
A Supplementary material

In this appendix, we provide self-contained proofs for our results in the paper. In particular, Sec-
tion A.1 contains the proofs of our theorems, Section A.2 contains the proof of our propositions and
in Section A.3 we prove the corollaries stated in the paper.

A.1 Proofs for population EM

In this section, we prove our main results on the contraction properties of the population EM algo-
rithm toward the projection onto the model class—namely, Theorems 1, 2 and 3. We treat each of
these theorems one-by-one.

A.1.1 Proof of Theorem 1

The proof of the theorem makes use of Proposition 1 that relates
∣∣θ
∣∣ in terms of ρ, |θ∗|, and η =

|θ∗| /σ. Without loss of generality, we assume that min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} =
∣∣θ∗ − θ

∣∣. For each
u ∈ [0, 1], we define θu = θ + u(θ − θ). Applying Taylor’s theorem along the direction θu, we
obtain that

∣∣∣∣E
(

2(wθ(X)− wθ(X))X

)∣∣∣∣ = 4
∣∣

1∫

0

E
[

X2

σ2(e−θuX/σ2 + eθuX/σ2)2

]
(θ − θ)du

∣∣

≤ 4 sup
u∈[0,1]

{E [Γu(X)]}
∣∣θ − θ

∣∣ , (16)

where we have defined

Γu(X) := X2/(σ2(e−θuX/σ
2

+ eθuX/σ
2

)2), (17)

and the expectation is taken overX which is drawn from the Gaussian mixture given by equation (6).
Clearly, we have

E [Γu(X)] =
1

4
EX∼N (−θ∗(1+ρ),σ)Γu(X) +

1

4
EX∼N (−θ∗(1−ρ),σ)Γu(X) +

1

2
EX∼N (θ∗,σ)Γu(X).

We now bound the three expectations on the right, which we denote by T1, T2 and T3 respectively.
We claim that

T1, T2 ≤ e−η
2/64/16 and T3 ≤ e−η

2/64/8,

which in turn implies that E [Γu(X)] ≤ γ = e−η
2/64/4 and our theorem follows.

We now provide a full derivation for an upper bound on T1. The upper bounds on T2 and T3 can
be derived in a similar way and their explicit derivation is omitted here. Letting R = sign(θu) and
V = −RX/σ, we have

Du := 4T1 = EX∼N (−θ∗(1+ρ),σ)Γu(X) = E[V 2/(e−|θu|V/σ + e|θu|V/σ)2],

where the expectation in the last expression is taken with respect to V ∼ N (Rθ∗(1 + ρ)/σ, 1). We
have

Du ≤ E[V 2e−2|θu|V/σ] ≤ E
[
V 2e−2|θu|V/σ

∣∣∣∣E
]
· P[E ] + E

[
V 2e−2|θu|V/σ

∣∣∣∣Ec
]
· P[Ec],

where we define the event E = {V |V ≤ |θ∗| (1 + ρ)/(4σ)}. Given a scalar µ, consider the real-
valued function f such that f(t) = t2e−µt. Observe that f(t) ≤ 4

e2µ2 for all t ∈ R and that f
is decreasing on the interval [2/µ,∞). Invoking these observations with µ = 2 |θu| /σ, as long as
|θ∗| (1 + ρ)/(4σ) ≥ 2/µ or equivalently |θ∗| (1 + ρ) |θu| ≥ 4σ2, we find that

Du ≤
σ2

e2θ2
u

· P[E ] +
θ∗2(1 + ρ)2

16σ2
e−|θ

∗|(1+ρ)|θu|/(2σ2). (18)

Note that θ ∈ B(θ,
∣∣θ
∣∣ /4) implies that |θu| ≥ 3

∣∣θ
∣∣ /4 and sign(θu) = sign(θ) for all u ∈ [0, 1].

Proposition 1 implies that θ ∈ [(1−Cρ)θ∗, (1 +Cρ)θ
∗]. Since ρ is small enough such that Cρ < 1,
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we also have that sign(θ) = sign(θ∗). As a result E[V ] = sign(θu)θ∗(1 + ρ)/σ = |θ∗| (1 + ρ)/σ.
Invoking standard Gaussian tail bounds, we have

P[E ] = P
[
V − E[V ] ≤ −3

4

|θ∗| (1 + ρ)

σ

]
≤ exp

(
−9θ∗2(1 + ρ)2

32σ2

)
.

Plugging this bound along with the fact that |θu| ≥ (1−Cρ) |θ∗| in the inequality (18), we find that

Du ≤
16σ2 exp

(
− 9θ∗2(1+ρ)2

32σ2

)

9e2θ∗2(1− Cρ)2
+
θ∗2(1 + ρ)2 exp

(
− θ
∗2(1+ρ)(1−Cρ)

8σ2

)

16σ2

≤ 16

9e2

(
σ2

θ∗2(1− Cρ)2
+
θ∗2(1 + ρ)2

σ2

)
exp

(
−θ
∗2(1 + ρ)(1− Cρ)

8σ2

)

≤ (η2 + η−2) exp(−η/16) (since 64 ≤ 9e2)

≤ 2η2 exp(−η2/16) (for η ≥ 1)

≤ exp(−η2/64)/16 (for η ≥ 14),

where we have used the fact that ρ ∈ (0, 1) is small enough and that Cρ ≤ 1/9 < 1/2. The claim
follows.

A.1.2 Proof of Theorem 2

Equipped with the bounds for the bias term
∣∣θ − θ∗

∣∣ from Proposition 2, the steps in this proof are
similar to the ones used in the proof of Theorem 1. Using Taylor expansion along the direction
θu = θ̄ + u(θ − θ̄) for u ∈ [0, 1], we find that

E[2(wθ(X)− wθ(X))X] ≤ 4 sup
u∈[0,1]

E [Γu(X)]
∣∣θ − θ

∣∣ , (19)

where Γu(X) is the same term defined above in equation (17). The difference compared to the proof
of Theorem 1 is in the distribution of X . In particular, now we have

E [Γu(X)] = (1/2− ω/2)EX∼N (−θ∗,σ)Γu(X) + (1/2− ω/2)EX∼N (θ∗,σ)Γu(X)

+ ωEX∼N (0,σ)Γu(X)

= (1/2− ω/2)(S1 + S2) + ωS3.

Imitating the steps for bounding T1 in the proof of Theorem 1, we can derive the following bounds
for S1 and S2:

S1, S2 ≤ e−η
2/64/4,

provided that C(η, ω) :=
c(η2σ2ω)1/4

√
(1− ω)

≤ 1/9 < 1/2 and η is sufficiently large. Thus it is left

to provide a bound for the term S3. Using the change of variables V = sign(θu)X/σ and the
consequent fact that V ∼ N (0, 1) we obtain that

S3 = EX∼N (0,σ)[Γ(X)] = E
[

V 2

(e−|θu|V/σ + e|θu|V/σ)2

]
(i)

≤ E
[
V 2

4

]
=

1

4
,

where step (i) follows from the inequality that e−y + ey ≥ 2 for all y ∈ R. Putting the pieces
together yields

E[2(wθ(X)− wθ(X))X] ≤ (1− ω)e−η
2/64 + ω

and we are done.

A.1.3 Proof of Theorem 3

Using the definition (4a) of the M-update and the self consistency M(θ̄) = θ̄, we obtain that
∣∣M(θ)−M(θ̄)

∣∣ = |E [2(wθ(X)− wθ̄(X))X]|︸ ︷︷ ︸
=:A

.
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Note that under the unbalanced mixtures, we have

wθ(X) =
π

π + (1− π)e−2θX/σ2 and
∂

∂θ
(wθ(X)) =

2π(1− π)X/σ2

(πe−θX/σ2 + (1− π)eθX/σ2)2
.

By means of Taylor expansion along the direction θu = θ + u(θ − θ), the following holds

A = 4π(1− π)

∣∣∣∣∣∣

1∫

0

E

[
X2

σ2
(
(1− π) exp

(
− θuXσ2

)
+ π exp

(
θuX
σ2

))2

]
du

∣∣∣∣∣∣
∣∣θ − θ

∣∣

≤ 4π(1− π)
∣∣θ − θ

∣∣ max
u∈[0,1]

E [Γθu(X)] , (20)

where Γθu(X) :=
X2

σ2
(
π exp

(
− θuXσ2

)
+ (1− π) exp

(
θuX
σ2

)) . Let π = 1
2 (1− ε). We claim that

max
u∈[0,1]

E [Γθu(X)] ≤ 1− ε2/2
1− ε2 , (21)

which when plugged in the bound (20) implies that the population EM operator is globally contrac-
tive towards θ, i.e.,

∣∣M(θ)−M(θ)
∣∣ ≤ (1 − ε2/2)

∣∣θ − θ
∣∣. Therefore, it yields the linear rate of

convergence claimed in the theorem.

We now prove the claim (21). Like in proof of Theorem 1, we use R = sign(θu) and V = RX/σ.
Since X ∼ 1

2N (θ∗, σ2− θ∗2) + 1
2N (−θ∗, σ2− θ∗2), it is clear that E [V ] = 0 and E

[
V 2
]

= 1. By
substituting X = σV/R, we have

E [Γθu(X)] = EV
[

V 2

(π exp (− |θu|V/σ) + (1− π) exp (|θu|V/σ))2

]
.

Now, observe that

(πe−y + (1− π)ey) ∈ [
√

(1− ε2), 1], if ey ∈
[
1,

1 + ε

1− ε

]
, and

(πe−y + (1− π)ey) > 1, otherwise.

Let Eθu denote the event such that Eθu =
{
e|θu|V/σ ∈ [1, (1 + ε)/(1− ε)]

}
. Let Ec and I(E) re-

spectively denote the complement and the indicator of any event E . Using the observation above
and the fact that E

[
V 2
]

= 1, we obtain that

E [Γθu(X)] ≤ 1

(1− ε2)
E
[
V 2 I(Eθu)

]
+ E

[
V 2 I(Ecθu)

]

=
1− ε2 + ε2E

[
V 2 I(Eθu)

]

(1− ε2)
. (22)

Note that whenever θu 6= 0, we have that

E
[
V 2 I(Eθu)

]
≤ E

[
V 2 I(V ≥ 0)

]
=

1

2
. (23)

Putting the inequalities (22) and (23) together yields the claim (21).

A.1.4 Proof of uniqueness of
∣∣θ
∣∣

We provide a proof for the uniqueness of projection in its absolute value from P∗ in (6) or in (11)
to the fitted model (7). Due to the similar proof argument between these two cases, we only focus
on the case when P∗ is given by (6) and the fitted model is in (7). First, we note that if θ is the
projection of P∗ to the fitted model (7), then −θ is also the projection. Therefore, the projection
is identifiable in its absolute value. Now, the result of Theorem 1 demonstrates that θ is a unique
projection of P∗ to the fitted model (7) within the ball B(θ,

∣∣θ
∣∣ /4). Based on the inequality (9) and

the condition Cρ ≤ 1/9, for any two projections θ1 and θ2 of P∗ to the fitted model (7), we find that
∣∣∣∣θ1

∣∣−
∣∣θ2

∣∣∣∣ ≤ min
{∣∣θ∗ − θ1

∣∣ ,
∣∣θ∗ + θ1

∣∣}+ min
{∣∣θ∗ − θ2

∣∣ ,
∣∣θ∗ + θ2

∣∣} ≤ 2Cρ |θ∗| ≤ 2 |θ∗| /9.
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Additionally, for any projection θ of P∗ to the fitted model (7), we obtain that
∣∣θ
∣∣ ∈ [(1 −

Cρ) |θ∗| , (1 + Cρ) |θ∗|] ∈ [8 |θ∗| /9, 10 |θ∗| /9]. Therefore, for any two projections θ1 and θ2 such
that θ1θ2 > 0, we have θ2 in B(θ1,

∣∣θ1

∣∣ /4). On the other hand, for any projections θ1 and θ2 such
that θ1θ2 < 0, we find that

∣∣θ1 − θ2

∣∣ =
∣∣θ1

∣∣+
∣∣θ2

∣∣ >
∣∣θ1

∣∣ /4, which proves that θ2 /∈ B(θ1,
∣∣θ1

∣∣ /4).
The previous results imply that the projection of P∗ to fitted model (7) is unique in its absolute value.

A.2 Proofs for computing model biases

In this section, we prove our results on the model bias in different cases, namely Propositions 1,
2 and 3. To facilitate further discussion, we begin with introducing some notations and variational
formulation of the Wasserstein distance.

A.2.1 Notations

Given two distributions P and Q, we use h2(P,Q) and KL(P,Q) to denote the hellinger distance
and Kullback-Leibler divergence, respectively, between the two distributions. Let p and q denote the
corresponding density of these distributions with respect to the Lebesgue measure. Then we have

h2(P,Q) =

∫
(
√
p(x)−

√
q(x))2dx and KL(P,Q) =

∫
p(x) log

p(x)

q(x)
dx. (24a)

We now introduce some notation to define the Wasserstein distance between two discrete measures.
Given any two discrete measures G =

∑k
i=1 πiδθi and G′ =

∑k′

i=1 π
′
iδθ′i , where θi, θ′i ∈ Θ ⊂ R,

and δθ denotes the dirac measure at θ. define the set of couplings Π(G,G′) between the two mea-
sures as follows:

Π(G,G′) =
{
T ∈ Rk×k

′

+ : T1k′ = π, T>1k = π′
}
, (24b)

where π = (π1, . . . , πk)
T , π′ = (π′1, . . . , π

′
k′)

T , and 1k denotes a k-dimensional vector with all
entries equal to 1. Put simply, Π(G,G′) is the set of all joint distributions T on the space [k]× [k′]
such that the marginals of the distribution T are equal to π and π′. Furthermore, for any given r,
define the matrix D ∈ Rk×k′ of distances between the parameters of G and G′ as

Dij =
∣∣θi − θ′j

∣∣r , (i, j) ∈ [k]× [k′]. (24c)

With these notations in place, the Wasserstein distance [14] of order r ≥ 1 between the two measures
G and G′ is given by

W r
r (G,G′) := inf

T∈Π(G,G′)

k∑

i=1

k′∑

j=1

TijDij . (24d)

With this notation in place, we now turn to the proofs of our propositions.

A.2.2 Proof of Proposition 1

In order to prove this proposition, we utilize several bounds between KL divergence, Hellinger dis-
tance, and Wasserstein distance. The road-map of the proof is as follows: First, we relate the KL
divergences between the mixture distributions to the Wasserstein distances between the correspond-
ing discrete mixing measures. Then, using carefully constructed couplings, we derive lower and
upper bounds on the Wasserstein distances in terms of the bias term

∣∣θ − θ∗
∣∣ and other problem

parameters to obtain the claimed result.

For any mixing-measure (discrete mixture measure)G on Θ, let PG denote the Gaussian mixture dis-
tribution induced by G on R whose density is given by pG(x) =

∫
Θ
φ(x; θ, σ)dG, where φ(·; θ, σ)

denotes the density of the Gaussian distribution N (θ, σ2). We introduce the following notation for
the mixing-measures:

G∗ =
1

4
δ−θ∗(1−ρ) +

1

4
δ−θ∗(1+ρ) +

1

2
δθ∗ , and G(θ) =

1

2
δ−θ +

1

2
δθ. (25a)
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Note that in our notation, P∗ = PG∗ , G∗ 6= G(θ∗) and consequently PG∗ 6= PG(θ∗). Define

Ḡ := G(θ) where θ ∈ arg min
θ∈Θ

KL(PG∗ ,PG(θ)). (25b)

Applying Lemma 1 from the paper [10], we obtain the following relationship between the KL diver-
gence between the Gaussian-mixture measures PG∗ and PG(θ) and the Wasserstein distance between
the corresponding mixing measures G and G(θ):

KL(PG∗ , pG(θ)) ≤W 2
2 (G∗, G(θ))/(2σ2) for any θ ∈ Θ.

Consequently, we find that

KL(PG∗ ,PḠ) = min
θ∈Θ

KL(PG∗ ,PG(θ)) ≤ min
θ∈Θ

W 2
2 (G∗, G(θ))/(2σ2). (26)

On the other hand, from the classical bound between KL divergence and Hellinger distance, we have

KL(PG∗ ,PḠ) ≥ 2h2(PG∗ ,PḠ). (27)

Noting that, the univariate location Gaussian distribution is 4-strongly identifiable (cf. Definition
2.2 in [6] for the definition of 4-strongly identifiable condition and Theorem 2.4 in [6] for the result
with univariate location Gaussian), with an application of the result of Theorem 6.3 in [6], we obtain
that

h2(PG∗ ,PḠ) ≥ CW 8
2 (G∗, Ḡ), (28)

where C is a universal constant depending only on Θ. The results from (26), (27), and (28) lead to

2CW 8
2 (G∗, Ḡ) ≤ KL(PG∗ ,PḠ) = min

θ∈Θ
KL(PG∗ ,PG(θ)) ≤

1

2σ2
min
θ∈Θ

W 2
2 (G∗, G(θ)),

which implies that

2σ
√
CW 4

2 (G∗, Ḡ) ≤ min
θ∈Θ

W2(G∗, G(θ)) ≤W2(G∗, G(θ∗)). (29)

(Recall in our notation G(θ∗) 6= G∗.) Now we derive obtain an upper bound for the dis-
tance W2(G∗, Ḡ), by deriving an upper bound for the distance W2(G∗, G(θ∗)) using the varia-
tional formulation (24d) of the Wasserstein distance. In particular, we use a particular coupling to
derive an upper bound for W 2

2 (G∗, G(θ∗)). Recalling the definitions (24b) and (24c) of the cou-
pling Π(G∗, G(θ∗)) and the corresponding distance matrix D for G = G∗, G

′ = G(θ∗), r = 2, we
find that

T =

[
1/4 0
1/4 0
0 1/2

]
∈ Π(G∗, G(θ∗)) and D =



ρ2θ∗2 (2− ρ)2θ∗2

ρ2θ∗2 (2 + ρ)2θ∗2

4θ∗2 0


 .

Now applying the definition (24d), we obtain that

W 2
2 (G∗, G(θ∗)) ≤

3∑

i=1

2∑

j=1

TijDij =
1

4
ρ2θ∗2 +

1

4
ρ2θ∗2 +

1

2
0 = ρ2θ∗2. (30)

Putting the previous inequalities (29) and (30) together, we conclude that

W2(G∗, Ḡ) ≤ c
(
ρ |θ∗|
σ

)1/4

, (31)

where c = 1/(4C)1/8 is a universal positive constant that depends only on the set Θ.

Now we directly obtain a lower bound for W2(G∗, Ḡ) by invoking the definition (24d) for the pair
(G∗, Ḡ). The corresponding distance matrix is given by

D̄ =




(
−θ + θ∗(1− ρ)

)2 (
θ + θ∗(1− ρ)

)2
(
−θ + θ∗(1 + ρ)

)2 (
θ + θ∗(1 + ρ)

)2
(
−θ + θ∗

)2 (
θ + θ∗

)2
.


 .
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Noting that for any coupling T̄ ∈ Π(G∗, Ḡ), we have T̄ij ≥ 0,
∑
i,j T̄ij = 1, we have that

∑

i,j

T̄ijD̄ij ≥ min
i,,j

D̄ij ,

and hence

W2(G∗, Ḡ) ≥ min
i,,j

√
D̄ij = min

{ ∣∣−θ + θ∗(1 + ρ)
∣∣ ,
∣∣−θ + θ∗(1− ρ)

∣∣ ,
∣∣−θ + θ∗

∣∣
∣∣θ + θ∗(1 + ρ)

∣∣ ,
∣∣θ + θ∗(1− ρ)

∣∣ ,
∣∣θ + θ∗

∣∣ }

≥ min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣}− ρ |θ∗| , (32)

where the last step follows from the triangle inequality. Putting the inequalities (31) and (32) to-
gether yields that

min
{∣∣θ∗ − θ

∣∣ ,
∣∣θ∗ + θ

∣∣} ≤ ρ |θ∗|+ c

(
ρ |θ∗|
σ

)1/4

,

and the proposition follows.

A.2.3 Proof of Proposition 2

The proof of the proposition is similar to the proof of Proposition 1 except for a few differences
which we point to now. For any mixing-measure (discrete mixture measure) G on Θ, we denote by
PG the corresponding Gaussian mixture distribution with density pG(x) =

∫
Θ
φ(x; θ, σ)dG, where

φ(·; θ, σ) denotes the density of the Gaussian distribution N (θ, σ2). For this proof, we define

G∗ =
(1− ω)

2
δ−θ∗ + ωδ0 +

(1− ω)

2
δθ∗ and G(θ) =

1

2
δ(−θ,σ) +

1

2
δ(θ,σ).

Once again in our notation, we have P∗ = PG∗ , G∗ 6= G(θ∗) and consequently PG∗ 6= PG(θ∗).
Rewriting equation (29), we have

2σ
√
CW 4

2 (G∗, Ḡ) ≤ min
θ∈Θ

W2(G∗, G(θ)) ≤W2(G∗, G(θ∗)),

where C is some universal positive constant only depending on Θ. Once again, we derive an upper
bound for W2(G∗, Ḡ) by deriving an upper bound on W2(G∗, G(θ∗)). We now provide a coupling
T and the matrix D (refer to equations (24b),(24c)) for the pair G∗, G(θ∗):

T =

[
(1− ω)/2 0
ω/2 ω/2

0 (1− ω)/2

]
∈ Π(G∗, G(θ∗)) and D =




0 4θ∗2

θ∗2 θ∗2

4θ∗2 0


 .

Using the definition (24d), we have that
∑
ij TijDij is an upper bound for W 2

2 (G∗, G(θ∗)). Doing
some algebra yields that

W2(G∗, Ḡ) ≤ cW 1/4
2 (G∗, G(θ∗)) ≤ cω

1/8 |θ∗|1/4
σ1/4

(33)

where c = 1/(4C)1/8 is a universal positive constant that only depends on Θ.

Now for the lower bound on W2(G∗, Ḡ), suppose that we are a given coupling T̄ ∈ Π(G∗, Ḡ), and
the distance matrix with elements

D̄ =




(
θ∗ − θ

)2 (
θ∗ + θ

)2

θ
2

θ
2

(
θ∗ + θ

)2 (
θ∗ − θ

)2


 .

Direct computation leads to
∑

ij

T̄ijD̄ij = (T̄11 + T̄32)
(
θ∗ − θ

)2
+ (T̄12 + T̄31)

(
θ∗ + θ

)2
+ (T21 + T22)θ

2

≥ (T̄11 + T̄32 + T̄12 + T̄31) ·min{
(
θ + θ∗

)2
,
(
θ − θ∗

)2}
= (1− ω) min

{(
θ + θ∗

)2
,
(
θ − θ∗

)2}
,
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where the final inequality is due to the constraint T̄11 + T21 = T13 + T23 = (1− ω)/2. As a result,
we have

W 2
2 (G∗, Ḡ) ≥ (1− ω) min

{(
θ + θ∗

)2
,
(
θ − θ∗

)2}
. (34)

Combining the inequalities (33) and (34), we obtain that

min
{∣∣θ − θ∗

∣∣ ,
∣∣θ + θ∗

∣∣} ≤ cω1/8 |θ∗|1/4
σ1/4
√

1− ω ,

thereby yielding the desired result.

A.2.4 Proof of Proposition 3

While the proof of the proposition follows several ideas from the other proofs on controlling the
biases, a key difference for this case is that the two measures do not have same variance, and that
forces us to use a couple new ideas in the proof. Define

G∗ =
1

2
δ(−θ∗,σ2−θ∗2) +

1

2
δ(θ∗,σ2−θ∗2) and G(θ) = πδ(−θ,σ2) + (1− π)

1

2
δ(θ,σ2).

Note that we have G∗ 6= G(θ∗). Unlike the cases considered in Proposition 1 and 2, the key lower
bound h2(PG∗ ,PḠ) ≥ CW 8

2 (G∗, Ḡ) does not apply hear for C some universal constant depending
only on Θ. Such an issue is caused due to the fact that the variance of the components corresponding
to G∗ and Ḡ are different as θ∗ 6= 0. To overcome this issue, we claim the following point-wise
bound:

h(PG∗ ,PḠ) ≥ C(G∗)W2(G∗, Ḡ), (35)
whereC(G∗) is a positive constant depending only onG∗ and Θ. To simplify notation, we substitute
C = C(G∗). Deferring the proof of the claim (35) to the end of this section, we proceed to finishing
the proof.

Note that the relationship (27) between the Hellinger distance and the KL divergence is still valid
but the bound (26) needs to be modified as follows (again applying Lemma 1 from the paper [10]):

KL(PG∗ ,PḠ) = min
θ∈Θ

KL(PG∗ ,PG(θ)) ≤ min
θ∈Θ

C

σ2
W 2

2 (G∗, G(θ)) (36)

for some large constant C. Putting the pieces together yields that

W2(G∗, Ḡ) ≤ C

σ
W2(G∗, G(θ∗)).

We now consider the following coupling and the distance matrix (refer to equations (24b) and (24c)
respectively) for the mixing-measure pair (G∗, G(θ∗)):

T =

[
π 0

(1/2− π) 1/2

]
∈ Π(G∗, G(θ∗)) and D =

[
θ∗4 4θ∗2 + θ∗4

4θ∗2 + θ∗4 θ∗4.

]

Invoking the variational formulation (24d), we find that

W 2
2 (G∗, G(θ∗)) ≤

∑

i,j

TijDij = (2− 4π)θ∗2 + θ∗4.

Therefore, the following inequality holds

W2(G∗, Ḡ) ≤ c(θ∗)

σ

√
(2− 4π)θ∗2 + θ∗4 (37)

where c(θ∗) is a positive constant that only depends on G∗ and Θ. On the other hand, for any
coupling T̄ ∈ Π(G∗, Ḡ), arguing as in the previous proofs, we have that

∑

i,j

T̄ijD̄ij ≥ min
i,j

D̄ij where D̄ =

[(
θ∗ − θ

)2
+ θ∗4

(
θ∗ + θ

)2
+ θ∗4(

θ∗ + θ
)2

+ θ∗4
(
θ∗ − θ

)2
+ θ∗4

]

and consequently we have that

W2(G∗, Ḡ) ≥ min
i,j

√
D̄ij ≥ min

{∣∣θ − θ∗
∣∣ ,
∣∣θ + θ∗

∣∣} . (38)

Combining the inequalities (37) and (38) yields the result.
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Proof of claim (35) In order to prove inequality (35), it suffices to show that

inf
θ∈Θ

h(PG∗ ,PG(θ))/W2(G∗, G(θ)) > 0.

We proceed via proof by contraction: assume that the above bound does not hold. It implies that
we can find a sequence of {θn}n≥1 such that h(PG∗ ,PG(θn))/W2(G∗, G(θn)) → 0 as n → ∞.
Since Θ is a compact subset of R, there must exist a subsequence of θn such that θn → θ′ for some
θ′ ∈ Θ. Without loss of generality, we can replace this subsequence of θn by its whole sequence.
Applying Fatou’s lemma, we obtain that

0 = lim
n→∞

h2(PG∗ ,PG(θn)) =
1

2

∫
lim inf
n→∞

(√
PG∗(x)−

√
PG(θn)(x)

)2

dµ(x)

= h2(PG∗ ,PG(θ′)).

The above result implies that PG∗(x) = PG(θ′)(x) almost surely. Due to the general identifiability
of finite location-scale Gaussian mixtures [11], the previous equations implies that G∗ ≡ G(θ′),
which is a contradiction as π ∈ (0, 1/2) and θ∗ 6= 0. Therefore, we have established the claim (35).

A.3 Proofs for sample-based EM

In this section, we prove the Corollaries 1 and 2. The proof for Corollary 3 is rather similar and is
omitted.

A.3.1 Proof of Corollary 1

To prove this corollary, we use Theorem 2 by Balakrishnan et al. [1] and note that it suffices to
establish the following lemma:

Lemma 1. For any threshold δ ∈ (0, 1), we have

P

[
sup
θ∈Ω
|Mn(θ)−M(θ)| − c2 (1 + Cρ) |θ∗|

(
(1 + ρ2)θ∗2 + σ2

)√ log(1/δ)

n
≥ 0

]
≤ δ,

where Ω := B(θ,
∣∣θ
∣∣ /4) for sample size n ≥ c1 log(1/δ) where c1 and c2 are universal positive

constants.

Proof. The proof of this lemma makes use of standard arguments to derive Rademacher complexity
bounds. We denote

Z = sup
θ∈Ω
|Mn(θ)−M(θ)| .

By means of standard symmetrization argument with empirical processes [12], the following holds

E [exp (λZ)] ≤ E

[
exp

(
sup
θ∈Ω

2λ

n

∣∣∣∣∣
n∑

i=1

εi(2wθ(Xi)− 1)Xi

∣∣∣∣∣

)]
, for any λ > 0.

For any θ and θ′, we have

|2wθ(x)− 2w′θ(x)| ≤ |θ − θ′| |x| ,
for all x ∈ R. Invoking the Ledoux-Talagrand contraction result for Rademacher processes [8]
yields

E

[
exp

(
sup
θ∈Ω

2λ

n

∣∣∣∣∣
n∑

i=1

εi(2wθ(Xi)− 1)Xi

∣∣∣∣∣

)]
≤ E

[
exp

(
sup
θ∈Ω

4λ

n

∣∣∣∣∣
n∑

i=1

εiX
2
i θ

∣∣∣∣∣

)]

= E

[
exp

(
5λ
∣∣θ
∣∣

n

n∑

i=1

εiX
2
i

)]
, (39)
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where ε1, . . . , εn are i.i.d. Rademacher random variables which are independent of Xi’s. Recalling
the distribution of Xi’s, we have

E [exp (λXi)] = exp
(
λ2σ2/2

)(1

4
exp (−λθ∗(1 + ρ)) +

1

4
exp (−λθ∗(1− ρ)) +

1

2
exp(λθ∗)

)

(i)

≤ exp
(
λ2σ2/2

)(1

4
exp (−λθ∗ρ) +

1

4
exp (λθ∗ρ)

)
(exp(−λθ∗) + exp(λθ∗))

(ii)

≤ exp

(
λ2 (1 + ρ2)θ∗2 + σ2

2

)
,

where step (i) and step (ii), respectively, follow from the basic inequalities exp(−y) + exp(y) ≥ 2
and exp(−y) + exp(y) ≤ 2 exp(y2/2) for all y ∈ R. Thus, the random variable Xi is sub-Gaussian
with parameter at most γ = ((1 + ρ2)θ∗2 + σ2)1/2 for any i ∈ [n]. Since any squared sub-Gaussian
random variable is a sub-exponential random variable, the following inequality holds [13]:

E
[
exp

(
tX2

i − tE
[
X2
i

])]
≤ exp

[
16t2γ4

]
for all |t| ≤ 1

4γ2
.

Furthermore, we can bound the second moment of Xi as follows:

E
[
X2
i

]
=

1

4

(
(θ∗(1 + ρ))2 + σ2

)
+

1

4

(
(θ∗(1− ρ))2 + σ2

)
+

1

2

(
θ∗2 + σ2

)

≤ (1 + ρ2)θ∗2 + σ2 = γ2.

Using these MGF and moment bounds, we find that

E
[
exp

(
tεiX

2
i

)]
=

1

2
E
[
exp

(
tX2

i

)]
+

1

2
E
[
exp

(
−tX2

i

)]

≤ exp
(
16t2γ4

) 1

2

(
exp(tγ2) + exp(−tγ2)

)

≤ exp(17t2γ4), (40)

for all |t| ≤ 1
4γ2 . Plugging in t = 5λ

∣∣θ
∣∣ /n in the bound (40) and combining with the bound (39)

yields the following MGF bound

E [exp (λZ)] ≤ exp
(

425λ2θ
2
γ4/n

)
≤ exp

(
425λ2 (1 + Cρ)

2
θ∗2γ4/n

)

for |λ| ≤ n/(20γ2
∣∣θ
∣∣). Here the second inequality in the above display is due to the upper bound∣∣θ

∣∣ ≤ (1 + Cρ) |θ∗| from Proposition 1. By virtue of standard Chernoff’s approach, the above MGF
bound implies that

Z ≤ c2 (1 + Cρ) |θ∗| γ2

√
log(1/δ)

n
= c2 (1 + Cρ) |θ∗|

(
(1 + ρ2)θ∗2 + σ2

)√ log(1/δ)

n
,

with probability at least 1− δ as long as n ≥ c1 log(1/δ) for sufficiently large positive constants c1
and c2. The lemma now follows.

A.3.2 Proof of Corollary 2

Similar to the argument of Corollary 1, to prove this corollary it is sufficient to establish the following
lemma:

Lemma 2. For any threshold δ ∈ (0, 1), we have

P

[
sup
θ∈Ω
|Mn(θ)−M(θ)| − c2 (1 + Cω) |θ∗|

(
θ∗2 + σ2

)√ log(1/δ)

n
≥ 0

]
≤ δ, (41)

where Ω := B(θ,
∣∣θ
∣∣ /4) for sample size n ≥ c1 log(1/δ) where c1 and c2 are universal positive

constants.
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Proof. Following the argument used in the proof of Lemma 1, we obtain that

E [exp (λZ)] ≤ E

[
exp

(
5λ
∣∣θ
∣∣

n

n∑

i=1

εiX
2
i

)]
,

where Z = sup
θ∈Ω
|Mn(θ)−M(θ)| and ε1, . . . , εn are i.i.d. Rademacher random variables indepen-

dent of Xi’s. Recalling the distribution of Xi’s, we have

E [exp (λXi)] = exp
(
λσ2/2

)((1− ω
2

)
(exp (−λθ∗) + exp (λθ∗)) + ω

)

≤ exp
(
λ2σ2/2

)(
(1− ω) exp

(
λ2θ∗2

2

)
+ ω

)

≤ exp
(
λ2(σ2 + θ∗2)/2

)
.

Thus, the random variables Xi are independent sub-Gaussian with parameter at most
γ =

√
θ∗2 + σ2 for all i ∈ [n]. Furthermore, we can bound the second moment of Xi as follows:

E
[
X2
i

]
= (1− ω)(θ∗2 + σ2) + ωσ2 ≤ (θ∗2 + σ2). (42a)

Using these MGF and moment bounds, we have

E
[
exp

(
tεiX

2
i

)]
≤ exp(17t2γ4) for all |t| ≤ 1/4γ2. (42b)

Finally, performing computations similar to those in the proof of Lemma 1 yields the claim.

B Further numerical experiments

Here we provide supplementary material for the numerical experiments presented in Section 5 of
the main text. In particular, we numerically illustrate the scalings of the bias

∣∣θ∗ − θ
∣∣ as a function

of θ∗ in Figure 2. We use population EM (the final iterate) to estimate θ (2) for the different settings.
We simulated two different settings for Case 1 corresponding to the two mixture fit (7) for the
three mixture model (6) and Case 2 corresponding to the two mixture fit (7) for the three mixture
model (11) and report the results in Figure 2. The behavior of the bias |θ∗ − θ| is rather different
in the two cases. We see that for Case 1 the bias decreases with increase in θ∗, while for Case 2, it
increases with increase in θ∗. Such a behavior is not captured in our results stated in Propositions 1
and 2. Thus, the bias analysis presented in this paper should be considered only a first step towards
understanding the under-fitted mixtures. Providing a sharper framework that yields optimal bounds
for such biases remains an interesting future direction.
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Figure 2. Plots of the best two mixture Gaussian fits for the data generated from three Gaussian
mixtures. In (a) & (b), we consider two settings of Case 1 (6) and in panels (c) & (d), two settings of
Case 2 (11). We see that for Case 1 as θ∗ increases, θ → θ∗ and for Case 2 an increase in θ∗ leads to
an increase in the bias |θ∗ − θ|. Indeed as we plot the bias term in panels (e) and (f), we see that for
Case 1, larger θ∗ has a smaller bias and on the contrary for Case 2, the bias increases with increase in
θ∗.
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