
[44] A. Terenin and E. P. Xing. Techniques for proving asynchronous convergence results for markov
chain monte carlo methods. In NIPS, 2017.

[45] P. O. S. Vaz de Melo, C. Faloutsos, R. Assunção, R. Alves, and A. A. Loureiro. Universal
and distinct properties of communication dynamics: how to generate realistic inter-event times.
ACM Transactions on Knowledge Discovery from Data (TKDD), 9(3), 2015.

[46] P. O. S. Vaz de Melo, C. Faloutsos, R. Assunção, and A. Loureiro. The self-feeding process: A
unifying model for communication dynamics in the web. In WWW, 2013.

[47] H. Wold. On stationary point processes and markov chains. Scandinavian Actuarial Journal,
1948(1-2), 1948.

[48] H. Xu, M. Farajtabar, and H. Zha. Learning granger causality for hawkes processes. In ICML,
2016.

[49] Y. Yang, J. Etesami, N. He, and N. Kiyavash. Online learning for multivariate hawkes processes.
In NIPS, 2017.

[50] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering. In
KDD, 2017.

[51] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I. S. Dhillon. A scalable asynchronous
distributed algorithm for topic modeling. In WWW, 2015.

[52] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.-Y. Liu, and W.-Y. Ma. Lightlda:
Big topic models on modest computer clusters. In WWW, 2015.

[53] K. Zhou, H. Zha, and L. Song. Learning social infectivity in sparse low-rank networks using
multi-dimensional hawkes processes. In AISTATS, 2013.

A Simulating GRANGER-BUSCA

In Algorithm 1 we show how Ogata’s Modified Thinning algorithm [38] is adapted for GRANGER-
BUSCA. We initially point out that some care has to be taken for the initial simulated timestamps.
Given that tai

(the previous observation) does not exist, the algorithm will need to either start with a
synthetic initial increment of fall back to the Poisson rate. In the algorithm, the rate of each individual
process is computed. Then, a new observation is generated based on the sum of such rates. Given
that each process will behave like a Poisson process while a new event does not surface (Figure 1),
the sum of these processes is also a Poisson process. Lastly, we employ a multinomial sampling to
determine the process from which the observation belongs to.

B Log Likelihood

We now derive the log likelihood of GRANGER-BUSCA for parameters Θ = {G,β,µ}. For a point
process with intensity λ(t), the likelihood can be computed as [14]:

L(Θ) =

N
∏

i=i

λ(ti) exp(−

∫ t

0

λ(t)dt). (7)

Considering the intensity of each process separately, we can write the log likelihood as:

LLa(Θ) =
∑

tai
∈Pa

(

log
(

λa(tai

)

)

−

∫ t

0

λa(t)dt (8)

=
∑

tai
∈Pa

(

log
(

µa +

K−1
∑

b=0

αba

βb +∆ba(tai
)

)

)

− Taµa −
∑

tai
∈P

K−1
∑

b=0

αba(tai
− tai−1

)

βb +∆ba(tai−1
)

Here, Ta is the last event from Pa. The expansion of the integral
∫ Ta

0
λa(t)dt comes from the

stepwise nature of λa(t) (see Figure 1). For simplicity, let us initially assume that there is only one
process. As discussed in the paper, computing ∆ba(t) has a log(N) cost. Due to summations of

the form,
∑

ti∈P

∑K−1
b=0 , the cost to evaluate LLa(Θ) is O(KN log(N)). N log(N) is the cost to

evaluate ∆ba(t) for every observation.

12

Algorithm 1 Ogata’s Thinning Algorithm Adapted for GRANGER-BUSCA

Input: max time T , num proc K, G, β, µ
Output: observations P
t← 0
P = {}
λ = zeros(K)
n = zeros(K)
while t < T do
{Compute the rate for each process using G, β, µ. The rate λa(t) depends of tap

and tbq to

compute ∆ba(t) (see Eq (3)). If such timestamps do not exist, fall back to a Poisson process,
that is: λa(t) = µa}
for a← 0 to K − 1 do
λ[a]← λa(t)

end for
{Move forward in time. That is, sample a new observation with rate sum(λ))}
Sample dt ∼ Exponential(λ = sum(λ))
t← t+ dt
{Sample a process a to such that tai

= t}
Sample u ∼ Uniform(0, sum(λ))
a← 0
c← 0
while a < K − 1 do
c← c+ λ[i]
if c ≥ λ[i] then

break
end if
a← a+ 1

end while
i← n[a]
tai
← t

P ← P ∪ {tai
}

n[a]← n[a] + 1
end while

Now, let us return to the case of multiple processes. Let Na be the number of events for process
a. Next, M is the number of events in the processes with the most of such a number. That is,
M = max(Na | ∀a). The cost of LL(Θ), naively, will be of O(KN log(M)). This comes from

the summation:
∑K−1

a=0 LLa(Θ) = K log(M)
∑K−1

a=0 Na. To simplify the comparison with past
methods, in our manuscript we did not detail our runtime cost in terms of M . Strictly speaking, our
fitting algorithm with the MCMC sampler performs at a cost of: O(N (log(M) + log(K))).

C Fitting Algorithm

The algorithm is shown in Algorithm 2, with the E-step being detailed in Algorithm 3. The maxi-
mization step, for GRANGER-BUSCA in particular, is a MLE estimation for a Poisson process. The
pseudo-code shown here is not parallel and builds the F+Tree naively. By updating nb using a sloppy
counter (see Chapter 11 of [3]) across processing cores, one only needs to iterate over Pa to compute
nba. The counter consists of a local count of nb for each processor. After a certain number of steps,
say at every x-iterations, nb is synced with a master parameter server.

The runtime of the algorithm may be optimized by either pre-computing or caching ∆ba(tai
) for

every observation from every process. Nevertheless, this pre-computation comes at a memory cost of
O(N K) being likely is prohibitive for larger datasets. We can however cache a small subset of such
values to amortize the O(log(N)) cost down to O(1) for cache hits. Secondly, the O(log(K)) cost
can also be amortized with an AliasTable. With these two optimizations, it is possible to implement
optimized versions of the sampling algorithm that execute at a O(N) amortized cost per iteration.

13

Algorithm 2 Sampling GRANGER-BUSCA

Input: all observations P , prior αp, num. iter I
Output: G, µ

K ← |P|
Z ← {}
µ ← Zeros(K)

{Sample initial state from a random uniform ∈ [0,K]. The value K is reserved to indicate
exogeneous events. IsPoisson(zai

) returns zai
= K.}

for a← 0 to K − 1 do
Za ← {}
for i← 0 to |Pa| − 1 do
zai
← UniformInt(0,K + 1) {zai

∈ [0,K]}
end for
Za ← Za ∪ {zai

}
end for

{Sample hidden labels}
for iter ← 0 to I − 1 do

for a← 0 to K − 1 do
EStep(Pa,Z, αp,µ[a],K)
µ[a]←MStep(Pa,Za)

end for
end for

G← Zeros(K,K)

{Compute Output. G[b, a] =
nba+αp

nb+αpK
}

return G, µ

Algorithm 3 Expectation Step (EStep)

Input: observations Pa, current state Z , prior αp, num proc. K, exogeneous rate µa

{The tree is populated with the probability that each processPb can cause tai
. i.e., t[b] =

nba+αp

nb+αpK
}

t← FPTreeBuild(Z)

for i← 0 to |Pa| − 1 do
if not IsPoisson(zai

) then
b← zai

t[b]←
nba+αp−1
nb+αpK−1

end if

if not Uniform(0, 1) < e−µa(tai
−tµa) then

zai
← K

else
c← zai

b← FPTreeSample(t)
{See Eq (6) for the proposal Q and target P}
if Uniform(0, 1) < min{1, (P (c)Q(b))/(P (b)(c))} then
zai
← b

end if
t[b]←

nba+αp+1
nb+αpK+1

end if
end for

14

	Simulating Granger-Busca
	Log Likelihood
	Fitting Algorithm

