
Supplementary Material for Sigsoftmax: Reanalysis of the Softmax
Bottleneck

A Proofs of theorems

In this section, we provide the proofs of theorems that are not provided in the paper.
Theorem 3. Let S ⊆ RM be the d dimensional vector space and z ∈ S be input of log-sigsoftmax,
some range of log-sigsoftmax {log(f(z))|z ∈ S} is not a subset of a d+1 dimensional vector space.

Proof. We prove this by contradiction. If Theorem 3 does not hold, every range of log-sigsoftmax
{log(f(z))|z ∈ S} is a subset of a d+ 1 dimensional vector space. When we provide a counterex-
ample of this statement, we prove Theorem 3 since this statement is the negation of Theorem 3.
The counter example is the case in which S is the one dimensional vector space (i.e., d = 1),
S = {ku|k ∈ R} and u = [1, 2, 0]T . Under the above condition, from Definition 1 in the paper,
outputs of log-sigsoftmax are as follows:

log(f(z)) =

[
2k
4k
0

]
−
[
log(1 + exp(k))
log(1 + exp(2k))

log(2)

]
− log

(
1+2σ(k)exp(k)+2σ(2k)exp(2k)

2

)
1. (1)

From S = {ku|k ∈ R}, we choose three inputs z1 = [0, 0, 0]T , z2 = [1, 2, 0]T , z3 = [−1,−2, 0]T
and investigate the outputs. The outputs of log-sigsoftmax are as follows:

log(f(z1)) = −log(3)1, (2)

log(f(z2)) =

[
2− log(1 + exp(1))
4− log(1 + exp(2))

−log(2)

]
− log

(
1+2σ(1)exp(1)+2σ(2)exp(2)

2

)
1, (3)

log(f(z3)) =

[−2− log(1 + exp(−1))
−4− log(1 + exp(−2))

−log(2)

]
− log

(
1+2σ(−1)exp(−1)+2σ(−2)exp(−2)

2

)
1. (4)

To evaluate linear independence, we examine the solution of the α1log(f(z1)) + α2log(f(z2) +
α3log(f(z3) = 0. If its solution is only α1 = α2 = α3 = 0, log(f(z1)), log(f(z2), and log(f(z3)
are linearly independent. Each element of α1log(f(z1))+α2log(f(z2)+α3log(f(z3) = 0 becomes
the following equations:

−α1log(3) + α2{2− log(1 + exp(1))− log(1+2σ(1)exp(1)+2σ(2)exp(2))
2 }

+α3{−2− log(1 + exp(−1))− log(1+2σ(−1)exp(−1)+2σ(−2)exp(−2))
2 } = 0, (5)

−α1log(3) + α2{4− log(1 + exp(2))− log(1+2σ(1)exp(1)+2σ(2)exp(2))
2 }

+α3{−4− log(1 + exp(−2))− log(1+2σ(−1)exp(−1)+2σ(−2)exp(−2))
2 } = 0, (6)

−α1log(3) + α2{−log(2)− log(1+2σ(1)exp(1)+2σ(2)exp(2))
2 }

+α3{−log(2)− log(1+2σ(−1)exp(−1)+2σ(−2)exp(−2))
2 } = 0. (7)

From Eq. (7), we have

α1 =
α2

log(3)
{−log(2)− log(

1 + 2σ(1)exp(1) + 2σ(2)exp(2))

2
}

+
α3

log(3)
{−log(2)− log(

1 + 2σ(−1)exp(−1) + 2σ(−2)exp(−2))
2

}. (8)

Substituting Eq. (8) for Eq. (5) and Eq. (6), we have{
α2{2− log(1 + exp(1)) + log(2)}+ α3{−2− log(1 + exp(−1)) + log(2)} = 0, (9)
α2{4− log(1 + exp(2)) + log(2)}+ α3{−4− log(1 + exp(−2)) + log(2)} = 0. (10)

From Eq. (9), we have

α2 = α3
{2+log(1+exp(−1))−log(2)}
{2−log(1+exp(1))+log(2)} , (11)

1

and substituting Eq. (11) for Eq. (10), we have

α3

[
{2+log(1+exp(−1))−log(2)}{4−log(1+exp(2))+log(2)}

{2−log(1+exp(1))+log(2)} +{−4− log(1 + exp(−2)) + log(2)}
]
=0.

(12)

The solution of Eq. (12) is only α3 = 0, and thus, α1 = α2 = α3 = 0. We have
α1log(f(z1)) + α2log(f(z2) + α3log(f(z3) = 0 if and only if α1 = α2 = α3 = 0. There-
fore, log(f(z1)), log(f(z2)) and log(f(z3)) are linearly independent, i.e., output vectors can be
three linearly independent vectors even though d+ 1 = 2. Therefore, the output of log-sigsoftmax
can be greater than d + 1 linearly independent vectors, and thus, the range of log-sigsoftmax is
not a subset of d + 1 dimension vector space. This contradicts the statement that every range of
log-sigsoftmax {log(f(z))|z ∈ S} is a subset of a d + 1 dimensional vector space. As a result,
some range of log-sigsoftmax is not a subset of a d+ 1 dimensional vector space.

Theorem 5. Sigsoftmax has the following properties:

1. Nonlinearity of log(g(z)): log(g(z)) = 2z − log(1+ exp(z)).

2. Numerically stable: ∂log[f(z)]i
∂zj

=

{
(1− [f(z)]j)(2− σ(zj)) i = j,

− [f(z)]j (2− σ(zj)) i 6= j.

3. Non-negative: [g(z)]i = exp(zi)σ(zi) ≥ 0.

4. Monotonically increasing: z1 ≤ z2 ⇒ exp(z1)σ(z1) ≤ exp(z2)σ(z2).

Proof. First, we have log(g(z)) = 2z − log(1 + exp(z)) since [g(z)]i = exp(zi)σ(zi) =
exp(zi)

1+exp(−zi) =
exp(2zi)
1+exp(zi)

. log(1+exp(z)) is softplus and is a nonlinear function. Therefore, log(g(z))

is a nonlinear function. Second, since we have dexp(z)
dz = exp(z) and dσ(z)

dz = σ(z)(1− σ(z)), we
have
∂log[f(z)]i

∂zj
= 1

[f(z)]i

∂[f(z)]i
∂zj

,

= 1
[f(z)]i

{
1∑M

m=1 exp(zm)σ(zm)

∂exp(zi)σ(zi)
∂zj

− [f(z)]i∑M
m=1exp(zm)σ(zm)

∂
∑M

m=1exp(zm)σ(zm)

∂zj

}
,

=

{
(1− [f(z)]j)(2− σ(zj)) i = j,

− [f(z)]j (2− σ(zj)) i 6= j.
.

Third, since exp(z) ≥ 0 and σ(z) ≥ 0, we have exp(z)σ(z) ≥ 0. Finally, the derivative of
exp(z)σ(z) is dexp(z)σ(z)

dz = exp(z)+2
(1+exp(−z))2 ≥ 0 for all z, and thus, exp(z)σ(z) is monotonically

increasing.

B Properties of output functions composed of ReLU and sigmoid

In this section, we investigate properties of output functions composed of ReLU and sigmoid.

B.1 ReLU-based output function

A ReLU-based output function is given as

[f(z)]i =
ReLU(zi)∑M

m=1 ReLU(zm)
. (13)

The ReLU-based function does not satisfy all the desirable properties as follows:

1. Nonlinearity of log(g(z)): The logarithm of ReLU is as follows:

[log(ReLU(z))]i =

{
log(zi) if zi > 0,

−∞ if zi ≤ 0.

This function is obviously nonlinear.

2

2. Numerically unstable:

∂log[f(z)]i
∂zj

=

1

ReLU(zi)
∂ReLU(zi)

∂zj
− 1∑M

m=1 ReLU(zm)

∂ReLU(zi)
∂zj

i = j,

− 1∑M
m=1 ReLU(zm)

∂ReLU(zj)
∂zj

i 6= j.
(14)

We can see that the derivative of a ReLU-based function has the division by ReLU(zi).
Since ReLU(zi) can be close to zero, the calculation of gradient is numerically unstable.

3. Non-negative: [g(z)]i = max(zi, 0) is obviously greater than or equal to 0.
4. Monotonically increasing: z1 ≤ z2 ⇒ max(z1, 0) ≤ max(z2, 0) since the derivative of

ReLU is always greater than or equal to 0.

From the above, the ReLU-based function is numerically unstable. Therefore, in the experiment, we
use the following function:

[f(z)]i =
ReLU(zi)+ε∑M

m=1 ReLU(zm)+ε
, (15)

where ε is the hyper parameter of small value. In the experiment, we used ε = 10−8.

B.2 Sigmoid-based output function

A sigmoid-based output function is given as

[f(z)]i =
σ(zi)∑M

m=1 σ(zm)
. (16)

The sigmoid-based function satisfies the desirable properties as follows:

1. Nonlinearity of log(g(z)): The logarithm of sigmoid is as follows:

log(σ(z)) = z − log(1+ exp(z)).

This function is obviously nonlinear.
2. Numerically stable:

∂log[f(z)]i
∂zj

=

{
(1− [f(z)]j)(1− σ(zj)) i = j,

− [f(z)]j (1− σ(zj)) i 6= j.

We can see that this function does not have the division. Therefore, the calculation of
gradient is numerically stable.

3. Non-negative: We have [g(z)]i = σ(zi) ≥ 0. However, sigmoid is also bounded by 1. This
may be the cause of the limitation of representation capacity.

4. Monotonically increasing: z1 ≤ z2 ⇒ σ(z1) ≤ σ(z2) since the derivative of sigmoid
σ(z)(1− σ(z)) is greater than or equal to 0.

C Detailed experimental conditions and results

C.1 Experimental conditions

C.1.1 Conditions for activation functions

For comparing softmax, sigsoftmax, the ReLU-based function, and the sigmoid-based function, we
trained a three-layer LSTM by following [5]. We used the codes provided by [5, 3].1 Merity et al.
[5] further tuned some hyper parameters to obtain results better than those in the original paper [5]
in their code. For fair comparison, we only changed the code of [5] as (i) replacing softmax with
sigsoftmax, the ReLU-based function and sigmoid-based function, (ii) using various random seeds,
and (iii) using the epochs twice as large as the original epochs in [5]. The ReLU-based function is
defined by Eq. (15), and we used ε = 10−8.

1https://github.com/salesforce/awd-lstm-lm;
https://github.com/benkrause/dynamic-evaluation

3

https://github.com/salesforce/awd-lstm-lm
https://github.com/benkrause/dynamic-evaluation

We used the experimental conditions of [5]. The number of units of LSTM layers was set to 1150, and
the embedding size was 400. The embedding layer was tied [6]. Weight matrices were initialized with
a uniform distribution U(−0.1, 0.1) for the embedding layer, and all other weights were initialized
with U(− 1√

H
, 1√

H
) where H is the number of hidden units.

All models were trained by a non-monotonically triggered variant of averaged SGD (NT-ASGD) [5]
with the learning rate of 30, and we carried out gradient clipping with the threshold of 0.25. We used
dropout connect [5], and dropout rates on the word vectors, on the output between LSTM layers,
on the output of the final LSTM layer, and on the embedding layer were set to (0.4,0.25,0.4,0.1) on
PTB, and (0.65,0.2,0.4,0.1) on WT2. Batch sizes were set to 20 on PTB, and 80 on WT2. Numbers
of training epochs were set to 1000 on PTB and 1500 on WT2. After training, we ran ASGD as a
fine-tuning step until the stopping criterion was met. We used a random backpropagation through
time (BPTT) length which is N (70, 5) with probability 0.95 and N (35, 5) with probability 0.05. We
applied activation regularization (AR) and temporal activation regularization (TAR) to the output of
the final RNN layer. Their scaling coefficients were 2 and 1, respectively.

After the fine-tuning step, we used dynamic evaluation [3]. In this step, we used grid-search for hyper
parameter tuning provided by [3]. The learning rate η was tuned in [3×10−5, 4×10−5, 5×10−5, 6×
10−5, 7× 10−5, 1× 10−4], and decay rate λ was tuned in [1× 10−3, 2× 10−3, 3× 10−3, 5× 10−3].
ε was set to 0.001, and batch size was set to 100.

We applied the above procedure (training and finetuning each model, applying dynamic evaluation)
10 times, and evaluated the average of minimum validation perplexities and the average of test
perplexities.

C.1.2 Conditions for mixture models; MoS with MoSS

We trained a three-layer LSTM by following [7] to compare MoSS with MoS. We also used the codes
provided by [7],2 and only changed the code as (i) replacing MoSS with MoS, (ii) using various
random seeds. After we trained the models, we finetuned them and applied dynamic evaluation to the
finetuned models.

We used the experimental conditions of [7]. In this experiments, the numbers of units of three LSTM
layers were set to [960, 960, 620], and embedding size was 280 on PTB. On WT2, the numbers of
units of LSTM layers were set to [1150, 1150, 650], and embedding size was 300. The number of
mixture was set to 15 on both datasets. In the same way as the above experimental conditions, weight
matrices were initialized with a uniform distribution U(−0.1, 0.1) for the embedding layer, and all
other weights were initialized with U(− 1√

H
, 1√

H
). On both datasets, we used word level variational

drop out with the rate of 0.10, recurrent weight dropout with rate of 0.5, and context vector level
variational drop out with the rate of 0.30. In addition, embedding level variational dropout with the
rate of 0.55 and hidden level variational dropout with the rate of 0.225 were used on PTB. On WT2,
we used embedding level variational drop out with the rate of 0.40 and hidden level variational drop
out with the rate of 0.225. The optimization method was the same as in the previous section.

At the dynamic evaluation step, the learning rate was set to 0.002 and batchsize was set to 100 on
both datasets. On PTB, ε was set to 0.001 and decay rate λ was set to 0.075. On WT2, we set ε to
0.002 and decay rate λ to 0.02. All the above conditions were the same as those in [7].

We applied the above procedure five times and evaluated the average of minimum validation perplexi-
ties and the average of test perplexities.

C.2 Results

Tables. 1 and 2 list the validation and test perplexities after the training step, fine-tuning step, and
dynamic evaluation. We can see that the validation and test perplexities of sigsoftmax are significantly
reduced by the dynamic evaluation. Since the dynamic evaluation adapts models to recent sequences,
these results imply that the high expressive power of sigsoftmax enabled the model to more flexibly
adapt to the validation and test data in the dynamic evaluation. In addition, under the conditions tuned
for softmax in [5], the sigsoftmax-based model might have slightly overfitted to the training data
due to the high expressive power. We observed that training perplexities of sigsoftmax are smaller

2https://github.com/zihangdai/mos

4

https://github.com/zihangdai/mos

Table 1: Results of the language modeling experiment on PTB. Valid. means the validation perplexity,
and dynamic eval. means dynamic evaluation [3].

Softmax g:ReLU g: Sigmoid Sigsoftmax MoS MoSS

Valid. w/o finetune 61.1 ±0.4 (1.85±0.2)×103 60.7 ±0.2 61.0 ±0.2 58.4±0.2 58.4±0.3
Test w/o finetune 58.8 ±0.4 (1.54±0.2)×103 58.5 ±0.2 58.4 ±0.2 56.3±0.3 56.2±0.2

Valid. 59.2 ±0.4 (1.51±0.1)×103 58.7 ±0.4 59.2 ±0.4 56.8±0.2 56.9±0.1
Test 57.0 ±0.6 (1.24±0.08)×103 56.4 ±0.2 56.6 ±0.4 54.7±0.08 54.6±0.2

Valid.+dynamic eval. 51.2±0.5 (4.91±5)×103 49.2±0.4 49.7±0.5 48.6±0.2 48.3±0.1
Test +dynamic eval. 50.5±0.5 (2.78±8)×105 48.9±0.3 49.2±0.4 48.0±0.1 47.7±0.07

Table 2: Results of the language modeling experiment on WT2. Valid. means the validation perplexity,
and dynamic eval. means dynamic evaluation [3].

Softmax g:ReLU g:Sigmoid Sigsoftmax MoS MoSS

Valid. w/o finetune 68.0±0.2 (8.74±0.7)×102 72.8±0.3 67.8±0.1 65.9±0.5 65.1±0.2
Test w/o finetune 65.2±0.2 (7.97±0.7)×102 69.7±0.3 65.0±0.2 63.3±0.4 62.5±0.3

Valid. 67.4±0.2 (6.48±0.1)×102 70.8±0.1 67.4±0.2 64.0±0.3 63.7±0.3
Test 64.7±0.2 (5.93±0.08)×102 68.2±0.1 64.2±0.1 61.4±0.4 61.1±0.3

Valid.+dynamic eval. 45.3±0.2 (1.79±0.8)×103 45.7±0.1 44.9±0.1 42.5±0.1 42.1±0.2
Test +dynamic eval. 43.3±0.1 (2.30±2)×104 43.5±0.1 42.9±0.1 40.8±0.03 40.3±0.2

than those of softmax at the last epochs.3 By tuning the hyper parameters for regularization methods
such as dropout rates, sigsoftmax can achieve better performance. Figure 1 shows the singular
values of Â on PTB, and Figure 2 shows the top 20,000 singular values of Â on WT2. On both
datasets, singular values of softmax significantly decrease at 403. In addition, singular values of the
ReLU-based function also significantly decrease at 8243 on PTB. On the other hand, singular values
of sigsoftmax, sigmoid, MoS and MoSS smoothly decrease. Therefore, their ranks might be greater
than those in Tab. 3 in the paper.

D Character-level language modeling

In order to evaluate the effect of breaking the softmax bottleneck, we conducted the character-level
language modeling on text8 dataset [4]. On character-level language modeling, softmax bottleneck
does not occur sinceM is smaller than d unlike word level language modeling. If sigsoftmax does not
outperform softmax on character-level language modeling, we can see that sigsoftmax outperforms
sigsoftmax on word-level language modeling due to the breaking the softmax bottleneck.

D.1 Experimental Conditions

We trained one-layer 1024 units LSTM. We used Adam with the learning rate of 0.001. The batch
size was set to 100, and we truncated back propagation with 200 steps. The output size M was 27
since text8 only contains 26 lower alphabets and a space, and thus, M < d.

D.2 Experimental Results

Table 3 lists the results of character-level language modeling. We can see that the results of sigsoftmax
and softmax are almost the same. In this experiment, the softmax bottleneck does not occur since
M < d. Therefore, these results indicate that the reason why sigsoftmax outperforms softmax on the
word level language modeling is that sigsoftmax can break the softmax bottleneck.

3Note that models at the last epochs were not used for evaluation since their validation perplexities were not
the lowest in the training.

5

0 400 2000 4000 6000 8000 10000

Index

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106

Si
ng

ul
ar

va
lu

e

Log-softmax
Log-sigsoftmax
Log-sigmoid
Log-ReLU
Log-MoS
Log-MoSS

Figure 1: Singular values of Â on PTB test set.

0400 4000 8000 12000 16000 20000

Index

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

Si
ng

ul
ar

va
lu

e

Log-softmax
Log-sigsoftmax
Log-sigmoid
Log-ReLU
Log-MoS
Log-MoSS

Figure 2: Top 20,000 singular values of Â on WT2 test set.

E One Billion Word dataset

E.1 Experimental Conditions

We evaluated our method on One Billion Word dataset [1]. One Billion Word is a massive dataset and
contains 0.8 billion tokens and its vocabulary size is about 800 k. Due to the very large vocabulary
size of One Billion Word dataset, these experiments required an efficient method. Since sigsoftmax is
the alternative function of softmax, it can be used together with methods for softmax, and we applied
the adaptive approach [2]. we used adaptive softmax and compared it with adaptive sigsoftmax that
replaces softmax with sigsoftmax in adaptive softmax [2]. In this method, we set cutoff to [4000,
40000, 200000]. We trained two-layer 2048 units LSTMs by using SGD with the learning rate of 20
for 5 epochs. After the second epoch, we divided the learning rate by 2 for each epoch. The input
word embedding size was set to 256. We set the dropout rate to 0.01, the batch size to 128, and the
threshold of gradient clipping to 0.25. We unrolled the models for 20 steps for the backpropagation
through time.

6

Table 3: Bit-per-character on text8.

Softmax Sigsoftmax

Valid 1.49 1.48
Test 1.56 1.56

Table 4: Results of the language modeling experiment on One Billion Word dataset.

Adaptive softmax Adaptive sigsoftmax

Test 33.80±0.04 33.62±0.05

E.2 Experimental Results

Table 4 lists test perplexities on One Billion Word dataset. This table shows that test perplexity of
adaptive sigsoftmax is lower than that of adaptive softmax. Therefore, sigsoftmax can outperform
softmax when we use the massive dataset and the efficient method.

References
[1] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and

Tony Robinson. One billion word benchmark for measuring progress in statistical language
modeling. Technical report, Google, 2013. URL http://arxiv.org/abs/1312.3005.

[2] Édouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Efficient
softmax approximation for GPUs. In Proc. ICML, pages 1302–1310, 2017.

[3] Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of
neural sequence models. arXiv preprint arXiv:1709.07432, 2017.

[4] Matt Mahoney. Large text compression benchmark. 2011. URL http://www.mattmahoney.
net/text/text.html.

[5] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. In Proc. ICLR, 2018.

[6] Ofir Press and Lior Wolf. Using the output embedding to improve language models. Proc. EACL,
page 157, 2017.

[7] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: a high-rank rnn language model. In Proc. ICLR, 2018.

7

http://arxiv.org/abs/1312.3005
http://www. mattmahoney. net/text/text. html
http://www. mattmahoney. net/text/text. html

	Proofs of theorems
	Properties of output functions composed of ReLU and sigmoid
	ReLU-based output function
	Sigmoid-based output function

	Detailed experimental conditions and results
	Experimental conditions
	Conditions for activation functions
	Conditions for mixture models; MoS with MoSS

	Results

	Character-level language modeling
	Experimental Conditions
	Experimental Results

	One Billion Word dataset
	Experimental Conditions
	Experimental Results

