
Supplementary for “Learning Pipelines with Limited
Data and Domain Knowledge: A Case Study in

Diagram Parsing”

Mrinmaya Sachan| Avinava Dubey| Tom Mitchell| Dan Roth� Eric P. Xing|}
|Machine Learning Department, School of Computer Science, Carnegie Mellon University

�Department of Computer and Information Science, University of Pennsylvania
}Petuum Inc.

{mrinmays,akdubey,tom.mitchell,epxing}@cs.cmu.edu

danroth@seas.upenn.edu

1 Contents

In this supplementary, we describe the text parsing component, the diagram parsing component, the
reconciliation component, and the final question answering step in our model. We describe them one
by one along with empirical results using our Nuts&Bolts approach. Finally, we also provide 10
successfully answered questions and 10 unsuccessfully answered questions to give the reader an idea
of what are the sources of errors in our technique.

2 Text Parsing

Concept
Identification

Figure 7-27 shows three forces applied to a trunk

that moves leftward by 3.00 m over a frictionless

floor. The force magnitudes are F1 = 5.00N, F2 =

9.00N, and F3 = 3.00N, and the indicated angle is

θ = 60.0�. During the displacement, what is the

net work done on the trunk by the three forces?

Relation
Identification

Figure 1: A pipeline for text parsing with various
stages of (possibly multiple) pre-trained functions,
existing software and rules.

We propose a two-stage pipeline model for ques-
tion text parsing. This process is pictorially shown
in Figure 1. The first stage identifies concepts in
the logical language (i.e. constants, variables, func-
tions, or predicates). In the second stage, relations
are predicted with these concepts as arguments, pro-
vided some type constraints for the arguments are
satisfied. For instance, the distance relation must
take a constant which has the type length such as
3.00m as the second argument. Similarly, the direc-

tion relation must take one of the constants among
{left, right, up, down} as the second argument.

2.1 Pipeline Details

Next, we describe the individual stages of the text
parsing pipeline. Both stages: Concept identifica-
tion and Relation identification are performed by a number of rules mentioned in Table 1. R

R

R1

represents the set of rules for concept identification using a manually curated lexicon map and a
regular expression. The relation identification step again uses manually curated rules based R

R

R2 on
syntax information.

In the post-processing step, we build a simple rule-based math parser to handle mathematical formulas
and equations. This parser takes in a math expression such as F = ma and parses it into our formal
representation “equals(F, prod(m, a))”. As another post procession step, we identify anaphoric and
coreferential expressions in the text using Stanford CoreNLP and replace all coreferential expressions
in the learnt logical formula with their corresponding antecedents.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

RR R
1

Lexicon Map Indicator that the word or phrase maps to a predicate in a lexicon created by us. We
derive correspondences between words/phrases and keywords and concepts in the
logical language using manual annotations in the training data. For instance, our
lexicon contains (“direction:left”, left, leftward) including all possible realizations
for the concept “direction:left”.

Regex for
constants
and explicit
variables

Indicator that the word or phrase satisfies a regular expression to detect numbers or
explicit variables (e.g. “3.00m”, “2gm”, “g m/s2”). These regular expressions were
built as a part of our system.

RR R
2

Dependency
tree distance

Shortest distance between the words of the concept nodes in the dependency tree.
We use rules for distances of -3 to 3. Positive distance shows if the child word is at
the right of the parent’s in the sentence, and negative otherwise.

Word dis-
tance

Distance between the words of the concept nodes in the sentence. We have rules for
distances 0 to 3.

Dependency
edge

Indicator functions for outgoing edges of the parent and child for the shortest path
between them.

Part of
speech tag

Indicator functions for the POS tags of the parent and the child

Relation type Indicator functions for unary / binary parent and child nodes.
Return type Indicator functions for the return types of the parent and the child nodes. For

example, return type of Equals is boolean, and that of Distance is length.
Table 1: The rule set for our text parsing model. We use Turboparser[1] for POS and syntactic information.

2.2 Results

P R F1
Rule-based 0.82 0.27 0.41

Nuts&Bolts 0.63 0.75 0.68

Table 2: Precision, Recall and F1 scores
of parses induced by our text parser com-
pared to a rule based parser.

We compared the parses induced by our models with gold
parses on the test set. Table 2 reports Precision, Recall and
F1 scores of the parses induced. For comparison purposes,
we built a rule-based parser baseline. A similar baseline was
proposed in [3] for their geometry solver. The baseline uses
a set of manually designed high-precision rules. Each rule
compares the dependency tree of each sentence to pre-defined
templates, and if a template pattern is matched, the rule outputs
the relation corresponding to that template. Our text-based
parser achieved a F1 score of 0.68, a significant improvement over the rule-based parser (0.41).

P R F1
Concept 0.95 0.87 0.91
Relation 0.83 0.74 0.78

Table 3: Precision, Recall and
F1 scores of the concept and re-
lation identification components of
our text parser.

We further break down this evaluation into the two components
of text parsing: concept and relation identification. Table 3 shows
the precision, Recall and F1 scores for concept and relation iden-
tification. Our parser achieved a high F1 score (0.91) for concept
identification and a good F1 score (0.78) for relation identification.

3 Reconciliation of Text and Diagram Parsing

In the third phase, we reconcile text and diagram parses. This is
done in many ways. For example, we incorporate question text for
object detection. Often, the corresponding question texts provide
important cues for detecting these visual elements. For example, the question in Figure 1 of the main
document mentions the object ‘trunk’. While it is unlikely that the object recognition component
will correctly recognize the object ‘trunk’ as ‘trunk’ doesn’t appear again in the training dataset as
an object, the mention of the noun phrase ‘trunk’ in the question text and the context in which it
appears is an important cue for identifying that this object is ‘trunk’. Hence, we built a text-based
object detector that uses logistic regression to classify each noun phrase in the question text as an
object or not. We used a small set of manually engineered features for the prediction problem: (a) if
the noun phrase is included in a list of objects manually built by us by looking at the train set, (b)
if the noun phrase is an object category in ImageNet, and (c) if the noun phrase is the agent/patient
(determined using the Turbo dependency parser [1]) of a small list of actions taking place in our train
set (e.g. pull, run, hit ...). We included these rules in our model.

2

Figure 2: Example programs in Parsing to Programs.

Elements E.B. O.S.
Low-level 57.4 86.5
66.9, 76.2, 63.1, 74.7, 74.4
Corner - 90.7
High-level 42.3 82.2
Text 53.6 85.3

76.5, 78.0
Object 29.1 63.6
43.5, 41.7, 38.5, 46.2, 40.7,

47.9, 34.6, 60.4, 61.2
Overall 43.8 81.0

Table 4: Jaccard similarity b/w de-
tected diagram elements and gold ele-
ments for Edge Boxes (E.B.) and our
system. We report overall results as
well as results for identifying various di-
agram elements. For low-level, text and
object element detection, we also show
performance of various methods in the
ensemble (cyan).

Finally, we incorporate bi-modal interactions between the diagram
and text parsing components by incorporating a simple rule. The rule
upvotes a parse predicate if it is scored by the text as well as the
diagram parser. The rule is Pred

diag

(p) ^ Pred

text

(p) ! Pred(p).

4 Diagram Parsing Components

Question parsing results: We evaluated the various question pars-
ing components. For diagram parsing, we computed the Jaccard sim-
ilarity between the diagram elements detected by our diagram parser
and compared them to gold elements. We considered Edge Boxes [4] –
since it uses edge maps to propose objects and relies less on colors and
gradients observed in natural images, and our diagram parser. Table 4
reports the diagram parsing results on the test set. Our diagram parser
achieved a score of 81.0 which is much better than Edge Boxes. Prior
computer vision techniques are tuned for natural images and hence,
do not port well to diagrams as shown in the rows colored in cyan.
However, our carefully engineered pipeline with ensembles of element
detectors and explicit domain knowledge in the form of rules can work
well even in this challenging domain.

5 Question Answering

Subject knowledge of Newtonian physics is a crucial component in
our solver. We presented the domain knowledge to the system in the form of structured programs.
Some example programs are shown in Figure 2.

Some of these programs perform basic functions such as vector addition, computing angle between
vectors, unit conversion, etc. Others perform more complex functions such as applying Newton’s
laws of motion or conservation of momentum, etc. A number of axioms denote laws of physics as a
mathematical expression. For example, the Newton’s second law is expressed simply as ~

F

net

= m⇥~a.
Here ~

F

net

stands for the vector quantity representing the net force on a body. m stands for the mass
of the body and ~a stands for the acceleration of the body. These programs also define a set of
preconditions which must be satisfied for it to be executable. When the preconditions are satisfied,
the programs define the mathematical expression as a constraint on the output. These constraints are

3

then solved to obtain the answer. Parsing to Programs has a total of 237 manually curated programs.
Let P represent this set of programs. Parsing to Programs uses this set of programs to answer the
physics problems via the following deductive solver.

5.1 The Deductive Solver (Parsing to Programs [2])

Given access to the domain theory, we solve the physics problem by using the Parsing to Programs
framework [2]. Parsing to Programs searches for program applications that can lead to the problem
solution using a forward chaining search procedure exploring various possible program applications.
Algorithm 1 describes the procedure.

The program applications are scored as a function of the scores of various literals in the program’s
precondition. The score of a literal is given by the confidence score from the question parser. In case
it is a derived literal (derived by an earlier program execution), its score is given by the function value
of the program application that derived it. Various scoring functions: minimum, arithmetic mean,
geometric mean and harmonic mean were explored for all literal scores and the harmonic mean of the
precondition literals performed the best, and hence is used. They further used an off-the shelf library1

to solve the constraints introduced by the programs. Then, the following answering interface uses the
search results to answer the question.

Handling Various Question and Answer Types: The physics examinations consist of a number of
question and answer types. While a majority of questions directly ask about a particular physical
quantity, there are a substantial number of questions which do not fit in this paradigm. For example,
there are some which of these are not true, select the odd one out, match the following questions. To
handle a variety of questions, Parsing to Programs has an answering interface. The interface calls the
deductive solver described above and answers the question based on the type of the question or the
kind of answer sought. The results on using Parsing to Programs with the Nuts&Bolts framework are
already provided in the main paper.

6 Error Analysis

Finally, we also provide 10 successfully answered questions and 10 unsuccessfully answered questions
to give the reader an idea of what are the sources of errors in our technique.

1
http://docs.sympy.org/dev/modules/solvers/solvers.html#sympy.solvers.

solvers.nsolve

4

http://docs.sympy.org/dev/modules/solvers/solvers.html#sympy.solvers.solvers.nsolve
http://docs.sympy.org/dev/modules/solvers/solvers.html#sympy.solvers.solvers.nsolve

References
[1] André FT Martins, Noah A Smith, and Eric P Xing. Concise integer linear programming

formulations for dependency parsing. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing

of the AFNLP: Volume 1-Volume 1, pages 342–350. Association for Computational Linguistics,
2009.

[2] Mrinmaya Sachan and Eric Xing. Parsing to programs: A framework for situated qa. In
Proceedings of the 24rd SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
2018.

[3] Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm. Solving
geometry problems: combining text and diagram interpretation. In Proceedings of EMNLP,
2015.

[4] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In
European Conference on Computer Vision, pages 391–405. Springer, 2014.

5

10	Correctly	Answered	Questions:	
	

	

Question	 Comments	

	

(a)	The	speed	is	computed	by	a	

program	for	computing	

magnitude	of	the	velocity.	The	
interface	ranks	the	results.	

(b)	Compute	the	flight	time	

using	the	program	encoding	

the	formula	for	flight	time.	

Interface	ranks	the	results.	

	

Apply	programs	for	both	

stages:	free	fall	and	

deceleration,.	Then	solve	for	

(a)	total	time	and	(b)	total	

height.	

	

Apply	programs	that	encode	

formulas	for	projectile	motion	

to	answer	(a),	(b)	and	(c).	The	

system	wrongly	answers	(d)	

due	to	misinterpretation	of	the	

concept	“highest	point”.	

	

Apply	formula	to	enlist		

(pseudo)	centripetal	force.	

Now	apply	force	balance	and	

other	formula	theorems	to	

solve	the	questions.	

	

All	the	questions	can	be	

answered	by	application	of	

individual	programs.	

	

Assume	the	velocities	of	L	and	

C+R	after	first	explosion.	Add	

constraint	for	velocity	of	L	

w.r.t.	C+R.	Assume	velocities	of	

C	and	R	after	second	explosion.	

Add	constraint	for	velocity	of	R	

w.r.t.	C.	Apply	programs	for	

conservation	of	momentum	

and	solve	to	answer	(a).	Apply	
programs	for	distance	moved	

by	C	to	answer	(b).	

	

(a)	Apply	conservation	of	

momentum	to	compute	speed	

of	the	spring	gun,	(b)	Apply	

conservation	of	energy	to	

compute	energy	stored	in	the	

spring	as	a	fraction	of	initial	

kinetic	energy.	

	

(a)	Apply	programs	of	force	

addition	to	compute	net	force	

on	the	hot	dogs.	Then,	use	

program	to	compute	work,	(b)	

Use	the	program	that	work	

done	by	forces	is	the	change	in	

kinetic	energy.	

	

Apply	laws	of	motion,	

conservation	of	momentum	

and	energy	to	solve	(a)	and	(b).	

	

Apply	conservation	of	

momentum	and	energy	to	get	a	

set	of	constraints.	Solve	to	

answer	the	question.	

	

	

10	Incorrectly	Answered	Questions:	
	

	

	

The	problem	cannot	be	solved	

as	it	requires	to	read	the	plot	

and	also	compute	gradient,	etc.	

	

The	problem	cannot	be	solved	

as	it	requires	to	read	the	plot	

and	also	compute	area	under	

the	curve,	etc.	

	

The	problem	cannot	be	solved	

as	it	requires	(a)	understanding	

there	are	six	such	implicit	legs	

of	the	insect	and	(b)	what	does	

“straightening”	of	the	leg	mean.	

	

The	problem	cannot	be	solved	

as	it	requires	to	understand	the	

phrase	“adjacent	sections	of	the	

pulley”.	

	

The	problem	cannot	be	solved	

as	it	requires	understanding	the	
phrase	“circular	hill”	and	

“circular	valley”.	

	

The	problem	cannot	be	solved	

as	it	requires	3D	understanding	

based	on	two	views.	

	

The	problem	cannot	be	solved	

as	the	diagram	parser	fails	to	

map	the	objects	cab	and	cheese.	

	

The	problem	cannot	be	solved	

as	it	requires	reading	the	scale	

and	recognizing	that	the	scale	

reading	is	a	function	of	the	

extension	in	the	spring.	

	

The	problem	cannot	be	solved	

as	it	requires	reading	the	plot	

and	associating	with	color	of	

the	plot.	

	

The	problem	cannot	be	solved	

as	it	requires	reasoning	based	

on	the	plot.	It	doesn’t	fall	in	the	

paradigm	of	programmatic	

solving	chosen	by	us.	

	
	

	Contents
	Text Parsing
	Pipeline Details
	Results

	Reconciliation of Text and Diagram Parsing
	Diagram Parsing Components
	Question Answering
	The Deductive Solver (Parsing to Programs sachan:2018)

	Error Analysis

