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S1 Choice of Distance Measure1

The distance measure between the current policy and the old set of policies is determined by the2

specific network’s form of outputs.3

DQN. In DQN, as the policy is implicitly defined by the Q-function, changes in the output Q-values4

do not necessarily reflect a change in the policy. This forbids us from calculating the distance directly5

by Q-values. To circumvent this issue, we apply the softmax function over predicted Q-values to get6

an action distribution (representing a policy). We then use the Kullback-Leibler (KL) divergence to7

measure the distance between action distributions.8

DDPG. As the outputs of DDPG are continuous, we simply adopt the mean squared error as the9

distance measure.10

A2C. Since A2C outputs a distribution over actions, we can directly use the KL divergence to11

measure the distance.12

S2 Training Detail13

We follow the settings described in the respective original papers for vanilla DQN [1], A2C [2],14

DDPG [3], Parameter Space Noise [4], and NoisyNet [5]. Our Div-DQN, and Div-A2C are based on15

the network architecture of the vanilla models, and Div-DDPG follows the settings in [4].16

DQN. For Atari 2600, we search over as set of hyperparameters to optimize the performance of all17

methods on our codebases, as suggested in [6]. For each method, we apply the setting which yields18

highest overall performance. Note that we do not search ε-greedy schedule for vanilla-DQN. The19

value of ε is always linearly annealed from 1.0 to 0.01. For gridworld tasks, we use a single layer20

MLP consisting of 64 hidden units followed by a ReLU activation.21

DDPG. For Sparse MuJoCo tasks, we follow the suggestions described in [4] to adjust the noise22

scale of baselines. We set the noise scale as 0.6 for Parameter Noise DDPG and vanilla-DDPG with23

action-uncorrelated noise. To prevent Div-DDPG from getting stuck in some deadlock pose, we also24

add action-uncorrelated noise with scale 0.6 for Div-DDPG.25

A2C. For Div-A2C, Noisy-A2C and vanilla-A2C, we collect the training rollouts by 16 concurrent26

workers.27

S3 Clipping Distance Measure28

As described in Section 3.4, to prevent the instability issues during training, we clip the distance29

measure between −c and c, where c is a pre-defined constant value. We have different settings of c30

for Div-DQN, Div-A2C, and Div-DDPG, which are summarized in Table S1.31
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Table S1: Settings of c for different models.
Value of c for the Clipped Distance Measure

Div-DQN 2.5

Div-DDPG 0.2

Div-A2C 0.5

Table S2: Complete evaluation results of DQN/A2C variants in 21 Atari games.

Div-DQN Noisy-DQN DQN Div-A2C-Pro Div-A2C-Rea Noisy-A2C A2C

Alien 2542.5 2270.2 1727.2 2475.8 1316.2 1347.7 1441.8

Amidar 738.35 530.73 359.52 336.78 273.09 388.71 351.98

BankHeist 1437.9 836.3 820.1 1087.0 1179.6 979.8 1165.0

BeamRider 5314.9 7565.66 4984.24 3301.74 2502.22 3086.82 3848.06

Breakout 397.24 156.13 238.64 380.85 319.97 386.71 388.22

Enduro 1053.0 968.68 428.7 810.39 623.75 0.0 0.0

Freeway 33.61 32.8 20.85 28.7 27.08 0.03 0.03

Frostbite 2695.7 385.0 1370.6 881.4 336.2 265.3 268.5

Gravitar 353.5 329.0 562.5 311.5 329.0 321.0 322.5

MontezumaRevenge 0.0 2.0 1.0 3.0 18.0 2.0 4.0

Pitfall -3.94 -0.28 -5.37 -32.92 -32.28 -34.01 -32.27

Pong 21.0 20.99 18.18 20.05 20.53 19.85 20.34

PrivateEye 2375.21 1109.01 1622.78 368.16 213.58 186.08 168.51

Qbert 14509.0 9737.5 8081.25 8604.0 4395.25 11320.75 9345.25

Seaquest 6113.3 6410.4 4205.4 1765.8 1748.0 1736.2 1717.2

SpaceInvaders 986.1 1190.55 1387.35 773.5 740.5 778.75 781.5

Venture 1025.0 15.0 15.0 12.0 9.0 0.0 0.0

WizardOfWor 1004.0 1620.0 1953.0 975.0 901.0 931.0 986.0

Zaxxon 6292.0 7594.0 4609.0 458.0 436.0 82.0 84.0

S4 Adaptive Scaling32

We have different adaptive and linear decay scaling settings for Atari 2600 and MuJoCo. In Atari2600,33

we set δ = 1.25 for Div-DQN, δ = 0.25 for Div-A2C since they have different magnitude on diversity34

loss. In MuJoCo, we set δ = 0.2 for Div-DDPG.35

S5 Analysis of Adaptive Scaling Method36

Adaptive scaling methods serve as a critical component of the proposed diversity-driven exploration37

strategy. Through the use of the adaptive scaling methods, the training progress can be stabilized,38

often leading to better overall performance and significant improvements over the naive linear decay39

method. Therefore, we investigate how different adaptive scaling methods influence the performance40

of our agents. For off-policy algorithms, it can be seen in Fig. 3, 4, and 5 that adaptive scaling41

method can draws better performance than linear-decay in Venture and HalfCheetah. This is due to42

the fact that exploration stops as α decreases to an extremely small value, making it hard for agents43
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to explore in huge state spaces, or escape from local optimum later in the training phase. On the other44

hand, both Div-DQN and Div-DDPG that employ the distance-based scaling method outperform45

their counterparts using the linear decay method, as the value of α is adaptively scaled. We further46

investigate whether the distance-based method is sensitive to the choice of the threshold value δ. From47

the learning curves illustrated in Fig. S2 and S3, we find that the value of δ does not lead to much48

variation in performance for Div-DQN in most cases, but Div-DDPG is sensitive to δ. Overall, we49

show that the distance-based method improves the stability of the learning progress, and is superior to50

the linear decay method. For on-policy algorithms, we focus on the comparison between distance- and51

performance-based methods, as the linear decay method is proven worse than distance-based method52

already. Fig. S1 plots the learning curves of Div-A2C using different scaling methods. We observe53

that in hard-exploration tasks such as Freeway, Div-A2C with distance-based method performs worse54

than the other, which agrees with our claim in Sec. 3.3. We further analyze the proactive and reactive55

performance-based methods. In Fig. S1, it can be observed that the proactive one demonstrates56

superior performance to the reactive one in most tasks. In particular, we find that reactive Div-A2C57

encounters the rewards in an early stage, but never learns an effective policy to exploit that knowledge58

to obtain higher average rewards. These results suggest that performance-based scaling method is59

indeed better than the distance-based one, and that the proactive strategy surpasses the reactive one.60

Figure S1: Learning curves of Div-A2C with different scaling methods.

Figure S2: Learning curves of Div-DQN with different δ.

Figure S3: Learning curves of Div-DDPG with different δ.
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