy-efficient neuromorphic computing. Proceedings of the National
Academy of Sciences, 113(41):11441–11446, November 2016.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

[4] David Sussillo and LF Abbott. Random walk initialization for training very deep feedforward networks.
arXiv preprint arXiv:1412.6558, 2014.

[5] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training very
sparse deep networks. International Conference on Learning Representations (ICLR), 2018.

[6] Kanaka Rajan and L. F. Abbott. Eigenvalue spectra of random matrices for neural networks. Physical
review letters, 97(18):188104, 2006.

[7] James Glass, Arthur Smith, and Andrew K. Halberstadt. Heterogeneous acoustic measurements and
multiple classifiers for speech recognition. 02 1999.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

7

[10] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In Interna-
tional Conference on Learning Representations, 2018.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

8

	LSNN model
	Applying BPTT with DEEP R to RSNNs and LSNNs
	Computational performance of LSNNs
	LSNNs learn-to-learn from a teacher
	LSNNs learn-to-learn from reward

