
Norm matters: supplementary material

1 Implementation Details for weight-decay experiments

For all experiments, we used weight decay on the last layer with λ = 0.0005. The network architecture
was VGG11 [4] with batch-norm after every convolution layer. Learning rate started from 0.1 and
divided by 10 every 20 epochs (except for the norm scheduling experiment). The same random seed
was used.

2 Importance of normalization constants

Figure 1 shows the scale adjustment CL1
is essential even for relatively "easy" data sets with small

images such as CIFAR-10, and the use of smaller/bigger adjustments degrade classification accuracy.

Figure 1: Left: The importance of normalization term CL1
while training ResNet-56 on CIFAR-10.

Without the use of CL1
the network convergence is slower and reaches a higher final validation

error. We found it somewhat surprising that a constant so close to one (CL1
=

√
π/2 ≈ 1.25) can

have such an impact on performance. Right: We further demonstrate, with Res18 on ImageNet, that
CL1

=
√
π/2 is optimal: performance is only degraded if we modify CL1

to other nearby values.

2.1 Deriving CL∞

As seen in main manuescript,

x̂(k) =
x(k) − µk

CL∞(n) · ||x(k) − µk||∞
, (1)

To derive CL∞(n) we assume again the input {xi}ni=1 to the normalization layer follows a Gaussian
distribution N(µk, σ2). Then, the maximum absolute deviation is bounded on expectation as follows
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[3]:
σ ·

√
ln(n)√

π ln(2)
≤ ||x(k) − µk||∞ ≤ σ

√
2 ln(n).

Therefore, by multiplying the three sides of inequality with the normalization term CL∞(n), the L∞

batch norm in equation 1 approximates an expectation the original standard deviation measure σ as
follows:

l ≤ CL∞(n) · ||x(k) − µk||∞ ≤ u

where l = 1+
√
π ln (4)√

8π ln(2)
· σ ≈ 0.793σ, and u =

1+
√
π ln (4)

2 · σ ≈ 1.543σ.

3 Bounded-weight-norm experiments

Figure 2 depicts the impact of bounded-weight norm for the training of recurrent network on WMT14
de-en task. Additional results are summarized in Table 1.
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Figure 2: Comparison between bounded weight-norm and baseline with no normalization in recurrent
network training (LSTM attention-seq2seq network, WMT14 de-en)

.

Table 1: Results comparing baseline, L2 based normalization with weight-norm (WN) by Salimans
& Kingma [2] and our bounded-weight-norm (BWN)

Network Batch/Layer norm WN BWN

ResNet56 (Cifar10) 93.03% 92.5% 92.88%
ResNet50 (ImageNet) 75.3% 67% [1] 73.8%
Transformer (WMT14) 27.3 BLEU - 26.5 BLEU
2-layer LSTM (WMT14) 21.5 BLEU - 21.2 BLEU

Table 2: Results comparing baseline, and L1 norm results (ppl for perplexity)

Network L2 Batch/Layer norm L1 Batch/Layer norm

ResNet56 (Cifar10) 93.03% 93.07%
ResNet18 (ImageNet) 69.8% 69.74%
ResNet50 (ImageNet) 75.3% 75.32%
Transformer (WMT14) 5.1 ppl 5.2 ppl
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