Supplement for: Algebraic tests of general Gaussian latent tree models

Dennis Leung Department of Data Sciences and Operations University of Southern California dmhleung@uw.edu

Mathias Drton Department of Statistics, University of Washington & Department of Mathematical Sciences, University of Copenhagen md5@uw.edu

In this supplement we furnish proofs for the main text of "Algebraic tests of general Gaussian latent tree models".

6 Proof of Corollary 2.2

We only sketch the proof here since it is exactly analogous to that of Theorem 3 in [Shiers et al.](#page-1-0) [\[2016\]](#page-1-0). First, consider the special case where all the entries of Σ , and hence the the Pearson correlations ρ_{pq} , $1 \le p \ne q \le m$, are strictly positive. In this case condition $(i)(a)$ is redundant. Via the isomorphsim

$$
\delta_{pq} = -\log \rho_{pq},
$$

between the parametrizations in (2.1) and all T-induced pseudometrics, the discussion preceding our corollary readily translates (2.2) into $(i)(c)$, $(ii)(b)$, $(ii)(c)$ and (2.3) into $(ii)(a)$, whereas the triangular inequality property of pseudometrics is translated into $(i)(b)$ for triples $\{p, q, r\}$ that are not in L. The general case of Σ with nonzero but not necessarily positive entries is then addressed by incorporating condition $(i)(a)$.

7 Proof of Lemma 2.1

To prove the lemma, we first collect all the required graphical notions borrowed from [Semple and](#page-1-1) [Steel](#page-1-1) [\[2003\]](#page-1-1). We attempted to make this proof as self-contained as possible, but the readers are encouraged to read [Semple and Steel](#page-1-1) [\[2003\]](#page-1-1) for more background on mathematical phylogenetics.

Suppose we are given a tree $T = (V, E)$. If \tilde{V} is a subset of V, $T(\tilde{V})$ denotes the minimal subtree of T that contains all the nodes in \tilde{V} . If $e \in E$, $T \backslash e$ is the graph obtained by removing e, and T/e is the tree obtained from T by identifying the ends of e and then deleting e. In particular, if $v \in V$ is a node of degree two and e is an edge incident with v, T/e is said to be obtained from T by *suppressing* v. If $v_1, v_2 \in V$, $ph_T(v_1, v_2)$ is the set of edges on the unique path connecting v_1 and v_2 .

We will also need the notion of an X -tree. An X -tree, or semi-labeled tree on a set X , is an ordered pair $\mathcal{T} = (T, \phi)$, where T is a tree with node set V and $\phi : \mathbf{X} \to V$ is a (labeling) map with the property that, for each $v \in V$ *of degree at most two*, $v \in \phi(\mathbf{X})$. Note that ϕ is not necessarily injective. Moreover, if **X'** is a subset of **X**, $T|\mathbf{X}'$ is the tree obtained from $T(\phi(\mathbf{X}'))$ by suppressing all the nodes of degree two that are not in $\phi(\mathbf{X}')$. We then define the *restriction of* $\mathcal T$ *to* \mathbf{X}' , denoted $\mathcal{T}|\mathbf{X}'$, to be the $\mathbf{X}^{\mathcal{T}}$ -tree $(T|\mathbf{X}', \phi|\mathbf{X}')$.

Finally, we introduce the notion of X-*split*. For a set X, an X-split is a partition of X into two non-empty sets. We denote the X-split whose blocks are A and B by $A|B$ where the order of A and

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

B in the notation doesn't matter. Now suppose $\mathcal{T} = (T, \phi)$ is an **X**-tree with an edge set E. For each $e \in E$, $T \setminus e$ must consist of two components V_1^e and V_2^e which induce an **X**-split $\phi^{-1}(V_1^e) | \phi^{-1}(V_2^e)$. We then define $\Sigma(\mathcal{T}) := \{ \phi^{-1}(V_1^e) \mid \phi^{-1}(V_2^e) : e \in \overline{E} \}$ as the collection of all **X**-splits induced by \mathcal{T} .

Important remark: In all the definitions above, X is not specified as a subset of the node set V for a given tree. Nonetheless, when we have a tree $T = (V, E)$ with a subset of observed nodes $X \subset V$ as in the main text, we will slightly abuse the notations by identifying T with the X-tree whose labeling map is simply the identity function. Moreover, if $X' \subset X$, we will also identify $T|X'$ with the X' -tree that is the restriction of T (as an X -tree) to X' .

Now we begin to prove Lemma [2.1.](#page-0-0) The "only if" part of the theorem is trivial and we will only prove the "if" part of the statement.

We recall that $X = \{X_1, \ldots, X_m\}$. Let δ be a pseudo-metric on X satisfying the two conditions [\(2.2\)](#page-0-0) and [\(2.3\)](#page-0-0) in display. For any four distinct points $p, q, r, s \in [m]$, given the tree structure of T it must be true that $ph_T(\pi_p, \pi_q) \cap ph_T(\pi_r, \pi_s) = \emptyset$ for some permutation π of p, q, r, s. By [\(2.2\)](#page-0-0), together with the fact that δ is a pseudo-metric, δ is in fact a *tree metric* [\(Semple and Steel](#page-1-1) [\[2003,](#page-1-1) Theorem 7.2.6]), i.e., there exists an **X**-tree $\tilde{\mathcal{T}} = (\tilde{T}, \tilde{\phi})$ for a tree $\tilde{T} = (\tilde{V}, \tilde{E})$ and a labeling map $\tilde{\phi}$: $\mathbf{X} \to \tilde{V}$, as well as a *strictly positive* weighting function $\tilde{w} : \tilde{E} \longrightarrow \mathbb{R}_{>0}$ such that

$$
\delta_{pq} = \begin{cases} \sum_{\tilde{e} \in ph_{\tilde{T}}(\tilde{\phi}(X_p), \tilde{\phi}(X_q))} \tilde{w}(\tilde{e}) & \text{if } \tilde{\phi}(X_p) \neq \tilde{\phi}(X_q) \\ 0 & \text{if } \tilde{\phi}(X_p) = \tilde{\phi}(X_q) \end{cases}
$$

for all $p, q \in [m]$. By Theorem 6.3.5(*i*) and Lemma 7.1.4 in [Semple and Steel](#page-1-1) [\[2003\]](#page-1-1), to show that δ can be induced from T it suffices to show that for any $X' \subset X$ of size at most 4, the two restricted \mathbf{X}' -trees $\tilde{\mathcal{T}}|\mathbf{X}'$ and $T|\mathbf{X}'$ are such $\Sigma(\tilde{\mathcal{T}}|\mathbf{X}') \subset \Sigma(T|\mathbf{X}')$. Note that this is trivial for $|\mathbf{X}'| = 1$ and $|\mathbf{X}'| = 2$. For $3 \leq |\mathbf{X}'| \leq 4$, we first note that

$$
\{X_p\}|\mathbf{X}'\backslash\{X_p\}\in\Sigma(\tilde{\mathcal{T}}|\mathbf{X}')\text{ if and only if }\delta_{pq}+\delta_{pr}-\delta_{qr}>0\text{ for all }X_q,X_r\in\mathbf{X}'\backslash\{X_p\}\quad(7.1)
$$

and

$$
\{X_p, X_q\}|\{X_r, X_s\} \in \Sigma(\tilde{\mathcal{T}}|\mathbf{X}') \text{ if and only if}
$$

$$
\delta_{pr} + \delta_{qs} - \delta_{pq} - \delta_{rs} > 0 \text{ (and } \delta_{ps} + \delta_{qr} - \delta_{pq} - \delta_{rs} > 0). \quad (7.2)
$$

These characterization for the elements in $\Sigma(\tilde{\mathcal{T}}|\mathbf{X}')$ can be easily checked; also see [Semple and Steel](#page-1-1) [\[2003,](#page-1-1) p.148] where these characterizations are stated. To finish the proof it remains to show that, when $3 \leq |\mathbf{X'}| \leq 4$, any $\mathbf{X'}$ -split $\{X_p\}|\mathbf{X'}\backslash\{X_p\}$ as in [\(7.1\)](#page-1-2) or any $\mathbf{X'}$ -split $\{X_p, X_q\}|\{X_r, X_s\}$ as in [\(7.2\)](#page-1-3) must also be an element of $\Sigma(T|\mathbf{X}')$.

First, towards a contradiction, suppose there exists an \mathbf{X}' -split $\{X_p\}|\mathbf{X}'\backslash\{X_p\}$ that is an element of $\Sigma(\tilde{\mathcal{T}}|\mathbf{X}')$ but not an element of $\Sigma(T|\mathbf{X}')$. Since $\{X_p\}|\mathbf{X}'\backslash\{X_p\}$ is not an element of $\Sigma(T|\mathbf{X}')$, by considering $T|\mathbf{X}'$ as a tree it must be the case that the node X_p has degree at least two. Then, by condition [\(2.3\)](#page-0-0), there must exist two distinct X_q and X_r in the set $\mathbf{X}'\backslash\{X_p\}$ such that $\delta_{pq} + \delta_{pr} = \delta_{qr}$. But this reaches a contradiction since by [\(7.1\)](#page-1-2) $\delta_{pq} + \delta_{pr} - \delta_{qr} > 0$ as $\{X_p\} | \mathbf{X}' \setminus \{X_p\} \in \Sigma(\tilde{\mathcal{T}} | \mathbf{X}')$.

Similarly, suppose $\{X_p, X_q\}|\{X_r, X_s\}$ is an element of $\Sigma(\tilde{\mathcal{T}}|\mathbf{X}')$ but not an element of $\Sigma(T|\mathbf{X}')$. Since $\{X_p, X_q\}|\{X_r, X_s\} \in \Sigma(\tilde{\mathcal{T}}|\mathbf{X}')$, the two strict inequalities in [\(7.2\)](#page-1-3) must be true. On the other hand, if $T|\mathbf{X}'|$ has any of the configurations in Figure [2.2](#page-0-0)(a) – (c), since $\{X_p, X_q\}|\{X_r, X_s\} \notin$ $\Sigma(T|\mathbf{X}')$ it must be true that $ph_T(p,q) \cap ph_T(r,s) \neq \emptyset$, in which case it must lead to either $ph_T(p,r) \cap ph_T(q,s) = \emptyset$ or $ph_T(p,s) \cap ph_T(q,r) = \emptyset$, contradicting one of the inequalities in [\(7.2\)](#page-1-3) by condition [\(2.2\)](#page-0-0). If $T|\mathbf{X}'|$ has the configuration in Figure [2.2](#page-0-0)(d) or (e), then it must be the case that both $ph_T(p, r) \cap ph_T(q, s)$ and $ph_T(p, s) \cap ph_T(q, r)$ are empty sets, which also contradict both inequalities in [\(7.2\)](#page-1-3) by condition [\(2.2\)](#page-0-0).

References

Charles Semple and Mike Steel. *Phylogenetics*, volume 24 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2003.

N. Shiers, P. Zwiernik, J. A. D. Aston, and J. Q. Smith. The correlation space of Gaussian latent tree models and model selection without fitting. *Biometrika*, 103(3):531–545, 2016.