A Auxiliary Lemmas

The following lemma is from (Tsuda et al. [2005]), given here for completeness.

Lemma 11. For Hermitian matrices A, B and Hermitian PSD matrix X, if $A \succeq B$, then $\text{Tr}(AX)$ $Tr(BX)$.

Proof. Let $C := A - B$. By definition, $C \succeq 0$. It suffices to show that $\text{Tr}(CX) \geq 0$. Let VQV^{\dagger} be the eigen-decomposition of X, and let $C = VPV^{\dagger}$, where $P = V^{\dagger}CV \succeq 0$. Then $Tr(CX) = Tr(\overline{VPQV^{\dagger}}) = Tr(PQ) = \sum_{i=1}^{n} P_{ii}Q_{ii}$. Since $P \succeq 0$ and all the eigenvalues of X are nonnegative, $P_{ii} \geq 0$, $Q_{ii} \geq 0$. Therefore $\text{Tr}(CX) \geq 0$.

Lemma 12. *If* A , B *are Hermitian matrices, then* $\text{Tr}(AB) \in \mathbb{R}$ *.*

Proof. The proof is similar to Lemma [11.](#page-0-0) Let VQV^{\dagger} be the eigendecomposition of A. Then Q is a real diagonal matrix. We have $B = VPV^{\dagger}$, where $P = V^{\dagger}BV$. Note that $P^{\dagger} = V^{\dagger}B^{\dagger}V = P$, so P has a real diagonal. Then $\text{Tr}(AB) = \text{Tr}(VQV^{\dagger}VPV^{\dagger}) = \text{Tr}(VQPV^{\dagger}) = \text{Tr}(QP) =$ $\sum_{i=1}^{n} Q_{ii} P_{ii}$. Since Q_{ii} , $P_{ii} \in \mathbb{R}$ for all i , $\text{Tr}(AB) \in \mathbb{R}$.

B Proof of Theorem 3

Proof of Theorem 3. Since ℓ_t is convex, for all $\varphi \in \mathcal{K}$,

$$
\ell_t(\mathrm{Tr}(E_t\omega_t)) - \ell_t(\mathrm{Tr}(E_t\varphi)) \leq \ell'_t(\mathrm{Tr}(E_t\omega_t)) [\mathrm{Tr}(E_t\omega_t) - \mathrm{Tr}(E_t\varphi)] = \nabla_t \bullet (\omega_t - \varphi) .
$$

(Recall that '•' denotes the trace inner-product between complex matrices of the same dimensions.) Summing over t ,

$$
\sum_{t=1}^T \left[\ell_t(\text{Tr}(E_t \omega_t)) - \ell_t(\text{Tr}(E_t \varphi)) \right] \leq \sum_{t=1}^T \left[\text{Tr}(\nabla_t \omega_t) - \text{Tr}(\nabla_t \varphi) \right] .
$$

Define $g_t(X) = \nabla_t \bullet X$, and $g_0(X) = \frac{1}{\eta} R(X)$, where $R(X)$ is the negative von Neumann Entropy of X (in nats). Denote $D_R^2 := \max_{\varphi,\varphi' \in \mathcal{K}} \{ R(\varphi) - R(\varphi') \}$. By [Hazan, 2015, Lemma 5.2], for any $\varphi \in \mathcal{K}$, we have

$$
\sum_{t=1}^{T} [g_t(\omega_t) - g_t(\varphi)] \leq \sum_{t=1}^{T} \nabla_t \bullet (\omega_t - \omega_{t+1}) + \frac{1}{\eta} D_R^2 \quad . \tag{4}
$$

Define $\Phi_t(X) = \{ \eta \sum_{s=1}^t \nabla_s \bullet X + R(X) \}$, then the convex program in line 5 of Algorithm 1 finds the minimizer of $\Phi_t(X)$ in K. The following claim shows that that the minimizer is always *positive definite* (proof provided later in this section):

Claim 13. *For all* $t \in \{1, 2, ..., T\}$ *, we have* $\omega_t \succ 0$ *.*

For $X \succ 0$, we can write $R(X) = \text{Tr}(X \log X)$, and define

$$
\nabla \Phi_t(X) \coloneqq \eta \sum_{s=1}^t \nabla_s + \mathbb{I} + \log X \enspace .
$$

The definition of $\nabla \Phi_t(X)$ is analogous to the gradient of $\Phi_t(X)$ if the function is defined over real symmetric matrices. Moreover, the following condition, similar to the optimality condition over a real domain, is satisfied (proof provided later in this section).

Claim 14. *For all* $t \in \{1, 2, ..., T - 1\}$ *,*

$$
\nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) \ge 0 \tag{5}
$$

Denote

$$
B_{\Phi_t}(\omega_t || \omega_{t+1}) \coloneqq \Phi_t(\omega_t) - \Phi_t(\omega_{t+1}) - \nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) \enspace .
$$

Then by the Pinsker inequality (see, for example, Carlen and Lieb [2014] and the references therein),

$$
\frac{1}{2} ||\omega_t - \omega_{t+1}||_{\text{Tr}}^2 \leq \text{Tr}(\omega_t \log \omega_t) - \text{Tr}(\omega_t \log \omega_{t+1}) = B_{\Phi_t}(\omega_t || \omega_{t+1}).
$$

We have

$$
B_{\Phi_t}(\omega_t || \omega_{t+1}) = \Phi_t(\omega_t) - \Phi_t(\omega_{t+1}) - \nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1})
$$

\n
$$
\leq \Phi_t(\omega_t) - \Phi_t(\omega_{t+1})
$$

\n
$$
= \Phi_{t-1}(\omega_t) - \Phi_{t-1}(\omega_{t+1}) + \eta \nabla_t \bullet (\omega_t - \omega_{t+1})
$$

\n
$$
\leq \eta \nabla_t \bullet (\omega_t - \omega_{t+1}), \qquad (6)
$$

where the first inequality follows from Claim [14,](#page-0-1) and the second because $\Phi_{t-1}(\omega_t) \leq \Phi_{t-1}(\omega_{t+1})$ (ω_t minimizes $\Phi_{t-1}(X)$). Therefore

$$
\frac{1}{2} \|\omega_t - \omega_{t+1}\|_{\text{Tr}}^2 \le \eta \nabla_t \bullet (\omega_t - \omega_{t+1}) \tag{7}
$$

Let $||M||_{\text{Tr}}^*$ denote the dual of the trace norm, i.e., the spectral norm of the matrix M. By Generalized Cauchy-Schwartz [Bhatia, 1997, Exercise IV.1.14, page 90],

$$
\nabla_t \bullet (\omega_t - \omega_{t+1}) \leq \|\nabla_t\|_{\text{Tr}}^* \|\omega_t - \omega_{t+1}\|_{\text{Tr}}
$$

\$\leq \|\nabla_t\|_{\text{Tr}}^* \sqrt{2\eta \nabla_t \bullet (\omega_t - \omega_{t+1})}\$. by Eq. (7).

Rearranging,

$$
\nabla_t \bullet (\omega_t - \omega_{t+1}) \leq 2\eta \|\nabla_t\|_{\mathrm{Tr}}^{*2} \leq 2\eta G_R^2 ,
$$

where G_R is an upper bound on $\|\nabla_t\|_{\text{Tr}}^*$. Combining with Eq. [\(4\)](#page-0-2), we arrive at the following bound

$$
\sum_{t=1}^T \nabla_t \bullet (\omega_t - \varphi) \leq \sum_{t=1}^T \nabla_t \bullet (\omega_t - \omega_{t+1}) + \frac{1}{\eta} D_R^2 \leq 2\eta T G_R^2 + \frac{1}{\eta} D_R^2.
$$

Taking $\eta = \frac{D_R}{C}$ $\frac{D_R}{G_R\sqrt{2T}}$, we get $\sum_{t=1}^T \nabla_t \bullet (\omega_t - \varphi) \leq 2D_R G_R$ √ 2T. Going back to the regret bound,

$$
\sum_{t=1}^T [\ell_t(\text{Tr}(E_t \omega_t)) - \ell_t(\text{Tr}(E_t \varphi))] \leq \sum_{t=1}^T \nabla_t \bullet (\omega_t - \varphi) \leq 2D_R G_R \sqrt{2T} .
$$

We proceed to show that $D_R = \sqrt{\frac{\log 2}{n}}$. Let Δ_{2^n} denote the set of probability distributions over $[2^n]$. By definition,

$$
D_R^2 = \max_{\varphi,\varphi'\in\mathcal{K}} \{R(\varphi) - R(\varphi')\} = \max_{\varphi\in\mathcal{K}} -R(\varphi) = \max_{\lambda\in\Delta_{2^n}} \sum_{i=1}^{2^n} \lambda_i \log \frac{1}{\lambda_i} = n \log 2.
$$

Since the dual norm of the trace norm is the spectral norm, we have

$$
\|\nabla_t\|_{\text{Tr}}^* = \|\ell'_t(\text{Tr}(E_t\omega_t))E_t\| \le L\|E_t\| \le L.
$$

Therefore
$$
\sum_{t=1}^T [(\ell_t(\text{Tr}(E_t\omega_t)) - \ell_t(\text{Tr}(E_t\varphi))] \le 2L\sqrt{(2\log 2)nT}.
$$

Proof of Claim [13.](#page-0-3) Let $P \in \mathcal{K}$ be such that $\lambda_{\min}(P) = 0$. Suppose $P = VQV^{\dagger}$, where Q is a diagonal matrix with real values on the diagonal. Assume that $Q_{1,1} = \lambda_{\max}(P)$ and $Q_{2^n,2^n} =$ $\lambda_{\min}(P) = 0$. Let $P' = VQ'V^{\dagger}$ such that $Q'_{1,1} = Q_{1,1} - \varepsilon$, $Q'_{2^n,2^n} = \varepsilon$ for $\varepsilon < \lambda_{\max}(P)$, and $Q'_{ii} = Q_{ii}$ for $i \in \{2, 3, ..., 2^n - 1\}$, so $P' \in \mathcal{K}$. We show that there exists $\varepsilon > 0$ such that $\Phi_t(P') \leq \Phi_t(P)$. Expanding both sides of the inequality, we see that it is equivalent to showing that for some ε ,

$$
\eta \sum_{s=1}^t \nabla_s \bullet (P' - P) \leq \lambda_1(P) \log \lambda_1(P) - \lambda_1(P') \log \lambda_1(P') - \varepsilon \log \varepsilon.
$$

Let $\alpha = \lambda_1(P) = Q_{1,1}$, and $A = \eta \sum_{s=1}^t \nabla_s$. The inequality then becomes

$$
A \bullet (P' - P) \leq \alpha \log \alpha - (\alpha - \varepsilon) \log(\alpha - \varepsilon) - \varepsilon \log \varepsilon.
$$

Observe that $||A|| \leq \eta \sum_{s=1}^t ||\nabla_s|| = \eta \sum_{s=1}^t ||\ell_s'(\text{Tr}(E_s \omega_s))E_s|| \leq \eta Lt$. So by the Generalized Cauchy-Schwartz inequality,

$$
A \bullet (P' - P) \leq \eta L t \, \|P' - P\|_{\text{Tr}} \leq 2\varepsilon \eta L t \, .
$$

Since η, t, α, L are finite and $-\log \varepsilon \to \infty$ as $\varepsilon \to 0$, there exists ε small such that $2\eta L t \leq$ $\log \alpha - \log \varepsilon$. We have

$$
2\eta L t \varepsilon \le \varepsilon \log \alpha - \varepsilon \log \varepsilon
$$

= $\alpha \log \alpha - (\alpha - \varepsilon) \log \alpha - \varepsilon \log \varepsilon$
 $\le \alpha \log \alpha - (\alpha - \varepsilon) \log (\alpha - \varepsilon) - \varepsilon \log \varepsilon$.

So there exists $\varepsilon > 0$ such that $\Phi_t(P') \leq \Phi_t(P)$. If P has multiple eigenvalues that are 0, we can repeat the proof and show that there exists a PD matrix P' such that $\Phi_t(P') \leq \Phi_t(P)$. Since ω_t is a minimizer of Φ_{t-1} and $\omega_1 \succ 0$, we conclude that $\omega_t \succ 0$ for all t. \Box

Proof of Claim [14.](#page-0-1) Suppose $\nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) < 0$. Let $a \in (0,1)$ and $\overline{X} = (1-a)\omega_{t+1} +$ $a\omega_t$, then \bar{X} is a density matrix and is positive definite. Define $\Delta = \bar{X} - \omega_{t+1} = a(\omega_t - \omega_{t+1})$. We have

$$
\Phi_t(\bar{X}) - \Phi_t(\omega_{t+1}) = a \nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) + B_{\Phi_t}(\bar{X}||\omega_{t+1})
$$

\n
$$
\leq a \nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) + \frac{\text{Tr}(\Delta^2)}{\lambda_{\min}(\omega_{t+1})}
$$

\n
$$
= a \nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) + \frac{a^2 \text{Tr}((\omega_t - \omega_{t+1})^2)}{\lambda_{\min}(\omega_{t+1})}
$$

The above inequality is due to [Audenaert and Eisert, 2005, Theorem 2]. Dividing by α on both sides, we have

$$
\frac{\Phi_t(\bar{X}) - \Phi_t(\omega_{t+1})}{a} \leq \nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) + \frac{a \operatorname{Tr}((\omega_t - \omega_{t+1})^2)}{\lambda_{\min}(\omega_{t+1})}
$$

So we can find α small enough such that the right hand side of the above inequality is negative. However, we would have $\Phi_t(\bar{X}) - \Phi_t(\omega_{t+1}) < 0$, which is a contradiction. So $\nabla \Phi_t(\omega_{t+1}) \bullet (\omega_t - \omega_{t+1}) > 0$. $\omega_{t+1}) \geq 0.$

C Proof of Theorem 4

Proof of Theorem 4. Note that for any density matrix φ , we have $M_t \bullet \varphi = \frac{1}{L} \ell'_t(\text{Tr}(E_t \omega_t)) \text{Tr}(E_t \varphi)$. Then, the regret bound for Matrix Multiplicative Weights [Arora and Kale, 2016, Theorem 3.1] implies that for any density matrix φ , we have

$$
\sum_{t=1}^{T} \ell'_t(\text{Tr}(E_t \omega_t)) \text{Tr}(E_t \omega_t) \leq \sum_{t=1}^{T} \ell'_t(\text{Tr}(E_t \omega_t)) \text{Tr}(E_t \varphi) + \eta LT + \frac{L \log(2^n)}{\eta}
$$

Here, we used the bound $M_t^2 \bullet \omega_t \leq 1$. Next, since ℓ_t is convex, we have

$$
\ell'_t(\mathrm{Tr}(E_t\omega_t))\mathrm{Tr}(E_t\omega_t) - \ell'_t(\mathrm{Tr}(E_t\omega_t))\mathrm{Tr}(E_t\varphi) \geq \ell_t(\mathrm{Tr}(E_t\omega_t)) - \ell_t(\mathrm{Tr}(E_t\varphi)).
$$

Using this bound, and the stated value of η , we get the required regret bound.

 \Box

.

.

.

D Proof of Theorem 6

Proof of Theorem 6. Let $\rho^* := \rho^{\otimes k}$ be an amplified version of ρ , over a Hilbert space of dimension $D := 2^{kn}$, for some k to be set later. Throughout, we maintain a classical description of a Ddimensional "amplified hypothesis state" ω_t^* , which we view as being the state of k registers with n

qubits each. We ensure that ω_t^* is always symmetric under permuting the k registers. Given ω_t^* , our actual n-qubit hypothesis state ω_t is then obtained by simply tracing out $k - 1$ of the registers.

Given an amplified hypothesis state ω^* , let E_t^* be a two-outcome measurement that acts on ω^* as follows: it applies the measurement E_t to each of the k registers separately, and accepts if and only if the fraction of measurements that accept equals b_t , up to an additive error at most $\varepsilon/2$.

Here is the learning strategy. Our initial hypothesis, $\omega_0^* := \mathbb{I}/D$, is the D-dimensional maximally mixed state, corresponding to $\omega_0 := \mathbb{I}/2^n$. (The *maximally mixed state* corresponds to the notion of a uniformly random quantum superposition.) For each $t \geq 1$, we are given descriptions of the measurements E_1, \ldots, E_t , as well as real numbers b_1, \ldots, b_t in [0, 1], such that $|b_i - \text{Tr}(E_i \rho)| \leq$ $\varepsilon/3$ for all $i \in [t]$. We would like to update our old hypothesis ω_{t-1}^* to a new hypothesis ω_t^* , ideally such that the difference $|\text{Tr}(E_{t+1}\omega_t) - \text{Tr}(E_{t+1}\rho)|$ is small. We do so as follows:

- Given b_t , as well classical descriptions of ω_{t-1}^* and E_t , decide whether $\text{Tr}(E_t^* \omega_{t-1}^*) \geq$ $1-\frac{\varepsilon}{6}.$
- If yes, then set $\omega_t^* := \omega_{t-1}^*$ (i.e., we do not change the hypothesis).
- Otherwise, let ω_t^* be the state obtained by applying E_t^* to ω_{t-1}^* and postselecting on E_t^* accepting. In other words, $\omega_t^* := \mathcal{M}(\omega_{t-1}^*)$, where $\mathcal M$ is the operator that postselects on acceptance by E_t^* (as defined above).

We now analyze this strategy. Call t "good" if $\text{Tr}\left(E_t^* \omega_{t-1}^*\right) \geq 1 - \frac{\varepsilon}{6}$, and "bad" otherwise. Below, we show that

- (i) there are at most $O(\frac{n}{\varepsilon^3} \log \frac{n}{\varepsilon})$ bad t's, and
- (ii) for each good t, we have $|\text{Tr}(E_t \omega_{t-1}) \text{Tr}(E_t \rho)| \leq \varepsilon$.

We start with claim (i). Suppose there have been ℓ bad t's, call them $t(1), \ldots, t(\ell)$, where $\ell \leq$ $(n/\varepsilon)^{10}$ (we justify this last assumption later, with room to spare). Then there were ℓ events where we postselected on E_t^* accepting ω_{t-1}^* . We conduct a thought experiment, in which the learning strategy maintains a quantum register initially in the maximally mixed state \mathbb{I}/D , and applies the postselection operator corresponding to E_t^* to the quantum register whenever t is bad. Let p be the probability that all ℓ of these postselection events succeed. Then by definition,

$$
p = \text{Tr}\Big(E_{t(1)}^*\omega_{t(1)-1}^*\Big)\cdots\text{Tr}\Big(E_{t(\ell)}^*\omega_{t(\ell)-1}^*\Big) \leq \left(1 - \frac{\varepsilon}{6}\right)^{\ell}.
$$

On the other hand, suppose counterfactually that we had started with the "true" hypothesis, ω_0^* := $\rho^* = \rho^{\otimes k}$. In that case, we would have

$$
\text{Tr}\left(E_{t(i)}^*\rho^*\right) = \text{Pr}\left[E_{t(i)} \text{ accepts } \rho \text{ between } \left(b_{t(i)} - \frac{\varepsilon}{2}\right)k \text{ and } \left(b_{t(i)} + \frac{\varepsilon}{2}\right)k \text{ times}\right]
$$
\n
$$
\geq 1 - 2e^{-2k(\varepsilon/6)^2}
$$

for all *i*. Here the second line follows from the condition that $|\text{Tr}(E_{t(i)}\rho) - b_{t(i)}| \leq \varepsilon/6$, together with the Hoeffding bound.

We now make the choice $k := \frac{C}{\varepsilon^2} \log \frac{n}{\varepsilon}$, for some constant C large enough that

$$
\text{Tr}\left(E_{t(i)}^*\rho^*\right) \ge 1 - \frac{\varepsilon^{10}}{400n^{10}}
$$

for all i. So by Theorem 5, all ℓ postselection events would succeed with probability at least

$$
1 - 2\sqrt{\ell \frac{\varepsilon^{10}}{400n^{10}}} \ge 0.9.
$$

We may write the maximally mixed state, \mathbb{I}/D , as

$$
\frac{1}{D}\rho^* + \left(1 - \frac{1}{D}\right)\xi \ ,
$$

for some other mixed state ξ . For this reason, even when we start with initial hypothesis $\omega_0^* = \mathbb{I}/D$, all ℓ postselection events still succeed with probability

$$
p \ge \frac{0.9}{D} .
$$

Combining our upper and lower bounds on p now yields

$$
\frac{0.9}{2^{kn}} \le \left(1 - \frac{\varepsilon}{6}\right)^{\ell}
$$

or

$$
\ell = \mathcal{O}\left(\frac{kn}{\varepsilon}\right) = \mathcal{O}\left(\frac{n}{\varepsilon^3} \log \frac{n}{\varepsilon}\right),\,
$$

which incidentally justifies our earlier assumption that $\ell \leq (n/\varepsilon)^{10}$.

It remains only to prove claim (ii). Suppose that

$$
\text{Tr}\left(E_t^* \omega_{t-1}^*\right) \ge 1 - \frac{\varepsilon}{6} \tag{8}
$$

 \Box

Imagine measuring k quantum registers prepared in the joint state ω_{t-1}^* , by applying E_t to each register. Since the state ω_{t-1}^* is symmetric under permutation of the k registers, we have that $\text{Tr}(E_t\omega_{t-1})$, the probability that E_t accepts the first register, equals the expected fraction of the k registers that E_t accepts. The bound in Eq. [\(8\)](#page-4-0) means that, with probability at least $1 - \frac{\varepsilon}{6}$ over the measurement outcomes, the fraction of registers which E_t accepts is within $\pm \varepsilon/2$ of b_t . The k measurement outcomes are not necessarily independent, but the fraction of registers accepted never differs from b_t by more than 1. So by the union bound, we have

$$
|\text{Tr}(E_t\omega_{t-1}) - b_t| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{6} = \frac{2\varepsilon}{3}.
$$

Hence by the triangle inequality,

$$
|\text{Tr}(E_t\omega_{t-1}) - \text{Tr}(E_t\rho)| \leq \frac{2\varepsilon}{3} + |b_t - \text{Tr}(E_t\rho)| \leq \varepsilon ,
$$

as claimed.

E Proof of Corollary 7

We begin with a bound for a generalization of "random access coding" (Nayak [1999], Ambainis et al. [2002]) or what is also known as the Index function problem in communication complexity. The generalization was called "serial encoding" by Nayak [1999] and arose in the context of quantum finite automata. The serial encoding problem is also called Augmented Index in the literature on streaming algorithms.

The following theorem places a bound on how few qubits serial encoding may use. In other words, it bounds the number of bits we may encode in an n-qubit quantum state when an arbitrary bit out of the n may be recovered well via a two-outcome measurement. The bound holds even when the measurement for recovering y_i may depend adaptively on the previous bits $y_1y_2 \cdots y_{i-1}$ of y, *which we need not know*.

Theorem 15 (Nayak [1999]). Let k and n be positive integers. For each k-bit string $y := y_1 \cdots y_k$, *let* ρ_y *be an n*-qubit mixed state such that for each $i \in \{1, 2, \ldots, k\}$ *, there is a two-outcome measurement* E *that depends only on i and the prefix* $y_1y_2 \cdots y_{i-1}$ *, and has the following properties*

- *(i) if* $y_i = 0$ *then* $\text{Tr}(E \rho_y) \leq p$ *, and*
- *(ii) if* $y_i = 1$ *then* $\text{Tr}(E \rho_u) \geq 1 p$ *,*

where $p \in [0, 1/2]$ *is the error in predicting the bit* y_i *at vertex* v. (We say ρ_y "serially encodes" y.) *Then* $n \geq (1 - H(p))k$.

In Appendix [F,](#page-5-0) we present a strengthening of this bound when the bits of γ may be only be recovered in an adaptive order that is *a priori* unknown. The stronger bound may be of independent interest.

In the context of online learning, the measurements used in recovering bits from a serial encoding are required to predict the bits with probability bounded away from given "pivot points". Theorem [15](#page-4-1) may be specialized to this case as in Corollary 7, which we prove below.

Proof of Corollary 7. This is a consequence of Theorem [15,](#page-4-1) when combined with the following observation. Given the measurement operator E', parameter ε , and pivot point a_v as in the statement of the corollary, we define a new two-outcome measurement E to be associated with vertex v :

$$
E = \begin{cases} \frac{E'}{2a_v} & \text{if } a_v \ge \frac{1}{2} \end{cases}
$$
, and
$$
\frac{1}{2(1-a_v)} (E' + (1-2a_v) \mathbb{I}) \quad \text{if } a_v < \frac{1}{2} \end{cases}
$$
.

The measurement E may be interpreted as producing a fixed outcome 0 or 1 with some probability depending on a_v , and applying the given measurement E' with the remaining probability, so as to translate the pivot point a_v to $1/2$.

We may verify that the operator E satisfies the requirements (i) and (ii) of Theorem [15](#page-4-1) with $p \coloneqq$ $(1 - \varepsilon)/2$. We therefore conclude that $n \ge (1 - H((1 - \varepsilon)/2)k)$. Since $H(1/2 - \delta) \le 1 - 2\delta^2$, for $\delta \in [0, 1/2]$, we get $k = O(n/\varepsilon^2)$. \Box

F Lower bound on quantum random access codes

Here we present an alternative proof of the linear lower bound on quantum random access codes Nayak [1999], Ambainis et al. [2002]. It goes via the Matrix Multiplicative Weights algorithm, but gives us a slightly weaker dependence on decoding error. We also present an extension of the original bound to more general codes. These may be of independent interest.

Theorem 16. Let k and n be positive integers with $k > n$. For all k-bit strings $y = y_1, y_2, \ldots, y_k$, *let* ρ_y *be the* n-qubit quantum mixed state that encodes y. Let $p \in [0, 1/2]$ be an error tolerance $\emph{parameter.}\emph{ Suppose that there exist measurements } E_1,E_2,\ldots,E_k \emph{ such that for all } y \in \{0,1\}^k \emph{ and }$ *all* $i \in [k]$ *, we have* $|\text{Tr}(E_i \rho_y) - y_i|$ ≤ p. Then $n \ge \frac{(1/2-p)^2}{4(\log 2)}$ *k*.

Proof. Run the MMW algorithm described in Section 3.2 with the absolute loss function $\ell_t(x)$:= $|x - y_t|$ for $t = 1, 2, \ldots, k$ iterations. In iteration t, provide as feedback E_t and the label $y_t \in \{0, 1\}$ defined as follows:

$$
y_t = \begin{cases} 0 & \text{if } \text{Tr}(E_t \omega_t) > \frac{1}{2} \\ 1 & \text{if } \text{Tr}(E_t \omega_t) \leq \frac{1}{2} \end{cases}.
$$

Let $y \in \{0,1\}^k$ be the bit string formed at the end of the process. Then it is easy to check the following two properties by the construction of the labels: for any $t \in [k]$, we have

1. $\ell_t(\omega_t) = |\text{Tr}(E_t \omega_t) - y_t| \ge 1/2$, and 2. $\ell_t(\rho_y) = |\text{Tr}(E_t \rho_y) - y_t| \leq p.$

By Theorem 4, the MMW algorithm with absolute loss has a regret bound of $2\sqrt{(\log 2)kn}$. So the above bounds imply that $k/2 \leq pk + 2\sqrt{(\log 2)kn}$, which implies that $n \geq \frac{(1/2-p)^2}{4 \log 2}k$. \Box

Note that in the above proof, we may allow the measurement in the ith iteration, i.e., the one used to decode the *i*th bit, to depend on the previous bits $y_1, y_2, \ldots, y_{i-1}$. Thus, the lower bound also applies to serial encoding.

Next we consider encoding of bit-strings y into quantum states ρ_y with a more relaxed notion of decoding. The encoding is such that given the encoding for an unknown string y, *some* bit i_1 of y can be decoded. Given the value y_{i_1} of of this bit, a new bit i_2 of y can be decoded, and the index i_2 may depend on y_{i_1} . More generally, given a sequence of bits $y_{i_1}y_{i_2} \ldots y_{i_j}$ that may be decoded in this manner, a new bit i_{j+1} of y can be decoded, for any $j \in \{0, 1, \ldots, k-1\}$. Here, the index i_{j+1}

and the measurement used to recover the corresponding bit of η may depend on the sequence of bits $y_{i_1}y_{i_2} \ldots y_{i_j}$. We show that *even with this relaxed notion of decoding*, we cannot encode more than a linear number of bits into an n -qubit state.

We first formalize the above generalization of random access encoding. We view a complete binary tree of depth $d \geq 0$ as consisting of vertices $v \in \{0,1\}^{\leq d}$. The root of the tree is labeled by the empty string ϵ and each internal vertex v of the tree has two children v0, v1. We specify an adaptive sequence of measurements through a "measurement decision tree". The tree specifies the measurement to be applied next, given a prefix of such measurements along with the corresponding outcomes.

Definition 1. *Let* k *be a positive integer. A* measurement decision tree *of depth* k *is a complete binary tree of depth* k *, each internal vertex* v *of which is labeled by a triple* (S, i, E) *, where* $S \in \{1, \ldots, k\}^l$ *is a sequence of length* $l := |v|$ *of distinct indices,* $i \in \{1, \ldots, k\}$ *is an index that does not occur in S*, *and* E *is a two-outcome measurement. The sequences associated with the children* $v0, v1$ *of* v *(if defined)* are both equal to (S, i) .

For a k-bit string y, and sequence $S := (i_1, i_2, \ldots, i_l)$ with $0 \le l \le k$ and $i_j \in \{1, 2, \ldots, k\}$, let y_S denote the substring $y_{i_1}y_{i_2}\cdots y_{i_l}$.

Theorem 17. Let k and n be positive integers. For each k-bit string $y := y_1 \cdots y_k$, let ρ_y be *an* n*-qubit mixed state (we say* ρ^y *"encodes"* y*). Suppose there exists a measurement decision tree* T *of depth k such that for each internal vertex* v *of* T *<i>and all* $y \in \{0,1\}^k$ *with* $y_S = v$ *, where* (S, i, E) is the triple associated with the vertex v , we have $|\text{Tr}(E \rho_y) - y_i| \leq p_v$, where $p_v \in [0,1/2]$ is the *error in predicting the bit* y_i *at vertex* v. Then $n \geq (1 - \text{H}(p))k$, where H is the binary entropy function, and $p \coloneqq \frac{1}{k} \sum_{l=1}^k \frac{1}{2^l} \sum_{v \in \{0,1\}^l} p_v$ is the average error.

Proof. Let Y be a uniformly random k-bit string. We define a random permutation Π of $\{1, \ldots, k\}$ correlated with Y that is given by the sequence of measurements in the root to leaf path corresponding to Y. More formally, let $\Pi(1) := i$, where i is the index associated with the root of the measurement decision tree T. For $l \in \{2, \ldots, k\}$, let $\Pi(l) := j$, where j is the index associated with the vertex $Y_{\Pi(1)}Y_{\Pi(2)} \cdots Y_{\Pi(l-1)}$ of the tree T. Let Q be a quantum register such that the joint state of YQ is

$$
\frac{1}{2^k} \sum_{y \in \{0,1\}^k} |y\rangle\langle y| \otimes \rho_y .
$$

The quantum mutual information between Y and Q is bounded as $I(Y:Q) \leq |Q| = n$. Imagine having performed the first $l - 1$ measurements given by the tree T on state Q and having obtained the correct outcomes $Y_{\Pi(1)}Y_{\Pi(2)} \cdots Y_{\Pi(l-1)}$. These outcomes determine the index $\Pi(l)$ of the next bit that may be learned. By the Chain Rule, for any $l \in \{1, \ldots, k-1\}$,

$$
I(Y_{\Pi(l)} \cdots Y_{\Pi(k)} : Q \mid Y_{\Pi(1)} Y_{\Pi(2)} \cdots Y_{\Pi(l-1)})
$$

= $I(Y_{\Pi(l)} : Q \mid Y_{\Pi(1)} Y_{\Pi(2)} \cdots Y_{\Pi(l-1)}) + I(Y_{\Pi(l+1)} \cdots Y_{\Pi(k)} : Q \mid Y_{\Pi(1)} Y_{\Pi(2)} \cdots Y_{\Pi(l)})$.

Let E be the operator associated with the vertex $V := Y_{\Pi(1)} Y_{\Pi(2)} \cdots Y_{\Pi(l-1)}$. By hypothesis, the measurement E predicts the bit $Y_{\Pi(l)}$ with error at most p_V . Using the Fano Inequality, and averaging over the prefix V , we get

$$
I(Y_{\Pi(l)}:Q \mid Y_{\Pi(1)}Y_{\Pi(2)}\cdots Y_{\Pi(l-1)}) \geq \mathbb{E}_V(1 - H(p_V)) .
$$

Applying this repeatedly for $l \in \{1, \ldots, k-1\}$, we get

$$
I(Y:Q) = I(Y_{\Pi(1)}:Q) + I(Y_{\Pi(2)}:Q | Y_{\Pi(1)}) + I(Y_{\Pi(3)}:Q | Y_{\Pi(1)} Y_{\Pi(2)})
$$

+ \cdots + I(Y_{\Pi(k)}:Q | Y_{\Pi(1)} Y_{\Pi(2)} \cdots Y_{\Pi(k-1)})

$$
\geq \sum_{l=1}^{k} \frac{1}{2^{l}} \sum_{v \in \{0,1\}^{l}} (1 - H(p_{v}))
$$

$$
\geq (1 - H(p))k,
$$

by concavity of the binary entropy function, and the definition of p .

 \Box