
Appendix
[Supplementary material for J.-S. Ha, Y.-J. Park, H.-J. Chae, S.-S. Park, and H.-L. Choi,

“Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical
Systems,” NeurIPS 2018.]

A Objective Function of Linearly-Solvable Optimal Control

Suppose that an objective function of a SOC problem is given as:

J = Equ

[∫ T

0

V (z(t)) +
1

2
||u(t)||2dt

]
+DKL (q0(z(0))||p0(z(0))) , (20)

where qu is the probability measures induced by the controlled trajectories from (9). The first and
second terms in the integral encodes a state cost and regulates control input effort, respectively, and
the last KL term penalizes the initial state deviation. The objective of the SOC problem is to find the
optimal control sequence u∗(t) as well as the initial state distribution q0, with which the trajectory
distribution of (9) minimizes the objective function (20).

The following theorem implies that the control penalty term in (20) can be interpreted as the KL-
divergence between distributions of controlled and uncontrolled trajectories.

Theorem 1 (Girsanov’s Theorem (modified from Gardiner et al. [1985])) Suppose p and qu are
the probability measures induced by the trajectories of (3) and (9), respectively. Then, the Radon-
Nikodym derivative of qu with respect to p is given by

dp(z[0,T])

dqu(z[0,T])
=
p0(z(0))

q0(z(0))
exp

(
−1

2

∫ T

0

||u(t)||2dt−
∫ T

0

u(t)T dw(t)

)
, (21)

where w(t) is a Wiener process for simulating qu.

With Girsanov’s theorem, the objective function (20) is rewritten in the form of the KL-divergence:

J = Equ

[∫ T

0

V (z(t)) +
1

2
||u(t)||2dt

]
+DKL (q0(z(0))||p0(z(0)))

= Equ

[∫ T

0

V (z(t))dt+ log
dqu(z[0,T])

dp(z[0,T])
− log

q0(z(0))

p0(z(0))

]
+DKL (q0(z(0))||p0(z(0)))

= Equ
[
log

dqu(z[0,T])

dp(z[0,T]) exp(−V (z[0,T]))/ξ
− log ξ

]
= DKL

(
qu(z[0,T])||p∗(z[0,T])

)
− log ξ, (22)

where V (z[0,T]) ≡
∫ T
0
V (z(t))dt is a trajectory state cost and ξ ≡

∫
exp(−V (z[0,T]))dp(z[0,T]) is

a normalization constant. Note that the second term in the exponent of (21) disappears when taking
expectation w.r.t. qu, i.e. Equ [

∫ T
0
u(t)T dw(t)] = 0, because w(t) is a Wiener process for simulating

qu. Because ξ is not a function of u, p∗(z[0,T]) can be interpreted as the optimally-controlled
trajectory distribution that minimizes the objective function, J :

dp∗(z[0,T]) =
exp(−V (z[0,T]))dp(z[0,T])∫
exp(−V (z[0,T]))dp(z[0,T])

(23)

∝ dp(z[0,T]) exp(−V (z[0,T])). (24)

This expression yields the method to sample the optimally-controlled trajectories: We first sample
a set of trajectories according to the passive dynamics, i.e., zl[0,T] ∼ p(·), which can be interpreted
as the proposal distribution, and assign their importance weights as w̃l ∝ exp(−V (zl[0,T])), ∀l and∑
l w̃

l = 1.

13

The proposal distribution can be changed into the controlled trajectory distribution so as to increase
the sample efficiency. By applying the Girsanov’s theorem again, the optimal trajectory distribution
is expressed as:

dp∗(z[0,T]) ∝ dqu(z[0,T]) exp
(
−Su(z[0,T])

)
, (25)

where

Su(z[0,T]) = V (z[0,T]) +
1

2

∫ T

0

||u(t)||2dt+

∫ T

0

u(t)′dw(t). (26)

This yields that the optimal trajectory distribution can be obtained by sampling a set of trajectories
according to the controlled dynamics with u(t), i.e., zl[0,T] ∼ qu(·), and assigning their importance
weights as w̃l ∝ exp(−Su(zl[0,T])),∀l and

∑
l w̃

l = 1. It is known that, as the control input u(·)
gets closer to the true optimal control input u∗(·), the variance of importance weights decreases and
it reduces to 0 when u(t) = u∗(t, z(t)) [Thijssen and Kappen, 2015].

B Derivation of Path Integral Adaptation

From the trajectories sampled with qu(·), the path integral control provides how to compute the
optimal control u∗(t) based on the following theorem.

Theorem 2 (Main Theorem [Thijssen and Kappen, 2015]) Let f : R× Rdz → R, and consider
the process f(t) = f(t, z(t)) with z[0,T] ∼ qu(·). Then,

〈(u∗ − u)f〉 (t) = lim
τ→t

〈∫ τ
t
f(s)dw(s)

τ − t

〉
, (27)

where 〈Y (t)〉 ≡ Equ [w̃uY (t)], w̃u =
exp(−Su(z[0,T]))

Equ [exp(−Su(z[0,T]))]
for any process Y (t).

Suppose the current control policy is parameterized with nb basis functions h̄(t, z) : R×Rdz → Rnb
as:

ū(t, z(t)) = Ā(t)h̄(t, z(t)), (28)

where Ā(t) : R→ Rdu×nb is the control policy parameter and let the optimal parameterized control
policy be u∗ = A∗(t)h(t, z(t)). Then, Theorem 2 can be rewritten as:

A∗(t) 〈h⊗ h〉 (t) = Ā(t)
〈
h̄⊗ h

〉
(t) + lim

τ→t

〈∫ τ
t
dw(s)⊗ h(s)

τ − t

〉
. (29)

Because we can utilize only a finite number of samples to approximate the optimal trajectory
distribution, it is more reasonable to update the control policy parameter with some small adaptation
rate, than to estimate it at once. Similar to Ruiz and Kappen [2017], we use a standardized linear
feedback controller w.r.t. the target distribution, i.e.,

h(t, z(t)) ≡
[
1; Σ−1/2(t)(z(t)− µ(t))

]
, (30)

where µ(t) = 〈z(t)〉 and Σ(t) = 〈(z(t)− µ(t))(z(t)− µ(t))T 〉 are the mean and covariance of the
state w.r.t. the optimal trajectory distribution estimated at the previous iteration. Then, the control
input has a form as:

u(t) = uff (t) + K(t)Σ−1/2(t)(z(t)− µ(t)), (31)

where the parameter, A(t) = [uff (t),K(t)], represents feedforward control signal and feedback
gain.

Suppose we have a set of trajectories and their weights obtained by the parameterized policy,
ū(t) = Ā(t)h̄(t, z(t)). Then, based on (29), the control policy parameters can be updated as follows:

uff (t)dt = ūff (t)dt+ K̄(t)Σ̄−1/2(t)(µ(t)− µ̄(t))dt+ η 〈dw(t)〉 , (32)

K(t)dt = K̄(t)Σ̄−1/2(t)Σ1/2(t)dt+ η

〈
dw(t)

(
Σ−1/2(t)(z(t)− µ(t))

)T〉
, (33)

14

(a) Structured inference network (b) APIAE

Figure 3: Overall structure of the proposed method

where η is an adaptation rate5. Note that the adaptation of two terms can be done independently,
because 〈h⊗ h〉 (t) = I . Beside the control policy adaptation, the initial state distribution, p0, can
be updated as well:

µ̂0 = 〈z(0)〉 , Σ̂0 =
〈
(z(0)− µ̂0)(z(0)− µ̂0)T

〉
, (34)

where the updated trajectory distribution starts from q0(·) = N (·; µ̂0, Σ̂0). The whole procedures are
summarized in Algorithm 1.

Algorithm 1 Path Integral Adaptation

Input: Dynamics, f(z), σ(z), initial state distribution, µ̂0, Σ̂0, and control policy parameters, A[0,T].

1: for r ∈ {1, ..., R} do
2: {Su, ŵ, z[0,T],w[0,T]}1:L ← SIMULATE(µ̂0, Σ̂0,A[0,T])

3: µ̂0, Σ̂0,A[0,T] ← IMPROVE({ŵ, z[0,T],w[0,T]}1:L,A[0,T]) . using (15)-(16) and (17)
4: end for
5: {Su, z[0,T],w[0,T]}1:L ← SIMULATE(µ̂0, Σ̂0,A[0,T])

6: return {z[0,T], Su, ŵ}1:L

1: function SIMULATE(µ̂0, Σ̂0,A[0,T]) . Stochastic simulation via Euler method
2: z1:L1 ← SAMPLENORMAL(µ̂0, Σ̂0)
3: for k ∈ {1, ...,K − 1} do
4: for l ∈ {1, ..., L} do
5: dw

(l)
k−1 ← SAMPLENORMAL(0,

√
δtI)

6: z
(l)
k ← z

(l)
k−1 + f(z

(l)
k−1)δt+ σ(z

(l)
k−1)(u

(l)
k−1δt+ dw

(l)
k−1) . u

(l)
k−1 from (28).

7: S
(l)
u ← S

(l)
u + V (z

(l)
k)δt+ 1

2 ||u
(l)
k−1||2δt+ (u

(l)
k−1)T dw

(l)
k−1

8: ŵ1:L ← exp(−S1:L
u)/

∑
l exp(−Slu)

9: (Optional) Resample if effective sample size of ŵ1:L is smaller than threshold
10: end for
11: end for
12: return {Su, ŵ, z[0,T],w[0,T]}1:L
13: end function

C Algorithmic Details

The pseudo code of APIAE training is shown in Algorithm 3. Given the observation data, the
inference network implemented by the backward RNN first approximates the posteriror distribution
using Algorithm 2 (line 2–3). Then, the algorithm iteratively refines the variational distribution using
path integral adaptation method in Algorithm 1 (line 4), estimates the lower bound of data likelihood

5At the first iteration, ūff (t), K̄(t) and q0 are obtained from the inference network and µ̄(t) = 0, Σ̄(t) = I .

15

Algorithm 2 Structured inference network hφ (Figure 3(a))
Input: A observation sequence, x1:K .

1: hK ← hφ,r(0,xK)
2: for k ∈ {K − 1, ..., 1} do
3: hk ← hφ,r(hk+1,xk) . recurrence
4: Ak ← hφ,o1(hk,hk+1) . output
5: end for
6: {µ̂0, Σ̂0} ← hφ,o2(h1) . output
7: return {µ̂0, Σ̂0,A[0,T]}

Algorithm 3 Training of Adaptive Path Integral Autoencoder (Figure 3(b))

Input: Dataset of observation sequences, D = {x(i)
1:K}i=1,...,N .

Latent and observation models, f(z), σ(z), p0(z) and p(x|z), parameterized by θ.
Backward RNN as an inference network hφ : x1:K → {µ̂0, Σ̂0,A[0,T]}, parameterized by φ.

1: while notConverged() do
2: Sample datapoint x1:K from D
3: Initialize {µ̂0, Σ̂0,A[0,T]} ← hφ(x1:K) . Algorithm 2
4: {z[0,T], Su, ŵ}1:L ← PI-ADAPTATION(µ̂0, Σ̂0,A[0,T],x1:K) . Algorithm 1
5: L̂ = log 1

L

∑
l exp(−S(l)

u), ∇(θ,φ)L̂ ← −
∑
l ŵ

(l)∇(θ,φ)S
(l)
u

6: Update θ and φ with∇(θ,φ)L̂ using SGD . gradients are aggregated across mini-batches.
7: end while

and its gradients (line 5), and updates the model parameter according to the MCO gradients (line
6). The path integral adaptation and the MCO construction steps of APIAE can be seen as encoding
and decoding procedures of autoencoders, respectively, motivating the name “adaptive path integral
autoencoder."

D Experimental Details

D.1 Pendulum

The latent space was set to be 2-dimensional and a locally-linear transition model used in Watter
et al. [2015], Karl et al. [2017] were adopted, where the system dynamics were represented by
combination of 16 linear systems as fθ =

∑16
i=1 α

(i)(A(i)z + c(i)), σ =
∑16
i=1 α

(i)B(i) and α =
fλ(z) ∈ R16 was a single layer neural network having 16 softmax outputs parameterized by λ,
i.e., {A(i), B(i), c(i), λ} ⊂ θ. For the stochastic simulation, we simply chose tk = (k − 1)δt, and
δt = T/(K − 1). For the observation model, we considered a neural network with Gaussian outputs
as p(·|z) = N (·;µθ(z), σθ(z)), where µθ(·) and σθ(·) are outputs of a neural network having 1a
single hidden layer of 128 hidden units with ReLU activation and a 2× 256-dimensional output layer
without activation. We found that initializing dynamics network as stable results in the more stable
learning, so the dynamics network was initialized with the supervised learning with transition data
from stable linear system.

D.2 Human Motion Capture Data

A 3-dimensional latent state space was used in this example and the dynamics were parameterized by
the locally-linear transition model as in the pendulum experiment. The system dynamics were repre-
sented by combination of 16 linear systems as fθ =

∑16
i=1 α

(i)(A(i)z + c(i)), σ =
∑16
i=1 α

(i)B(i)

and α = fλ(z) ∈ R16 is a single layer neural network having 16 softmax outputs parameterized by
λ, i.e., {A(i), B(i), c(i), λ} ⊂ θ. For the stochastic simulation, we simply chose tk = (k − 1)δt, and
δt = T/(K − 1). For the observation model, we considered a neural network with Gaussian outputs
as: p(·|z) = N (·; gθ(z), I62), where gθ(·) is a neural network having a single hidden layer of 128
hidden units with ReLU activation and a 62-dimensional output layer without activation.

16

Table 2: The lower bound of log-likelihood for models trained with APIAEs w.r.t. the sample size.

Pendulum (×106) Mocap (×105)

L=4 L=8 L=16 L=64 L=4 L=8 L=16 L=64

APIAE+r -9.9282 -9.8380 -9.8322 -9.8306 -6.689 -6.665 -6.637 -6.683
APIAE -9.9724 -9.9318 -9.9153 -9.8552 -6.689 -6.680 -6.661 -6.629

Table 3: The lower bound of data log-likelihood for models trained with APIAEs w.r.t. the number of
path-integral adaptations.

Pendulum (×106) Mocap (×105)

R=0 R=4 R=8 R=0 R=4 R=8

APIAE+r -9.890 -9.866 -9.795 -6.687 -6.665 -6.648
APIAE -9.974 -9.927 -9.929 -6.683 -6.680 -6.669

D.3 Additional Results

To investigate the optimal parameters for APIAE training, we varied parameters of APIAEs, i.e.,
L, R, K, and compared the results.

Table 2 and Table 3 show the lower bounds of APIAEs for two experiments by varying the number of
samples L and adaptation R, respectively. As shown in the result, higher lower bound is achieved as
the number of samples and adaptation get larger. Note, however, that APIAEs become computationally
expensive as those parameters increase and slow down the training speed. Thus, we need to look for
the compromise between the training efficiency and the performance. Empirically found that L = 8
and R = 4 show a reasonable performance with computational efficiency.

Fig. 4 show the learning results for the dataset of difference time length. It is observed that, when the
observations are highly-noisy, the learning algorithm fails to extract enough temporal information
from the data and then fails to build a valid generative dynamical model.

The lower bound of learned models are reported in Table 4 and Fig. 5. As in the Table 4, the highest
lower bounds were achieved by the APIAE algorithms. Thus, the learning performances are seen
to be improved via adaptation procedures with training on any bound. We also found that APIAEs
produce higher bound than FIVO or IWAE throughout the training stage as shown in the Fig. 5.

Finally, Fig. 6 depicts the additional results of the Mocap experiment for the learned latent space,
reconstruction, and prediction.

Table 4: Comparison of APIAE, FIVO, and IWAE bounds in the pendulum experiment. Each model
was trained with (i) APIAE with resampling (+r), (ii) APIAE without resampling, (iii) FIVO, and (iv)
IWAE. The resulting APIAE, FIVO, and IWAE bounds are shown.

Pendulum (×106) Mocap (×105)

APIAE+r APIAE FIVO IWAE APIAE+r APIAE FIVO IWAE

APIAE+r -9.866 -10.213 -9.902 -10.308 -6.665 -6.694 -6.683 -6.723
APIAE -10.020 -9.927 -10.037 -9.953 -6.712 -6.680 -6.739 -6.707
FIVO -9.868 -10.145 -9.890 -10.197 -6.675 -6.691 -6.687 -6.711
IWAE -9.998 -9.959 -10.145 -9.974 -6.694 -6.668 -6.706 -6.683

17

-10 -5 0 5 10 15
-10

-5

0

5

10

-10 -5 0 5 10 15
-10

-5

0

5

10

(a) K=1

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

(b) K=2

-15 -10 -5 0 5 10
-10

-5

0

5

10

15

-15 -10 -5 0 5 10
-10

-5

0

5

10

15

(c) K=5

-10 -5 0 5 10
-15

-10

-5

0

5

10

15

-3

-2

-1

0

1

2

3

-10 -5 0 5 10
-15

-10

-5

0

5

10

15

-10

-5

0

5

10

(d) K=10

Figure 4: Pendulum experiment. The learned latent space colored by (top) angles and (bottom)
angular velocities of the ground truth for different dataset with varying length, K = 1, 2, 5, 10.

0 1000 2000 3000
Epoch

-1.1

-1.08

-1.06

-1.04

-1.02

-1

-0.98

Lo
w

er
 b

ou
nd

107Trained with APIAE+r

(a)

0 1000 2000 3000
Epoch

Trained with APIAE

(b)

0 1000 2000 3000
Epoch

Trained with FIVO

(c)

0 1000 2000 3000
Epoch

Trained with IWAE

APIAE+r
APIAE
FIVO
IWAE

(d)

Figure 5: Comparison of APIAE, FIVO, and IWAE bounds in the pendulum experiment. For each
model trained with (a) APIAE with resampling, (b) APIAE without resampling, (c) FIVO, and (d)
IWAE, the APIAE, FIVO, and IWAE bounds are shown.

(a)

(b)

(c)

Figure 6: (a-b) Locomotion reconstruction results. Top: ground truth, Bottom: reconstruction. (c)
Prediction results from the same initial pose.

18

