
This is the supplementary material for the paper: “Relating Leverage Scores and Density using
Regularized Christoffel Functions”.

A Additional properties and numerical simulations

Monotonicity properties. It is obvious from the definition in (1) that the regularized Christoffel
function is an increasing function of λ, it is also concave. If p and p̃ are as in Assumption 1.2, for any
λ > 0, z ∈ Rd

Cλ,p+p̃,k(z) = inf
f∈Hz

‖f‖2L2(p+p̃) + λ‖f‖2H ≥ inf
f∈Hz

‖f‖2L2(p) + λ‖f‖2H = Cλ,p,k(z),

that is, the regularized Christoffel function is an increasing function of the underlying density.

The Christoffel function is also monotonic with respect to kernel choice. For any two positive definite
kernels k and k′, we have for any λ > 0,

Cλ,p,k+k′ ≤ Cλ,p,k′ ,

that is, the regularized Christoffel function is a decreasing function of the underlying kernel. Indeed,
for any positive definite kernels k and k′, denote by H the RKHS associated to k and H̃ the RKHS
associated to k + k′. We have H ⊂ H̃ and ‖ · ‖H̃ ≤ ‖ · ‖H [3, Section 7, Theorem I].

Overfitting. We are interested in the asymptotic behavior of the Christoffel function as the regular-
ization parameter λ tends to 0. This is approximated based on n points using the plug-in approach
in Section 2.4. For a fixed value of n, the empirical measure dρn is supported on only n points and
the asymptotic as λ → 0 is straightforward. For example if Theorem 2 (ii) holds, then we obtain
O(λ) outside of the support and ηi at each support point xi, i = 1, . . . , n. This is because the quality
of approximation of p by dρn depends on the regularity of the corresponding test functions. Small
values of the regularization parameter λ allow to consider functions with very low regularity so
that the approximation become vacuous and the obtained estimate only reflects the finiteness of the
support of dρn. This phenomenon is illustrated in Figure 3. Hence, when using the proposed plug-in
approach, it is fundamental to carefully tune the considered value of λ as a function of n. Theoretical
guidelines for measuring this trade-off are left for future research, in our experiments, this is done on
an empirical basis (we prove below a loose sufficient condition, where λ2n1/2 has to be large).
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Figure 3: Illustration of the overfitting phenomenon. The target density p is represented in red.
We approximate it by dρn supported on the black dots with corresponding weights ηi proportional
to p(xi), i = 1, . . . , n. For λ = 10−3, we use Eq. (2) to compute the corresponding empirical
Christoffel function represented in dark blue.

Monte Carlo approximation: Assuming that
∫
Rd p(x)dx = 1, if one has the possibility to draw an

i.i.d. sample (xi)i=1,...,n, with density p, then one can use ηi = 1
n for i = 1, . . . , n. Our estimators

take the form Ĉλ(z)−1 =
〈
k(z, ·), (Σ̂ + λI)−1k(z, ·)

〉
H

, where Σ̂ is the empirical covariance
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operator. Thus, we have:∣∣∣Ĉλ(z)−1 − Cλ(z)−1
∣∣∣ ≤ ∣∣∣〈k(z, ·),

[
(Σ̂ + λI)−1 − (Σ + λI)−1

]
k(z, ·)

〉
H

∣∣∣
≤ ‖k(z, ·)‖2H‖(Σ̂ + λI)−1 − (Σ + λI)−1‖op

≤ k(z, z)λ−2‖Σ− Σ̂‖op .

(8)

Since, ‖Σ− Σ̂‖op is of order n−1/2 (see, e.g., [25]), if λ2n1/2 is large enough, then we obtain a good
estimation of the Christoffel function (note that better bounds could be obtained with respect to λ
using tools from [6, 2, 28]).

Gaussian kernel: A natural question is whether Theorem 1 holds for the Gaussian kernel

k : (x, y) 7→ e
‖x−y‖2

l where l > 0 is a bandwidth parameter. For this choice of kernel, D(λ)
is of the order of −1/ log(λ), which decreases very slowly. We conjecture that Assumption 2 fails in
this setting and that Theorem 1 does not hold. Indeed, performing the same simulation as in Section 4
with a piecewise constant density, we observe that the localization phenomenon no longer holds.
This is presented in Figure 4 which displays important boundary effects around discontinuities. For
comparison purpose, Figure 5 gives the same result for Mattérn kernels.
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Figure 4: Estimate of the Christoffel function for the Gaussian kernel, different values of the
bandwidth and a piecewise constant density. The setting is the same as in the experiment presented in
Section 4. The behavior at the discontinuities suggest that variations of the density affect the value of
the Christoffel function beyond the local scale described in Theorem 1.

l = 0.2 , ν = 3 l = 0.2 , ν = 4

l = 0.2 , ν = 1 l = 0.2 , ν = 2
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Figure 5: Estimate of the Christoffel function for the Mattèrn kernel, different values of the parameters
and a piecewise constant density. The setting is the same as in the experiment presented in Section 4.
The behavior at the discontinuities suggest that variations of the density affect the value of the
Christoffel only at the local scale described in Theorem 1.

Illustration in dimension 2: For illustration purpose, we consider a density on the unit square in
dimension 2 and compare it with the estimate obtained from the regularized Christoffel function
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using the Riemann plug-in approximation procedure. We choose the Matérn kernel with ν = 1 and
l = 0.2 and λ = 0.001. Figure 6 illustrates the correspondence between the true density and the
obtained estimate.

λ = 0.001 True density
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Figure 6: Comparison between the level sets of a given density (right) and the estimate given by the
empirical Christoffel function with ν = 1, l = 0.2 and λ = 0.001 (left). We use the Riemann plug-in
approximation procedure with a grid of 2025 points on [−1.5, 1.5]2. The estimate captures both the
round shape of the level sets in the middle and the squared shape of the support ([−1, 1]2).

B Proofs

B.1 Proof of Theorem 1

The proof is organized as follows, first we will prove an upper bound on Cλ which is of the order
of the claimed equivalent plus negligible terms. In a second step we produce a lower bound on Cλ
which is of the same nature. Assumptions 1 and 2 are assumed to hold true throughout this section.

Recall that we have fλ = D(λ)gλ with the notations given in Eq. (3) of the main text. We will work
with z = 0 since the general result can be obtained by a simple translation. We consider p as in
Assumption 1 and assume throughout the section that p(0) = 1. This is without loss of generality
since p(0) > 0, one can substitute p by p/p(0) and λ by λ/p(0) and use

Cλ(0) = min
f∈H0

∫
Rd
f(x)2p(x)dx+ λ‖f‖2H = p(0) min

f∈H0

∫
Rd
f(x)2 p(x)

p(0)
dx+

λ

p(0)
‖f‖2H. (9)

Combining translations and scaling in (9), we only need to show that Cλ(0) ∼ D(λ) when p(0) = 1
and p is continuous at 0.

Upper bound: For any λ > 0, fλ is feasible for Cλ(0) in problem (1) and therefore, using
p(0) = 1,

Cλ(0) ≤
(∫

fλ(x)2dx+ λ‖fλ‖2H
)

+

∫
Rd

(p(x)− 1)f2
λ(x)dx

= D(λ) +

∫
Rd

(p(x)− 1)f2
λ(x)dx. (10)

We only need to control the last term. The result then follows from the next Lemma which proof is
postponed to Section B.2.

Lemma 3 As λ→ 0 with λ > 0,∫
Rd
fλ(x)2 (p(x)− 1) dx = o(D(λ)).

Combining (10) and Lemma 3, we obtain, as λ→ 0

Cλ(0) ≤ D(λ) + o(D(λ)). (11)
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Lower bound: To prove the lower bound, let E : t 7→ sup‖x‖≤t |p(x)− 1|. The quantity E is non
negative and we have limt→0E(t) = 0 by continuity of p. Choosing ε(λ) as given by Assumption 2,
we obtain for any λ > 0 sufficiently small, using p(0) = 1,

Cλ(0) ≥ inf
f∈H0

∫
‖x‖≤ε(λ)

f(x)2p(x)dx+ λ‖f‖2H

≥ inf
f∈H0

(1− E (ε (λ)))

∫
‖x‖≤ε(λ)

f(x)2dx+ λ‖f‖2H

≥ inf
f∈H0

(1− E (ε (λ)))

(∫
‖x‖≤ε(λ)

f(x)2dx+ λ‖f‖2H

)
. (12)

We need to control the last term. This is the purpose of the following Lemma which proof is postponed
to Section B.2.

Lemma 4 Let ε be given as in Assumption 2, then, as λ→ 0 with λ > 0, we have

inf
f∈H0

∫
‖x‖≤ε(λ)

f(x)2dx+ λ‖f‖2H ≥ D(λ) + o(D(λ)).

Combining (12) and Lemma 4, we obtain, as λ→ 0

Cλ(0) ≥ (1− E (ε (λ))) (D(λ) + o(D(λ))) = D(λ) + o(D(λ)). (13)

To conclude, combining (11) and (13), we obtain Cλ(0) ∼ D(λ) as claimed.

B.2 Lemmas for Section B.1 and proof of Lemma 1 of the main text

Proof of Lemma 1: Eq. (3) characterizes H and in particular, any function in H is in L2 so that
Parseval theorem holds. Furthermore for any f ∈ H, f̂ is in L2(Rd) ∩ L1(Rd) (see Remark 2).
Rewriting (5) in the Fourier domain, we have

D(λ) = inf
1

(2π)d

∫
Rd
|f̂(ω)|2 q̂(ω) + λ

q̂(ω)
dω

s.t. f̂ ∈ L2(Rd) ∩ L1(Rd)∫
Rd

|f̂(ω)|2

q̂(ω)
dω < +∞

1

(2π)d

∫
Rd
f̂(ω)dω = 1. (14)

The space H̃ =
{
f̂ ∈ L2(Rd) ∩ L1(Rd);

∫
Rd
|f̂(ω)|2
q̂(ω) dω < +∞

}
endowed with the inner product

1
(2π)d

〈
f̂1, f̂2

〉
Ĥ

=
∫
Rd

f̂1(ω)f̂2(ω)
q̂(ω) dω is a Hilbert space which is simply the image of H by the

Fourier transform. Problem (14) can be rewritten in a form that fits Lemma 5 below as follows

D(λ) = inf
〈
f̂ ,Mf̂

〉
Ĥ

s.t. f̂ ∈ H̃〈
f̂ , q̂
〉
H̃

= 1, (15)

where M is the operator which consists in multiplication by (q̂ + λ). For any f̂ ∈ H̃, we have
‖Mf̂‖2

H̃
≤ (λ+ ‖q̂‖L∞(Rd))

2‖f̂‖2
H̃

and M is bounded on H̃. Using Lemma 5, we get an expression
for the solution of the minimization problem in (14) of the form

f̂(ω) = D(λ)
q̂(ω)

q̂(ω) + λ
,
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for all ω ∈ Rd, where the optimal value D(λ), ensures that 〈f̂ , q̂〉H̃ = 1. We deduce the value of
D(λ) and get back to H by combining Eq. (3) with the inverse Fourier transform of f̂ which leads to
the claimed expression for fλ.

Proof of Lemma 3: Let E : t 7→ sup‖x‖≤t |p(x)− 1|. We have limt→0E(t) = 0 by continuity of p.
Let ε(λ) be given as in Assumption 2.∫

Rd
f2
λ(x) (p(x)− 1) dx

=

∫
‖x‖≥ε(λ)

f2
λ(x) (p(x)− 1) dx+

∫
‖x‖≤ε(λ)

f2
λ(x) (p(x)− 1) dx

≤ ‖p‖L∞(Rd)

∫
‖x‖≥ε(λ)

f2
λ(x)dx+ E(ε(λ))

∫
‖x‖≤ε(λ)

f2
λ(x)dx

≤ ‖p‖L∞(Rd)

∫
‖x‖≥ε(λ)

f2
λ(x)dx+ E(ε(λ))D(λ).

Using Assumption 2, as λ > 0, the first term is o(D(λ)) and the sum is also o(D(λ)). This proves
the desired result.

Proof of Lemma 4: Consider the surrogate problem, for any λ, ε > 0,

D̃ε(λ) = inf
g∈H0

∫
‖x‖≤ε

g(x)2dx+ λ‖g‖2H.

From Eq. (4), we have for all g ∈ H,

‖g‖2H =
1

(2π)d

∫
Rd

|ĝ(ω)|2

q̂(ω)
dω ≥ 1

(2π)d‖q̂‖∞

∫
Rd
|ĝ(ω)|2dω =

1

‖q̂‖∞

∫
Rd
g(x)2dx, (16)

where we have used Parseval identity. Note that ‖q̂‖∞ is finite since q is in L1. We fix arbitrary
λ > 0, ε > 0 and denote by Bε the Euclidean ball of radius ε. For any f, g ∈ H, we have using
Cauchy-Schwartz inequality,∣∣∣∣∫

Rd
f(x)g(x)dx

∣∣∣∣2 ≤ ∫
Rd

(f(x))2dx

∫
Rd

(g(x))2dx ≤ ‖q̂‖2L∞(Rd)‖f‖
2
H‖g‖2H∣∣∣∣∫

Bε

f(x)g(x)dx

∣∣∣∣2 ≤ ∫
Bε

(f(x))2dx

∫
Bε

(g(x))2dx ≤ ‖q̂‖2L∞(Rd)‖f‖
2
H‖g‖2H.

Hence both expressions define bounded symmetric bi-linear forms on H and there is a semidefinite
bounded self adjoint operator associated to each of these forms. We call the corresponding operators
Σ: H 7→ H and Mε : H 7→ H respectively, they satisfy for any f, g ∈ H,

〈f,Σg〉H =

∫
Rd
f(x)g(x)dx

〈f,Mεg〉H =

∫
Bε

f(x)g(x)dx.

We can apply Lemma 5 and the solution for D̃ε(λ) is proportional to g̃λ = (Mε + λI)−1K0 and the
value of this problem is g̃λ(0)−1 = 1

〈K0,g̃λ〉H
where K0 = k(0, ·) ∈ H. Similar reasoning hold for

gλ and D(λ). We have

D(λ)−1 − D̃ε(λ)−1 = gλ(0)− g̃λ(0) =
〈
K0, ((Σ + λI)−1 − (Mε + λI)−1)K0

〉
H

=
〈
K0, (Σ + λI)−1(Mε − Σ)(Mε + λI)−1K0

〉
H

= 〈gλ,Mεg̃λ〉H − 〈gλ,Σg̃λ〉H

=

∫
‖x‖≥ε

gλ(x)g̃λ(x)dx.
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Hence, we obtain by Cauchy-Schwartz inequality

|gλ(0)− g̃λ(0)|2 =

(∫
‖x‖≥ε

gλ(x)g̃λ(x)dx

)2

≤
∫
‖x‖≥ε

gλ(x)2dx

∫
Rd
g̃λ(x)2dx.

From (16), we deduce that∫
Rd
g̃2
λ(x)dx ≤ ‖q̂‖∞‖g̃λ‖2H = ‖q̂‖∞D̃ε(λ)−2‖f̃λ‖2H ≤ ‖q̂‖∞

1

λD̃ε(λ)
,

and obtain,

|gλ(0)− g̃λ(0)|2 ≤ ‖q̂‖∞D̃ε(λ)−1λ−1

∫
‖x‖≥ε

gλ(x)2dx

≤ ‖q̂‖∞D̃ε(λ)−1λ−1D(λ)−2

∫
‖x‖≥ε

fλ(x)2dx.

Now using Assumption 2, we can set ε = ε(λ), so that as λ → 0, |gλ(0) − g̃λ(0)|2 =

o(D̃ε(λ)(λ)−1D(λ)−1) and, using D̃ε(λ) ≤ D(λ),

|D(λ)− D̃ε(λ)(λ)| = o

(√
D̃ε(λ)(λ)D(λ)

)
= o(D(λ)).

Hence, as λ→ 0, we obtain D̃ε(λ)(λ) ≥ D(λ) + o(D(λ)) as claimed.

B.3 Proof of Theorem 2

Similarly as in Section B.1, we assume that z = 0, and there exists ε > 0 such that
∫
‖x‖≤ε p(x)dx = 0.

In this case, we have for any λ′ such that ε(λ′) ≤ ε and any λ > 0,

Cλ(0) = inf
f∈H0

∫
Rd
f(x)2p(x)dx+ λ‖f‖2H

≤
∫
Rd
p(x)fλ′(x)2dx+ λ‖fλ′‖2H

≤ ‖p‖∞
∫
‖x‖>ε(λ′)

fλ′(x)2dx+ λ‖fλ′‖2H

≤ o(D(λ′)λ′) + (λ/λ′)D(λ′).

Taking λ′ =
√
λ proves case (i).

Case (ii) in Theorem 2 follows from a simple argument, using the variational formulation in (1).
Consider a C∞ function which evaluates to 1 at 0 and to 0 outside of the ball of radius ε centered
at 0. Call this function fε. This function is feasible for problem (1) for any value of λ and hence we
have Cλ(z) ≤ λ‖fε‖H, for all λ > 0. Note that it follows from Eq. (3) that ‖fε‖H must be finite
since fε is C∞ which implies that f̂ε is decreasing to 0 faster than any polynomial at infinity and our
added assumptions on the kernel imply that f̂ε is in H.

B.4 Proofs for Section 3.3

Proof of Lemma 2 (i): Lemma 1 provides an analytic description of D(λ) and a characterization of
the solution fλ. We prove the asymptotic expansion of D(λ) as λ→ 0. We have

ĝλ : ω 7→ 1

1 + λ(P (ω))γ
,

16



and hence, denoting by R, the polynomial P −Q which is of degree at most 2s− 1, for any x ∈ Rd,

gλ(x) =
1

(2π)d

∫
Rd

eix
>ω

1 + λ(P (ω))γ
dω

=
λ−d/(2sγ)

(2π)d

∫
Rd

ei(xλ
−1/(2sγ))>(ωλ1/(2sγ))

1 +
(
λ

1
γR(ω) +Q(ωλ1/(2sγ))

)γ λd/(2sγ)dω

=
λ−d/(2sγ)

(2π)d

∫
Rd

ei(xλ
−1/(2sγ))>ω

1 +
(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ dω. (17)

We deduce the following∣∣∣gλ(0)− λ−d/(2sγ)q0

∣∣∣ =

∣∣∣∣∣∣λ
−d/(2sγ)

(2π)d

∫
Rd

 1

1 +
(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ − 1

1 + (Q(ω))γ

 dω

∣∣∣∣∣∣
=
λ−d/(2sγ)

(2π)d

∫
Rd

(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ
− (Q(ω))γ(

1 +
(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ)
(1 + (Q(ω))γ)

dω

≤ λ−d/(2sγ)

(2π)d

∫
Rd

γ
(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ−1

λ
1
γR(ωλ−1/(2sγ))(

1 +
(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ)
(1 + (Q(ω))γ)

dω,

(18)

where we have used the fact that for any x, y ≥ 0, (x+ y)γ ≤ γ(x+ y)γ−1x+ yγ which is a direct
application of Taylor-Lagrange inequality. Now consider a constant, M , as given by Lemma 6 such
that

R ≤M(1 +Q
2s−1
2s ).

We have for any λ > 0 and any ω ∈ Rd,

λ
1
γR(ωλ−1/(2sγ)) ≤M

(
λ

1
γ + λ

1
γQ(ωλ−1/(2sγ))

2s−1
2s

)
= M

(
λ

1
γ + λ

1
2sγQ(ω)

2s−1
2s

)
= Mλ

1
2sγ

(
λ

2s−1
2sγ +Q(ω)

2s−1
2s

)
≤M2

1
2sλ

1
2sγ

(
λ

1
γ +Q(ω)

) 2s−1
2s

≤M2
1
2sλ

1
2sγ

(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

) 2s−1
2s

, (19)

where we have used Jensen’s inequality and the fact that R ≥ 1 from Assumption 3 for the last two
identities. Combining (18) and (19), we obtain for any λ ≥ 0

∣∣∣gλ(0)− λ−d/(2sγ)q0

∣∣∣ ≤ λ 1−d
2sγ

Mγ2
1
2s

(2π)d

∫
Rd

(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ− 1
2s(

1 +
(
λ

1
γR(ωλ−1/(2sγ)) +Q(ω)

)γ)
(1 + (Q(ω))γ)

dω.

(20)

A standard computation ensures that for any x ≥ 0

xγ−
1
2s

1 + xγ
=

(xγ)
1− 1

2sγ

1 + xγ
≤ (1 + xγ)

1− 1
2sγ

1 + xγ
= (1 + xγ)

− 1
2sγ ≤ 1. (21)

Combining (20) and (21) we obtain for all λ > 0,∣∣∣gλ(0)− λ−d/(2sγ)q0

∣∣∣ ≤ λ 1−d
2sγ

Mγ2
1
2s

(2π)d

∫
Rd

1

(1 + (Q(ω))γ)
dω. (22)
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In particular, we deduce from (22) that
1

D(λ)
= gλ(0) = q0λ

−d/(2sγ) +O(λ(1−d)/(2sγ)).

So that D(λ) = λd/(2sγ)

q0
+O(λ(1+d)/(2sγ)) which is the desired result.

Proof of Lemma 2 (ii): We verify that the choice of p ∈ N∗ ensures that 2p ∈ [2sγ, 4sγ). Indeed, if
sγ ≥ 1, we have by definition of the upper integral part that 2sγ ≤ 2p < 2sγ + 2 ≤ 4sγ. If sγ < 1,
we have p = 1 and 2sγ > d ≥ 1 so that 2sγ ≤ 2p = 2 < 4sγ. We deduce from Lemma 9 that there
exists a constant N such that for any ω ∈ Rd and λ > 0,∣∣∣∣∣∂2pĝλ(ω)

∂ω2p
1

∣∣∣∣∣ ≤ Nλĝλ(ω). (23)

Hence successive derivatives of ĝλ are in L1. Differentiating under the integral sign for the Fourier
transform ensures that differentiation in the Fourier domain amounts to multiplication by a monomial
in the space domain, we obtain the following bound:

sup
x∈Rd

|x2p
1 gλ(x)| ≤ 1

(2π)d

∫
Rd

∣∣∣∣∣∂2pĝλ(ω)

∂ω2p
1

∣∣∣∣∣ dω.
Evaluating the inverse Fourier transform of ĝλ at 0, using (23), we have for any λ > 0

sup
x∈Rd

|x2p
1 gλ(x)| ≤ Nλ

D(λ)
,

and
sup
x∈Rd

|x2p
1 fλ(x)| ≤ Nλ.

The choice of x1 was arbitrary and similar results hold for all coordinates. We deduce that there
exists M1 > 0 such that for all x ∈ Rd and λ > 0

f2
λ(x)

‖x‖8p

1 + ‖x‖6p
≤M1λ

2 ‖x‖4p

1 + ‖x‖6p
.

Note that the right hand side function is integrable since 2p ≥ 2sγ > d. We have for any l > 0 and
λ ∈ (0, 1),∫

‖x‖≥λl
f2
λ(x)

‖x‖8p

1 + ‖x‖6p
dx ≥ λ8pl

1 + λ6pl

∫
‖x‖≥λl

f2
λ(x)dx ≥ λ8pl

2

∫
‖x‖≥λl

f2
λ(x)dx

Combining the last two inequalities, we obtain∫
‖x‖≥λl

f2
λ(x)dx ≤M2λ

2−8pl,

for some constant M2 and any λ ∈ (0, 1). Choosing l <
(

1− d
2sγ

)
/(8p) ensures that

2− 8pl > 1 + d
2sγ and hence λ2−8pl = o(λD(λ)), using Lemma 2 (i). This is the desired result.

C Additional Lemmas

Lemma 5 Let H be a complex Hilbert space with Hermitian form 〈·, ·〉H , let M : H → H be a
bounded Hermitian invertible and positive operator and let u ∈ H . Then

1

〈u,M−1u〉H
= min

x∈H
〈x,Mx〉H

s.t. 〈x, u〉H = 1 ,

and the optimal value is attained for x0 = M−1u
〈u,M−1u〉H

.
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Proof For any y ∈ H , we have

〈y,My〉H = 〈y − x0 + x0,M(y − x0 + x0)〉H
= 〈y − x0,M(y − x0)〉H + 〈x0,Mx0〉H + 〈y − x0,Mx0〉H + 〈Mx0, y − x0〉H

= 〈y − x0,M(y − x0)〉H +
1

〈u,M−1u〉H
(1 + 〈y − x0, u〉H + 〈u, y − x0〉H)

≥ 1

〈u,M−1u〉H
(1 + 〈y − x0, u〉H + 〈u, y − x0〉H) . (24)

Now assume that y is feasible, that is 〈y, u〉H = 1, since x0 is also feasible, we have
〈y − x0, u〉H = 〈u, y − x0〉H = 0. This observation combined with the last inequality (24)
concludes the proof.

Lemma 6 Let P be a 2s-positive d-variate polynomial as given in Definition 2 and let Q be its
2s-homogeneous part. Let T be a d-variate polynomial of degree at most t ∈ N. Then there exists a
positive constant M such that

T ≤M
(

1 +Q
t
2s

)
T ≤MP

t
2s .

Proof Consider the following quantity

M1 = max
ω∈Rd, ω 6=0

‖ω‖∞
Q(ω)

1
2s

, (25)

Note that, this quantity is well defined because the objective function is homogeneous of degree 0,
which means invariant by positive scaling. Furthermore, we have for all ω ∈ Rd, that ‖ω‖∞ ≤
M1Q(ω)

1
2s . Now consider any monomial of the form ωβ for some multi index β ∈ Nd, with |β| ≤ t,

we have for any ω

|ωβ | ≤ ‖ω‖|β|∞ ≤M
|β|
1 Q(ω)

|β|
2s ≤M |β|1

(
1 +Q(ω)

t
2s

)
,

Since T is of degree at most t, this must hold for all the monomials of T . The first result follows by a
simple summation over monomials of degree up to t. The second result follows similarly by using

|ωβ | ≤ ‖ω‖|β|∞ ≤M
|β|
1 Q(ω)

|β|
2s ≤M |β|1 P (ω)

|β|
2s ≤M |β|1 P (ω)

t
2s ,

where the last inequality holds because P ≥ 1.

Lemma 7 : Faà di Bruno Formula. Let f : (0,+∞) 7→ R and g : Rd 7→ [1,+∞) be infinitely
differentiable functions. Then we have for any n ∈ N∗

∂n

∂xn1
f ◦ g(x) =

∑
π∈Π

f (|π|)(g(x))
∏
B∈π

∂|B|g

∂x
|B|
1

(x),

where Π denotes all partitions of {1, . . . , n}, the product is over subsets of {1, . . . , n} given by the
partition π and | · | denotes the number of elements of a set. We rewrite this as follows

∂n

∂xn1
f ◦ g(x) =

n∑
k=1

∑
π∈Πk

f (k)(g(x))
∏
B∈π

∂|B|g

∂x
|B|
1

(x),

where Πk denotes all partitions of size k of {1, . . . , n}.

Proof This is a special case of the result stated in [15, Propositions 1 and 2].
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Lemma 8 Let P be a 2s-positive d-variate polynomial as given in Definition 2 and let γ ≥ 1 and
m ∈ N∗. Then there exists a positive constant Mm, such that

∂m

∂xm1
P γ ≤MmP

γ−m2s .

Proof We apply Lemma 7 with f = (·)γ and g = P . We fix k ∈ {1, . . . ,m}, and π a partition of
{1, . . . ,m} of size k. The i-th derivative of P is a polynomial of degree at most 2s− i. Hence the
quantity ∏

B∈π

∂|B|P

∂x
|B|
1

is a d-variate polynomial of degree at most 2sk −m, because π is of size k and
∑
B∈π |B| = m

since π is partition of {1, . . . ,m}. Using Lemma 6, there exists a constant Mπ such that∏
B∈π

∂|B|P

∂x
|B|
1

(x) ≤MπP
k−m2s .

Using Lemma 7, we have

∂m

∂xm1
P γ =

m∑
k=1

∑
π∈Πk

(
k−1∏
i=0

(γ − i)

)
P γ−k

∏
B∈π

∂|B|P

∂x
|B|
1

≤
m∑
k=1

∑
π∈Πk

∣∣∣∣∣
k−1∏
i=0

(γ − i)

∣∣∣∣∣P γ−kMπP
k−m2s

= P γ−
m
2s

m∑
k=1

∑
π∈Πk

∣∣∣∣∣
k−1∏
i=0

(γ − i)

∣∣∣∣∣Mπ,

which is the desired result.

Lemma 9 Let P be a 2s-positive d variate polynomial as given in Definition 2 and let γ ≥ 1. For
any integer n ∈ [2sγ, 4sγ) , there exists a positive constant Nn, such that for any λ > 0,

∂n

∂xn1

(
1

1 + λP γ

)
≤ λNn

1 + λP γ
.

Proof We fix n ∈ N∗ and λ > 0. We apply Lemma 7 with f : x 7→ 1
1+λx and g = P γ , we obtain

∂n

∂xn1

(
1

1 + λP γ

)
=

n∑
k=1

∑
π∈Πk

1

1 + λP γ
λk
∏k
i=1(−i)

(1 + λP γ)
k

∏
B∈π

∂|B|g

∂x
|B|
1

(x).

Applying Lemma 8 we obtain constants M1, . . . ,Mn, such that,

∂n

∂xn1

(
1

1 + λP γ

)
≤

n∑
k=1

∑
π∈Πk

1

1 + λP γ
λkk!

(1 + λP γ)
k

∏
B∈π

M|B|P
γ− |B|2s

=

n∑
k=1

∑
π∈Πk

1

1 + λP γ
λkk!

(1 + λP γ)
k
P kγ−

n
2s

∏
B∈π

M|B|

=
λ

n
2sγ

1 + λP γ

n∑
k=1

∑
π∈Πk

(λP γ)k−
n

2sγ

(1 + λP γ)
k
k!
∏
B∈π

M|B|,
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A standard computation gives for any x ≥ 0 and k ≥ 2, using the fact that n
2sγ < 2,

xk−
n

2sγ

(1 + x)k
≤ (1 + x)

k− n
2sγ

(1 + x)k
= (1 + x)

− n
2sγ ≤ 1.

For k = 1, we have

(λP γ)1− n
2sγ

(1 + λP γ)
≤ λ1− n

2sγ ,

because 1− n
2sγ ≤ 0 and P ≥ 1. We deduce that

∂n

∂xn1

(
1

1 + λP γ

)
≤ λMn

1 + λP γ
+

λ
n

2sγ

1 + λP γ

n∑
k=2

∑
π∈Πk

k!
∏
B∈π

M|B|.

This is the desired result since none of the constants depend on λ and n ≥ 2sγ so that the leading
term in the numerator is O(λ).
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