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In this supplement we furnish proofs for the main text of “Algebraic tests of general Gaussian latent
tree models".

6 Proof of Corollary 2.2

We only sketch the proof here since it is exactly analogous to that of Theorem 3 in Shiers et al. [2016].
First, consider the special case where all the entries of Σ, and hence the the Pearson correlations ρpq ,
1 ≤ p 6= q ≤ m, are strictly positive. In this case condition (i)(a) is redundant. Via the isomorphsim

δpq = − log ρpq,

between the parametrizations in (2.1) and all T -induced pseudometrics, the discussion preceding
our corollary readily translates (2.2) into (i)(c), (ii)(b), (ii)(c) and (2.3) into (ii)(a), whereas the
triangular inequality property of pseudometrics is translated into (i)(b) for triples {p, q, r} that are
not in L. The general case of Σ with nonzero but not necessarily positive entries is then addressed by
incorporating condition (i)(a).

7 Proof of Lemma 2.1

To prove the lemma, we first collect all the required graphical notions borrowed from Semple and
Steel [2003]. We attempted to make this proof as self-contained as possible, but the readers are
encouraged to read Semple and Steel [2003] for more background on mathematical phylogenetics.

Suppose we are given a tree T = (V,E). If Ṽ is a subset of V , T (Ṽ ) denotes the minimal subtree of
T that contains all the nodes in Ṽ . If e ∈ E, T\e is the graph obtained by removing e, and T/e is the
tree obtained from T by identifying the ends of e and then deleting e. In particular, if v ∈ V is a node
of degree two and e is an edge incident with v, T/e is said to be obtained from T by suppressing v.
If v1, v2 ∈ V , phT (v1, v2) is the set of edges on the unique path connecting v1 and v2.

We will also need the notion of an X-tree. An X-tree, or semi-labeled tree on a set X, is an ordered
pair T = (T, φ), where T is a tree with node set V and φ : X → V is a (labeling) map with the
property that, for each v ∈ V of degree at most two, v ∈ φ(X). Note that φ is not necessarily
injective. Moreover, if X′ is a subset of X, T |X′ is the tree obtained from T (φ(X′)) by suppressing
all the nodes of degree two that are not in φ(X′). We then define the restriction of T to X′, denoted
T |X′, to be the X′-tree (T |X′, φ|X′).

Finally, we introduce the notion of X-split. For a set X, an X-split is a partition of X into two
non-empty sets. We denote the X-split whose blocks are A and B by A|B where the order of A and
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B in the notation doesn’t matter. Now suppose T = (T, φ) is an X-tree with an edge set E. For each
e ∈ E, T\e must consist of two components V e1 and V e2 which induce an X-split φ−1(V e1 )|φ−1(V e2 ).
We then define Σ(T ) := {φ−1(V e1 )|φ−1(V e2 ) : e ∈ E} as the collection of all X-splits induced by
T .

Important remark: In all the definitions above, X is not specified as a subset of the node set V for a
given tree. Nonetheless, when we have a tree T = (V,E) with a subset of observed nodes X ⊂ V
as in the main text, we will slightly abuse the notations by identifying T with the X-tree whose
labeling map is simply the identity function. Moreover, if X′ ⊂ X, we will also identify T |X′ with
the X′-tree that is the restriction of T (as an X-tree) to X′.

Now we begin to prove Lemma 2.1. The “only if" part of the theorem is trivial and we will only
prove the “if" part of the statement.

We recall that X = {X1, . . . , Xm}. Let δ be a pseudo-metric on X satisfying the two conditions
(2.2) and (2.3) in display. For any four distinct points p, q, r, s ∈ [m], given the tree structure of T
it must be true that phT (πp, πq) ∩ phT (πr, πs) = ∅ for some permutation π of p, q, r, s. By (2.2),
together with the fact that δ is a pseudo-metric, δ is in fact a tree metric (Semple and Steel [2003,
Theorem 7.2.6]), i.e., there exists an X-tree T̃ = (T̃ , φ̃) for a tree T̃ = (Ṽ , Ẽ) and a labeling map
φ̃ : X→ Ṽ , as well as a strictly positive weighting function w̃ : Ẽ −→ R>0 such that

δpq =

{ ∑
ẽ∈phT̃ (φ̃(Xp),φ̃(Xq))

w̃(ẽ) if φ̃(Xp) 6= φ̃(Xq)

0 : φ̃(Xp) = φ̃(Xq)

for all p, q ∈ [m]. By Theorem 6.3.5(i) and Lemma 7.1.4 in Semple and Steel [2003], to show that δ
can be induced from T it suffices to show that for any X′ ⊂ X of size at most 4, the two restricted
X′-trees T̃ |X′ and T |X′ are such Σ(T̃ |X′) ⊂ Σ(T |X′). Note that this is trivial for |X′| = 1 and
|X′| = 2. For 3 ≤ |X′| ≤ 4, we first note that

{Xp}|X′\{Xp} ∈ Σ(T̃ |X′) if and only if δpq+δpr−δqr > 0 for all Xq, Xr ∈ X′\{Xp} (7.1)
and

{Xp, Xq}|{Xr, Xs} ∈ Σ(T̃ |X′) if and only if
δpr + δqs − δpq − δrs > 0 ( and δps + δqr − δpq − δrs > 0). (7.2)

These characterization for the elements in Σ(T̃ |X′) can be easily checked; also see Semple and Steel
[2003, p.148] where these characterizations are stated. To finish the proof it remains to show that,
when 3 ≤ |X′| ≤ 4, any X′-split {Xp}|X′\{Xp} as in (7.1) or any X′-split {Xp, Xq}|{Xr, Xs} as
in (7.2) must also be an element of Σ(T |X′).

First, towards a contradiction, suppose there exists an X′-split {Xp}|X′\{Xp} that is an element
of Σ(T̃ |X′) but not an element of Σ(T |X′). Since {Xp}|X′\{Xp} is not an element of Σ(T |X′),
by considering T |X′ as a tree it must be the case that the node Xp has degree at least two. Then, by
condition (2.3), there must exist two distinctXq andXr in the set X′\{Xp} such that δpq+δpr = δqr.
But this reaches a contradiction since by (7.1) δpq + δpr − δqr > 0 as {Xp}|X′\{Xp} ∈ Σ(T̃ |X′).

Similarly, suppose {Xp, Xq}|{Xr, Xs} is an element of Σ(T̃ |X′) but not an element of Σ(T |X′).
Since {Xp, Xq}|{Xr, Xs} ∈ Σ(T̃ |X′), the two strict inequalities in (7.2) must be true. On the other
hand, if T |X′ has any of the configurations in Figure 2.2(a) − (c), since {Xp, Xq}|{Xr, Xs} 6∈
Σ(T |X′) it must be true that phT (p, q) ∩ phT (r, s) 6= ∅, in which case it must lead to either
phT (p, r) ∩ phT (q, s) = ∅ or phT (p, s) ∩ phT (q, r) = ∅, contradicting one of the inequalities in
(7.2) by condition (2.2). If T |X′ has the configuration in Figure 2.2(d) or (e), then it must be the
case that both phT (p, r)∩ phT (q, s) and phT (p, s)∩ phT (q, r) are empty sets, which also contradict
both inequalities in (7.2) by condition (2.2).

References
Charles Semple and Mike Steel. Phylogenetics, volume 24 of Oxford Lecture Series in Mathematics and its

Applications. Oxford University Press, Oxford, 2003.

N. Shiers, P. Zwiernik, J. A. D. Aston, and J. Q. Smith. The correlation space of Gaussian latent tree models and
model selection without fitting. Biometrika, 103(3):531–545, 2016.

2


	Proof of Corollary 2.2
	Proof of Lemma 2.1

