Norm matters: supplementary material

1 Implementation Details for weight-decay experiments

For all experiments, we used weight decay on the last layer with $\lambda = 0.0005$. The network architecture was VGG11 [\[4\]](#page-2-0) with batch-norm after every convolution layer. Learning rate started from 0.1 and divided by 10 every 20 epochs (except for the norm scheduling experiment). The same random seed was used.

2 Importance of normalization constants

Figure [1](#page-0-0) shows the scale adjustment C_{L_1} is essential even for relatively "easy" data sets with small images such as CIFAR-10, and the use of smaller/bigger adjustments degrade classification accuracy.

Figure 1: *Left*: The importance of normalization term C_{L_1} while training ResNet-56 on CIFAR-10. Without the use of C_{L_1} the network convergence is slower and reaches a higher final validation error. We found it somewhat surprising that a constant so close to one ($C_{L_1} = \sqrt{\pi/2} \approx 1.25$) can have such an impact on performance. *Right*: We further demonstrate, with Res18 on ImageNet, that $C_{L_1} = \sqrt{\pi/2}$ is optimal: performance is only degraded if we modify C_{L_1} to other nearby values.

2.1 Deriving $C_{L_{\infty}}$

As seen in main manuescript,

$$
\hat{x}^{(k)} = \frac{x^{(k)} - \mu^k}{C_{L_{\infty}}(n) \cdot ||x^{(k)} - \mu^k||_{\infty}},
$$
\n(1)

To derive $C_{L_{\infty}}(n)$ we assume again the input $\{x_i\}_{i=1}^n$ to the normalization layer follows a Gaussian distribution $N(\mu^k, \sigma^2)$. Then, the maximum absolute deviation is bounded on expectation as follows

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

[\[3\]](#page-2-1):

$$
\frac{\sigma \cdot \sqrt{\ln(n)}}{\sqrt{\pi \ln(2)}} \le ||x^{(k)} - \mu^k||_{\infty} \le \sigma \sqrt{2 \ln(n)}.
$$

Therefore, by multiplying the three sides of inequality with the normalization term $C_{L_{\infty}}(n)$, the L^{∞} batch norm in equation [1](#page-0-1) approximates an expectation the original standard deviation measure σ as follows: $k_{\rm max}$

$$
l \leq C_{L_{\infty}}(n) \cdot ||x^{(k)} - \mu^{k}||_{\infty} \leq u
$$

where $l = \frac{1 + \sqrt{\pi \ln(4)}}{\sqrt{8\pi \ln(2)}} \cdot \sigma \approx 0.793\sigma$, and $u = \frac{1 + \sqrt{\pi \ln(4)}}{2} \cdot \sigma \approx 1.543\sigma$.

3 Bounded-weight-norm experiments

Figure [2](#page-1-0) depicts the impact of bounded-weight norm for the training of recurrent network on WMT14 de-en task. Additional results are summarized in Table [1.](#page-1-1)

Figure 2: Comparison between bounded weight-norm and baseline with no normalization in recurrent network training (LSTM attention-seq2seq network, WMT14 de-en) .

Table 1: Results comparing baseline, L^2 based normalization with weight-norm (WN) by Salimans & Kingma [\[2\]](#page-2-2) and our bounded-weight-norm (BWN)

Network	Batch/Layer norm	WN	BWN
ResNet56 (Cifar10)	93.03%	92.5%	92.88%
ResNet50 (ImageNet)	75.3%	67% [1]	73.8%
Transformer (WMT14)	27.3 BLEU		26.5 BLEU
2-layer LSTM (WMT14)	21.5 BLEU		21.2 BLEU

Table 2: Results comparing baseline, and L^1 norm results (ppl for perplexity)

References

- [1] Gitman, I. and Ginsburg, B. Comparison of batch normalization and weight normalization algorithms for the large-scale image classification. *CoRR*, abs/1709.08145, 2017.
- [2] Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In *Advances in Neural Information Processing Systems*, pp. 901–909, 2016.
- [3] Simon, M. K. Probability distributions involving gaussian random variables: A handbook for engineers and scientists. 2007.
- [4] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.