
A Proof of Theorem 1

A.1 Concentration of Ĥopt and Ĥemp

The performance of Ĥopt and Ĥemp in terms of Shannon entropy estimation is collected in the
following lemma.

Lemma 3. Suppose α = 0.001, α′ = 0.01 and one observes n i.i.d. samplesX1, X2, . . . , Xn
i.i.d.∼ P .

Then, there exists an entropy estimator Ĥopt = Ĥopt(X1, . . . , Xn) ∈ [0, lnS] such that for any t > 0,

P

(
|Ĥopt −H(P )| ≥ t+ c2

S

n lnS

)
≤ 2 exp

(
−c1t2n1−α) , (21)

where c1, c2 > 0 are universal constants, and H(P ) is the Shannon entropy. Moreover, the empirical
entropy Ĥemp = Ĥemp(X1, X2, . . . , Xn) ∈ [0, lnS] satisfies, for any t > 0,

P

(
|Ĥemp −H(P )| ≥ t+ c2

S

n

)
≤ 2 exp

(
−c1t2n1−α) . (22)

Consequently, for any β > 0,

P

(
|Ĥopt −H(P )| ≥ c2S

n lnS
+

√
β

c1n1−α′

)
≤ 2

nβ
, (23)

and

P

(
|H̄emp)−H(P )| ≥ c2S

n
+

√
β

c1n1−α′

)
≤ 2

nβ
. (24)

Proof. The part pertaining to the concentration of Ĥopt follows from [45, 19, 1]. The part pertaining
to the empirical entropy follows from [2],[31, Proposition 1],[20, Eqn. (88)].

A.2 Analysis of H̄opt and H̄emp

Next we define two events that ensure the proposed entropy rate estimator H̄opt and the empirical
entropy rate H̄emp is accurate, respectively:
Definition 2 (“Good” event in estimation). Let 0 < c4 < 1 and c3 ≥ 20 be some universal constants.
We take c4 = 0.001.

1. For every i, 1 ≤ i ≤ S, define the event

Ei =

{
|π̂i − πi| ≤ c3 max

{
lnn

nγ
,

√
πi lnn

nγ

}}
(25)

2. For every i ∈ [S] such that πi ≥ nc4−1 ∨ 100c23
lnn
nγ , define the eventHi as

|Ĥopt(Wi1,Wi2, . . . ,Wim)−Hi| ≤
c2S

m lnS
+

√
β

c1m1−α′ , (26)

for all m such that nπi − c3
√

nπi lnn
γ ≤ m ≤ nπi + c3

√
nπi lnn

γ , where β =
c23

4+10c3
,

c1, c2, α
′ are from Lemma 3.

Finally, define the “good” event as the intersection of all the events above:

Gopt ,

 ⋂
i∈[S]

Ei

 ∩( ⋂
i:πi≥nc4−1∨100c23

lnn
nγ

Hi

)
. (27)

Analogously, we define the “good” event Gemp for the empirical entropy rate H̄emp in a similar
fashion with (26) replaced by

|Ĥemp(Wi1,Wi2, . . . ,Wim)−Hi| ≤
c2S

m
+

√
β

c1m1−α′ . (28)
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The following lemma shows that the “good” events defined in Definition 2 indeed occur with high
probability.

Lemma 4. Both Gopt and Gemp in Definition 2 occur with probability at least

1− 2S

nβ
− 4c3(10)β

9β
S

nc4(β−1)
, (29)

where β =
c23

4+10c3
, c3 ≥ 20.

Proof of Theorem 5. Pick c4 = 0.001, α′ = 0.01. We write

H̄ =

S∑
i=1

πiHi, (30)

H̄opt =

S∑
i=1

π̂iĤi, (31)

where Hi = H(X2|X1 = i), Ĥi = Ĥopt(X
(i)) = Ĥopt(Wi1, . . . ,Wini). Write

H̄opt − H̄ =

S∑
i=1

πi

(
Ĥi −Hi

)
︸ ︷︷ ︸

E1

+

S∑
i=1

Ĥi(π̂i − πi)︸ ︷︷ ︸
E2

. (32)

Next we bound the two terms separately under the condition that the “good” event Gopt in Definition 2
occurs.

Note that the function πi 7→ nπi − c3
√

nπi lnn
γ is an increasing function when πi ≥ 100c23 lnn

nγ . Thus
we have

nπi − c3

√
nπi lnn

γ
= nπi

(
1− c3

√
lnn

nπiγ

)
≥ 9

10
nπi, (33)

whenever πi ≥ 100c23 lnn
nγ .

Let ε(m) , c2S
m lnS +

√
β

c1m1−α′ , which is decreasing in m. Let n±i , nπi ±

c3 max
{

lnn
γ ,
√

nπi lnn
γ

}
. Note that for each i ∈ [S],

{
|Ĥi −Hi| ≤ ε(ni)

}
⊃

{
|Ĥi −Hi| ≤ ε(ni), |π̂i − πi| ≤ max

{
lnn

nγ
,

√
πi lnn

nγ

}}
=
{
|Ĥopt(Wi1, . . . ,Wini)−Hi| ≤ ε(ni), n−i ≤ ni ≤ n

+
i

}
⊃

n+
i⋂

m=n−i

{|Ĥopt(Wi1, . . . ,Wim)−Hi| ≤ ε(m)}.

The key observation is that for each fixed m, Wi1, . . . ,Wim are i.i.d. as Ti.4 Taking the intersection
over i ∈ [S], we have {

|Ĥi −Hi| ≤ ε(ni), i = 1, . . . , S
}
⊃ Gopt.

4Note that effectively we are taking a union over the value of ni instead of conditioning. In fact, conditioned
on ni = m, Wi1, . . . ,Wim are no longer i.i.d. as Ti.

14



Therefore, on the event Gopt, we have

|E1| ≤
S∑
i=1

πi|Ĥi −Hi|

≤
∑

i:πi≥nc4−1∨100c23
lnn
nγ

πi|Ĥi −Hi|+
∑

i:πi≤nc4−1∨100c23
lnn
nγ

πi|Ĥi −Hi|

(33)

≤
∑

i:πi≥nc4−1∨100c23
lnn
nγ

πi

(
c2S

0.9nπi lnS
+

√
β

c1(0.9nπi)1−α′

)

+
∑

i:πi≤nc4−1∨100c23
lnn
nγ

πi lnS

.
S2

n lnS
+

(
S

n

) 1−α′
2

+
S lnS

n1−c4
∨ S lnS lnn

nγ
, (34)

where the last step follows from (33) and the fact that
∑
i∈[S] π

α
i ≤ S1−α for any α ∈ [0, 1]. As for

E2, on the event Gopt, we have

|E2| ≤
S∑
i=1

Ĥi|π̂i − πi| ≤ lnS

S∑
i=1

c3 max

{
lnn

nγ
,

√
πi lnn

nγ

}
.
S lnS lnn

nγ
∨

√
S lnn ln2 S

nγ
.

(35)
Combining (34) and (35), and using Lemma 4, completes the proof of (11). The proof of (12) follows
entirely analogously with Gopt replaced by Gemp.

B Proof of Theorem 3

We first prove Theorem 3, which quantifies the performance limit of the empirical entropy rate.
Lemma 13 in Section F shows that

H̄emp = min
P∈M2(S)

1

n
ln

1

PXn1 |X0
(Xn

1 |X0)
, (36)

whereM2(S) denotes the set of all Markov chain transition matrices with state space X of size S.
Since

H̄ = EP

[
1

n
ln

1

PXn1 |X0
(Xn

1 |X0)

]
, (37)

we know H̄ − E[H̄emp] ≥ 0.

We specify the true distribution PXn0 (xn0 ) to be the i.i.d. product distribution
∏n
i=0 P (xi), and it

suffices to lower bound

EP

[
1

n
ln

1

PXn1 |X0
(Xn

1 |X0)
− min
P∈M2(S)

1

n
ln

1

PXn1 |X0
(Xn

1 |X0)

]
(38)

= H(P )− EP
[
H(P̂X1X2)−H(P̂X1)

]
(39)

=
(
H(PX1X2)− EP [H(P̂X1X2)]

)
− (H(PX1)− EP [H(P̂X1)]), (40)

where P̂X1X2
is the empirical distribution of the counts {(xi, xi+1) : 0 ≤ i ≤ n − 1}, and P̂X1

is
the marginal distribution of P̂X1X2 .

It was shown in [20] that for any PX1
,

0 ≤ H(PX1
)− EP [H(P̂X1

)] ≤ ln

(
1 +

S − 1

n

)
. (41)
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Now, choosing PX1 to be the uniform distribution, we have

EP

[
1

n
ln

1

PXn1 |X0
(Xn

1 |X0)
− min
P∈M2(S)

1

n
ln

1

PXn1 |X0
(Xn

1 |X0)

]
(42)

≥ ln(S2)− lnn− ln

(
1 +

S − 1

n

)
(43)

≥ ln

(
S2

n+ S − 1

)
, (44)

where we have used the fact that the uniform distribution on S elements has entropy ln(S), and it
maximizes the entropy among all distribution supported on S elements.

C Proof of Theorem 4

We first show that Lemma 2 and Theorem 6 imply Theorem 4. Firstly, Theorem 6 shows that as
S →∞, under Poisson independent model,

inf
Ĥ

sup
R∈R(S,γ∗,τ,q)

P
(
|Ĥ − H̄| ≥ C1

S2

n lnS

)
≥ 1

2
− o(1) (45)

where τ = S, q = 1
5
√
n lnS

. Moreover, since a larger γ∗ results in a smaller set of parameters for all

models, we may always assume that γ∗ = 1− C2

√
S ln3 S
n . For this choice of γ∗, the assumption

n ≥ S2

lnS ensures q = 1
5
√
n lnS

≥ c3 lnn
nγ∗ , and thus Lemma 2 implies

inf
Ĥ

sup
T∈M2,rev(S,γ∗)

P
(
|Ĥ − H̄| ≥ C1

S2

n lnS

)
≥ 1

2
− o(1)− 2Sn−

c23
4+10c3 − Sn−c3/2 =

1

2
− o(1)

under the Markov chain model, completing the proof of Theorem 4.

C.1 Proof of Lemma 2

We introduce an additional auxiliary model, namely, the independent multinomial model, and show
that the sample complexity of the Markov chain model is lower bounded by that of the independent
multinomial model (Lemma 5), which is further lower bounded by that of the independent Poisson
model (Lemma 6). To be precise, we use the notation PMC, PIM, PIP to denote the probability measure
corresponding to the three models respectively.

C.1.1 Reduction from Markov chain to independent multinomial

Definition 3 (Independent multinomial model). Given a stationary reversible Markov chain with
transition matrix T = (Tij) ∈ M2,rev(S), stationary distribution πi, i ∈ [S] and absolute spectral
gap γ∗. Fix an integer n ≥ 0. Under the independent multinomial model, the statistician observes
X0 ∼ π, and the following arrays of independent random variables

W11, W12, . . . , W1m1

W21, W22, . . . , W2m2

...,
...,

. . . ,
...

WS1, WS2, . . . , WSmS

where the number of observations in the ith row is mi = dnπi+ c3 max
{

lnn
γ∗ ,

√
nπi lnn
γ∗

}
e for some

constant c3 ≥ 20, and within the ith row the random variables Wi1,Wi2, . . . ,Wimi
i.i.d.∼ Ti.

Equivalently, the observations can be summarized into the following (sufficient statistic) S × S
matrix C = (Cij), where each row is independently distributed multi(mi, Ti), hence the name of
independent multinomial model.

The following lemma relates the independent multinomial model to the Markov chain model:
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Lemma 5. If there exists an estimator Ĥ1 under the Markov chain model with parameter n such that

sup
T∈M2,rev(S,γ∗)

PMC

(
|Ĥ1 − H̄| ≥ ε

)
≤ δ, (46)

then there exists another estimator Ĥ2 under the independent multinomial model with parameter n
such that

sup
T∈M2,rev(S,γ∗)

PIM

(
|Ĥ2 − H̄| ≥ ε

)
≤ δ +

2S

nβ
, (47)

where β =
c23

4+10c3
≥ 1, and c3 is the constant in Definition 3.

C.1.2 Reduction from independent multinomial to independent Poisson

For the reduction from the independent multinomial model to the independent Poisson model, we
have the following lemma. Note that

H̄(T (R)) =
∑

1≤i,j≤S

πi
Rij∑S
j=1Rij

ln

∑S
j=1Rij

Rij
(48)

=
1

r

∑
1≤i,j≤S

Rij ln
ri
Rij

(49)

=
1

r

 ∑
1≤i,j≤S

Rij ln
1

Rij
+

S∑
i=1

ri ln ri

 . (50)

Lemma 6. If there exists an estimator Ĥ1 for the independent multinomial model with parameter n
such that

sup
T∈M2,rev(S,γ)

PIM

(
|Ĥ1 − H̄| ≥ ε

)
≤ δ, (51)

then there exists another estimator Ĥ2 for the independent Poisson model with parameter λ = 4n
τ

such that

sup
R∈R(S,γ,τ,q)

PIP

(
|Ĥ2 − H̄(T (R))| ≥ ε

)
≤ δ + Sn−c3/2, (52)

provided q ≥ c3 lnn
nγ , where c3 ≥ 20 is the constant in Definition 3.

C.2 Proof of Theorem 6

Now our task is reduced to lower bounding the sample complexity of the independent Poisson model.
The general strategy is the so-called method of fuzzy hypotheses, which is an extension of LeCam’s
two-point methods. The following version is adapted from [40, Theorem 2.15] (see also [14, Lemma
11]).
Lemma 7. Let Z be a random variable distributed according to Pθ for some θ ∈ Θ. Let µ1, µ2

be a pair of probability measures (not necessarily supported on Θ). Let f̂ = f̂(Z) be an arbitrary
estimator of the functional f(θ) based on the observation Z. Suppose there exist ζ ∈ R,∆ > 0, 0 ≤
β1, β2 < 1 such that

µ1(θ ∈ Θ : f(θ) ≤ ζ −∆) ≥ 1− β1 (53)
µ2(θ ∈ Θ : f(θ) ≥ ζ + ∆) ≥ 1− β2. (54)

Then

inf
f̂

sup
θ∈Θ

Pθ
(
|f̂ − f(θ)| ≥ ∆

)
≥ 1− TV(F1, F2)− β1 − β2

2
, (55)

where Fi =
∫
Pθµi(dθ) is the marginal distributions of Z induced by the prior µi, for i = 1, 2, and

TV(F1, F2) = 1
2

∫
|dF1 − dF2| is the total variation distance between distributions F1 and F2.
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To apply this method for the independent Poisson model, the parameter is the S × S symmetric
matrix R, the function to be estimated is H̄ = H̄(T (R)), the observation (sufficient statistic for R) is

C = X0 ∪ {Cij + Cji : i 6= j, 1 ≤ i ≤ j ≤ S} ∪ {Cii : 1 ≤ i ≤ S}.
The goal is to construct two symmetric random matrices (whose distributions serve as the priors),
such that

(a) they are sufficiently concentrated near the desired parameter spaceR(S, γ, τ, q) for properly
chosen parameters γ, τ, q;

(b) the entropy rates have different values;
(c) the induced marginal laws of C are statistically inseparable.

To this end, we need the following results (cf. [45, Proof of Proposition 3]):
Lemma 8. Let

φ(x) , x ln
1

x
, x ∈ [0, 1].

Let c > 0, D > 100 and 0 < η0 < 1 be some absolute constants. For any α ∈ (0, 1), η ∈ (0, η0),
there exist random variables U,U ′ supported on [0, αη−1] such that

E[φ(U)]− E[φ(U ′)] ≥ cα (56)

E[U j ] = E[U ′j ], j = 1, 2, . . . ,

⌈
D
√
η

⌉
(57)

E[U ] = E[U ′] = α. (58)

Lemma 9 ([45, Lemma 3]). Let V1 and V2 be random variables taking values in [0,M ]. If E[V j1 ] =

E[V j2 ], j = 1, . . . , L, then

TV(E[Poi(V1)],E[Poi(V2)]) ≤
(

2eM

L

)L
. (59)

where E[Poi(V )] =
∫
Poi(λ)PV (dλ) denotes the Poisson mixture with respect to the distribution of

a positive random variable V .

Now we are ready to define the priors µ1, µ2 for the independent Poisson model. For simplicity, we
assume the cardinality of the state space is S + 1 and introduce a new state 0:

Definition 4 (Prior construction). Suppose n ≥ S2

lnS . Set

α =
S

n lnS
≤ 1

S
(60)

1

η
= (d1 lnS)2 (61)

L =

⌈
D
√
η

⌉
, (62)

where d1 = D
8e2 , and D > 0 is the constant in Lemma 8.

Recall the random variables U,U ′ are introduced in Lemma 8. We use a construction that is akin to
that studied in [4]. Define S × S symmetric random matrices U = (Uij) and U′ = (U ′ij), where
{Uij : 1 ≤ i ≤ j ≤ S} be i.i.d. copies of U and {U ′ij : 1 ≤ i ≤ j ≤ S} be i.i.d. copies of U ′,
respectively. Let

R =

 b a · · · a
a

U
...
a

 , R′ =

 b a · · · a
a

U′
...
a

 , (63)

where
a =
√
αS, b = S. (64)

Let µ1 and µ2 be the laws of R and R′, respectively. The parameters γ, τ, q will be chosen later, and
we set λ = 4n

τ in the independent Poisson model (as in Lemma 6).

The construction of this pair of priors achieves the following three goals:
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(a) Statistical indistinguishablility. Note that the distributions of the first row and column of R
and R′ are identical. Hence the sufficient statistics are X0 and C = {Cij +Cji : i 6= j, 1 ≤ i ≤ j ≤
S} ∪ {Cii, 1 ≤ i ≤ S}. Denote its the marginal distribution as Fi under the prior µi, for i = 1, 2.
The following lemma shows that the distributions of the sufficient statistic are indistinguishable:

Lemma 10. For n ≥ S2

lnS , we have TV(F1, F2) = o(1) as S →∞.

(b) Functional value separation. Under the two priors µ1, µ2, the corresponding entropy rates of
the independent Poisson model differ by a constant factor of S2

n lnS . Here we explain the intuition: in
view of (50), for φ(x) = −x lnx we have

H̄(T (R)) =
1

r

 S∑
i,j=0

φ(Rij)−
S∑
i=0

φ(ri)

 (65)

where ri =
∑S
j=0Rij and r =

∑S
i,j=0Rij ; similarly,

H̄(T (R′)) =
1

r′

 S∑
i,j=0

φ(R′ij)−
S∑
i=0

φ(r′i)

 .

We will show that both r and r′ are close to their common mean b+2aS+S2α = S(1+
√
αS)2 ≈ S.

Furthermore, ri and r′i also concentrate on their common mean. Thus, in view of Lemma 8, we have

|H̄(T (R))− H̄(T (R′))| ≈ S|E[φ(U)]− E[φ(U ′)]| = Ω(Sα) = Ω

(
S2

n lnS

)
. (66)

The precise statement is summarized in the following lemma:

Lemma 11. Assume that n ≥ S2

lnS and lnn � S
ln2 S

. There exist universal constants C1 > 0 and
some ζ ∈ R, such that as S →∞,

P
(
H̄(T (R)) ≥ ζ + C1

S2

n lnS

)
= 1− o(1),

P
(
H̄(T (R′)) ≤ ζ − C1

S2

n lnS

)
= 1− o(1).

(c) Concentration on parameter space. Although the random matrices R and R′ may take values
outside the desired space R (S, γ, τ, q), we show that most of the mass is concentrated on this set
with appropriately chosen parameters. The following lemma, which is the core argument of the lower
bound, makes this statement precise.

Lemma 12. Assume that n ≥ S2

lnS . There exist universal constants C > 0, such that as S →∞,

P (R ∈ R (S, γ, τ, q)) = 1− o(1),

P (R′ ∈ R (S, γ, τ, q)) = 1− o(1),

where γ = 1− C2

√
S ln3 S
n , τ = S, and q = 1

5
√
n lnS

.

Fitting Lemma 10, Lemma 11 and Lemma 12 into the main Lemma 7, the following minimax lower
bound holds for the independent Poisson model.

Proof of Theorem 6. For the choice of ζ and ∆ = C1
S2

n lnS in Lemma 11, a combination of Lemma
11 and Lemma 12 gives

P
(
R ∈ R (S, γ∗, τ, q) , H̄(T (R)) ≥ ζ + C1

S2

n lnS

)
= 1− o(1) (67)

as S → ∞, so that β1 = o(1). Similarly, β2 = o(1). By Lemma 10, we have TV(F1, F2) = o(1).
Now Theorem 6 follows from Lemma 7 directly.
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D Experiments

The entropy rate estimator we proposed in this paper that achieves the minimax rates can be viewed
as a conditional approach; in other words, we apply a Shannon entropy estimator for observations
corresponding to each state, and then average the estimates using the empirical frequency of the
states. More generally, for any estimator Ĥ of the Shannon entropy from i.i.d. data, the conditional
approach follows the idea of

H̄Cond =

S∑
i=1

π̂iĤ(X(i)), (68)

where π̂ is the empirical marginal distribution. We list several choices of Ĥ:

1. The empirical entropy estimator, which simply evaluates the Shannon entropy of the empir-
ical distribution of the input sequence. It was shown not to achieve the minimax rates in
Shannon entropy estimation [20], and also not to achieve the optimal sample complexity in
estimating the entropy rate in Theorem 3 and Corollary 1.

2. The Jiao–Venkat–Han–Weissman (JVHW) estimator, which is based on best polynomial
approximation and proved to be minimax rate-optimal in [19]. The independent work [45]
is based on similar ideas.

3. The Valiant–Valiant (VV) estimator, which is based on linear programming and proved to
achieve the S

lnS phase transition for Shannon entropy in [43].

4. The profile maximum likelihood estimator (PML), which is proved to achieve the S
lnS phase

transition in [1]. However, there does not exist an efficient algorithm to even approximately
compute the PML with provably ganrantees.

There is another estimator, i.e., the Lempel–Ziv (LZ) entropy rate estimator [47], which does not lie in
the category of conditional approaches. The LZ estimator estimates the entropy through compression:
it is well known that for a universal lossless compression scheme, its codelength per symbol would
approach the Shannon entropy rate as length of the sample path grows to infinity. Specifically, for the
following random matching length defined by

Lni = 1 + max {1 ≤ l ≤ n : ∃j ≤ i− 1 s.t. (Xi, · · · , Xi+l−1) = (Xj , · · · , Xj+l−1)} , (69)

it is shown in [46] that for stationary and ergodic Markov chains,

lim
n→∞

Lni
lnn

= H̄ a.s. (70)

We use alphabet size S = 200 and vary the sample size n from 100 to 300000 to demonstrate how
the performance varies as the sample size increases. We compare the performance of the estimators
by measuring the root mean square error (RMSE) in the following four different scenarios via 10
Monte Carlo simulations:

1. Uniform: The eigenvalue of the transition matrix is uniformly distributed except the largest
one and the transition matrix is generated using the method in [17]. Here we use spectral
gap γ = 0.1.

2. Zipf: The transition probability Tij ∝ 1
i+j .

3. Geometric: The transition probability Tij ∝ 2−|i−j|.

4. Memoryless: The transition matrix consists of identical rows.

In all of the four cases, the JVHW estimator outperforms the empirical entropy rate. The results of
VV [43] and LZ [46] are not included due to their considerable longer running time. For example,
when S = 200 and n = 300000 and we try to estimate the entropy rate from a single trajectory of
the Markov chain, the empirical entropy and the JVHW estimator were evaluated in less than 30
seconds. The evaluation of LZ estimator and the conditional VV method did not terminate after a
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month.5 The main reason for the slowness of the VV methods in the context of Markov chains is that
for each context it needs to call the original VV entropy estimator (2000 times in total in the above
experiment), each of which needs to solve a linear programming.
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Figure 2: Comparison of the performances of the empirical entropy rate and JVHW estimator in
different parameter configurations

E More on fundamental limits of language modeling

Since the number of words in the English language (i.e., our “alphabet” size) is huge, in view of the
S2

logS result we showed in theory, a natural question is whether a corpus as vast as the 1BW corpus is
enough to allow reliable estimates of conditional entropy (as in Figure 1). A quick answer to this
question is that our theory has so far focused on the worst-case analysis and, as demonstrated below,
natural language data are much nicer so that the sample complexity for accurate estimation is much
lower than what the minimax theory predicts. Specifically, we computed the conditional entropy
estimates of Figure 1 but this time restricting the sample to only a subset of the corpus. A plot of the
resulting estimate as a function of sample size is shown in Figures 3 and 4. Because sentences in the
corpus are in randomized order, the subset of the corpus taken is randomly chosen.

To interpret these results, first, note the number of distinct unigrams (i.e., words) in the 1BW corpus
is about two million. We recall that in the i.i.d. case, n� S/ lnS samples are necessary [41, 45, 19],
even in the worst case a dataset of 800 million words will be more than adequate to provide a reliable
estimate of entropy for S ≈ 2 million. Indeed, the plot for unigrams with the JVHW estimator in
Figure 3 supports this. In this case, the entropy estimates for all sample sizes greater than 338 000

5For LZ, we use the Matlab implementation in https://www.mathworks.com/matlabcentral/
fileexchange/51042-entropy-estimator-based-on-the-lempel-zivalgorithm?focused=
3881655&tab=function. For VV, we use the Matlab implementation in http://theory.stanford.edu/
~valiant/code.html. We use 10 cores of a server with CPU frequency 1.9GHz.
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Figure 3: Estimates of conditional entropy versus sample size for 1BW unigrams; dotted lines are the
estimate using the entire corpus (i.e., the final estimate). Note the zoomed-in axes.

Table 1: Convergence points for 1BW conditional entropy estimates (within 0.1 bit of final estimate)

JVHW estimator empirical entropy
k sample size % of corpus sample size % of corpus
1 338k 0.04% 2.6M 0.34%
2 77M 10.0% 230M 29.9%
3 400M 54.2% 550M 74.5%

words is within 0.1 bits of the entropy estimate using the entire corpus. That is, it takes just 0.04% of
the corpus to reach an estimate within 0.1 bits of the true value.

We note also that the empirical entropy rate converges to the same value, 10.85, within two decimal
places. This is also shown in Figure 3. The dotted lines indicate the final entropy estimate (of each
estimator) using the entire corpus of 7.7× 108 words.

Results for similar experiments with bigrams and trigrams are shown in Figure 4 and Table 2. Since
the state space for bigrams and trigrams is much larger, convergence is naturally slower, but it
nonetheless appears fast enough that our entropy estimate should be within on the order of 0.1 bits of
the true value.

With these observations, we believe that the estimates based on the 1BW corpus should have enough
samples to produce reasonably reliable entropy estimates. As one further measure, to approximate
the variance of these entropy estimates, we also ran bootstraps for each memory length k = 1, . . . , 4,
with a bootstrap size of the same size as the original dataset (sampling with replacement). For the

Table 2: Points at which the 1BW entropy estimates are within 0.1 bit of the final estimate

k sample size % of corpus
1 338k 0.04%
2 77M 10.0%
3 400M 54.2%
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Figure 4: Estimates of conditional entropy versus sample size for 1BW bigrams and trigrams; dotted
lines are the estimate using the entire corpus (i.e., the final estimate)

Table 3: Bootstrap estimates of error range

PTB 1BW
k estimate st. dev. range estimate st. dev. range
1 10.62 0.00360 0.0172 10.85 0.000201 0.00091
2 6.68 0.00360 0.0183 7.52 0.000152 0.00081
3 3.44 0.00384 0.0159 5.52 0.000149 0.00078
4 1.50 0.00251 0.0121 3.46 0.000173 0.00081

1BW corpus, with 100 bootstraps, the range of estimates (highest less lowest) for each memory length
never exceeded 0.001 bit, and the standard deviation of estimates was just 0.0002—that is, the error
ranges implied by the bootstraps are too small to show legibly on Figure 1. For the PTB corpus, also
with 100 bootstraps, the range never exceeded 0.03 bit. Further details of our bootstrap estimates are
given in Table 3.

F Auxiliary lemmas

Lemma 13. For an arbitrary sequence (x0, x1, . . . , xn) ∈ Xn+1,X = {1, 2, . . . , S}, define the em-
pirical distribution of the consecutive pairs as P̂X1X2

= 1
n

∑n−1
i=0 δ(xi,xi+1). Let P̂X1

= 1
n

∑n−1
i=0 δxi

be the marginal distribution of P̂X1X2 , and the empirical frequency of state i as

π̂i =
1

n

n−1∑
j=0

1(xj = i). (71)

Denote the empirical conditional distribution as P̂X2|X1
=

P̂X1X2

P̂X1

, i.e.,

P̂X2|X1=i(j) =

∑n
m=1 1(xm = j, xm−1 = i)

nπ̂i
, (72)
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whenever π̂i. Let H̄emp =
∑S
i=1 π̂iH(P̂X2|X1=i) and H(·) is the Shannon entropy. Then, we have

H̄emp = H(P̂X1X2)−H(P̂X1), (73)

= min
P∈M2(S)

1

n
ln

1

PXn1 |X0
(xn1 |x0)

(74)

where in (74), for a given transition matrix P , PXn1 |X0
(xn1 |x0) ,

∏n−1
t=0 P (xt+1, xt).

The following lemma gives well-known tail bounds for Poisson and Binomial random variables.

Lemma 14. [29, Exercise 4.7] If X ∼ Poi(λ) or X ∼ B(n, λn ), then for any δ > 0, we have

P(X ≥ (1 + δ)λ) ≤
(

eδ

(1 + δ)1+δ

)λ
≤ e−δ

2λ/3 ∨ e−δλ/3 (75)

P(X ≤ (1− δ)λ) ≤
(

e−δ

(1− δ)1−δ

)λ
≤ e−δ

2λ/2. (76)

The following lemma is the Hoeffding inequality.

Lemma 15. [15] Let X1, X2, . . . , Xn be independent random variables such that Xi takes its value
in [ai, bi] almost surely for all i ≤ n. Let Sn =

∑n
i=1Xi, we have for any t > 0,

P {|Sn − E[Sn]| ≥ t} ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (77)

G Proofs of main lemmas

G.1 Proof of Lemma 4

We being with a lemma on the concentration of the empirical distribution π̂ for reversible Markov
chains.

Lemma 16. Consider a reversible stationary Markov chain with spectral gap γ. Then, for every
i, 1 ≤ i ≤ S, every constant c3 > 0, the event

Ei =

{
|π̂i − πi| ≥ c3 max

{
lnn

nγ
,

√
πi lnn

nγ

}}
(78)

happens with probability at most 2
nβ

, where β =
c23

4+10c3
.

Proof of Lemma 16. Recall the following Bernstein inequality for reversible chains [33, Theorem
3.3]: For any stationary reversible Markov chain with spectral gap γ,

P

{
|π̂i − πi| ≥

t

n

}
≤ 2 exp

(
− t2γ

4nπi(1− πi) + 10t

)
. (79)

We have lnn
nγ ≥

√
πi lnn
nγ if and only if πi ≤ lnn

nγ . We split the proof of (78) into two parts.

1. πi ≤ lnn
nγ : Invoking (79) and setting t = c3

lnn
γ , we have

Pπ

(
|π̂i − πi| ≥ c3

lnn

nγ

)
≤ 2 exp

(
−

γc23
ln2 n
γ2

4n lnn
nγ + 10c3

lnn
γ

)

≤ 2 exp

(
− c23

4 + 10c3
lnn

)
=

2

nβ
.
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2. πi ≥ lnn
nγ : Invoking (79) and setting t = c3

√
nπi lnn

γ , we have

Pπ

(
|π̂i − πi| ≥ c3

√
πi lnn

nγ

)
≤ 2 exp

− γc23
nπi lnn

γ

4nπi + 10c3

√
nπi lnn

γ


≤ 2 exp

(
− c23nπi lnn

4nπi + 10c3nπi

)
=

2

nβ
.

Now we are ready to prove Lemma 4. We only consider Gopt and the upper bound on P (Gemp)
follows from the same steps. By the union bound, it suffices to upper bound the probability of the
complement of each event in the definition of the “good” event Gopt (cf. Definition 2).

For the first part of the definition, the probability of “bad” events Eci in (25) are upper bounded by∑
i∈[S]

P (Eci ) ≤ S · 2

nβ
, (80)

where β =
c23

4+10c3
as in Lemma 16. Since we have assumed that c3 ≥ 20, we have β ≥ 1.

For the second part of the definition, applying Lemma 3, the overall probability of “bad” eventsHci
in (26) are upper bounded by∑

i∈[S]

P (Hci )1
(
πi ≥ nc4−1 ∨ 100c23

lnn

nγ

)

≤
S∑
i=1

2 · c3

√
nπi lnn

γ

2(
nπi − c3

√
nπi lnn

γ

)β 1(πi ≥ nc4−1 ∨ 100c23
lnn

nγ

)

≤
S∑
i=1

2 · c3

√
nπi lnn

γ

2

(9nπi/10)β
1

(
πi ≥ nc4−1 ∨ 100c23

lnn

nγ

)

≤
S∑
i=1

2c3nπi
2

(9nπi/10)β
1

(
πi ≥ nc4−1 ∨ 100c23

lnn

nγ

)

=

S∑
i=1

4c3nπi
(9nπi/10)β

1

(
πi ≥ nc4−1 ∨ 100c23

lnn

nγ

)
≤ D S

nc4(β−1)
,

where D , 4c3(10)β

9β
and the second step follows from the fact that πi 7→ nπi − c3

√
nπi lnn

γ is

increasing when πi ≥ 100c23
lnn
nγ .

G.2 Proof of Lemma 5

We simulate a Markov chain sample path with transition matrix Tij and stationary distribution πi
from the independent multinomial model as described in Definition 3, and define the estimator Ĥ2

as follows: output zero if the event ∩1≤i≤SEi does not happen (where Ei are events defined in
Definition 2); otherwise, we set

Ĥ2(X0, (Wij)i∈[S],j≤mi) = Ĥ1(X0, (Wij)i∈[S],j≤ni).
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Note that this is a valid definition since ∩1≤i≤SEi implies ni ≤ mi for any i ∈ [S]. As a result,

PIM

(
|Ĥ2 − H̄| ≥ ε

)
≤ PIM ((∩1≤i≤SEi)c) + PIM (∩1≤i≤SEi)PIM

(
|Ĥ2 − H̄| ≥ ε| ∩1≤i≤S Ei

)
.

(81)

It follows from Lemma 4 that

PIM ((∩1≤i≤SEi)c) ≤
2S

nβ
, (82)

where β =
c23

4+10c3
≥ 1. Now, it suffices to upper bound PIM

(
|Ĥ2 − H̄| ≥ ε| ∩1≤i≤S Ei

)
. The

crucial observation is that the joint distribution of (X0, (ni)i∈[S], (Wij)i∈[S],j≤ni) are identical in
two models, and thus

PIM

(
|Ĥ2 − H̄| ≥ ε| ∩1≤i≤S Ei

)
= PMC

(
|Ĥ1 − H̄| ≥ ε| ∩1≤i≤S Ei

)
(83)

PIM (∩1≤i≤SEi) = PMC (∩1≤i≤SEi) . (84)

By definition, the estimator Ĥ1 satisfies

PMC

(
∩1≤i≤SEi, |Ĥ1 − H̄| ≥ ε

)
≤ δ. (85)

A combination of the previous inequalities gives

PIM

(
|Ĥ2 − H̄| ≥ ε

)
≤ 2S

nβ
+ δ. (86)

as desired.

G.3 Proof of Lemma 6

We can simulate the independent multinomial model from the independent Poisson model by con-
ditioning on the row sum. For each i, conditioned on Mi ,

∑S
j=1 Cij = mi, the random vector

Ci = (Ci1, Ci2, . . . , CiS) follows the multinomial distribution multi (mi, Ti), where T = T (R) is
the transition matrix obtained from normalizing R. In particular, Ti = 1∑S

j=1 Rij
(Ri1, Ri2, . . . , RiS).

Furthermore, C1, . . . , CS are conditionally independent. Thus, to apply the estimator Ĥ1 designed
for the independent multinomial model with parameter n that fulfills the guarantee (51), we need to
guarantee that

Mi > nπi + c3 max

{
lnn

γ∗
,

√
nπi lnn

γ∗

}
, (87)

for all i with probability at least 1− Sn−c3/2. Here c3 ≥ 20 is the constant in Definition 3, and

πi =

∑S
j=1Rij

r
, (88)

where r =
∑

1≤i,j≤S Rij . Note that Mi ∼ Poi(λi), where λi , 4n
τ

∑
j Rij = 4nr

τ πi ≥ 4nπi, due
to the assumption that r ≥ τ . By the assumption of πi ≥ πmin ≥ c3 lnn

nγ , we have

nπi ≥ c3 max

{
lnn

γ∗
,

√
nπi lnn

γ∗

}
. (89)

Then

P

(
Mi < nπi + c3 max

{
lnn

γ∗
,

√
nπi lnn

γ∗

})
≤ P (Poi(4nπi) < 2nπi)

(a)

≤ exp(−nπi/2) (90)
(b)

≤ n−c3/2, (91)

where (a) follows from Lemma 14; (b) follows from πi ≥ πmin ≥ c3 lnn
nγ ≥ c3 lnn

n . This completes
the proof.
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G.4 Proof of Lemma 10

The dependence diagram for all random variables is as follows:

U R π(R) X0

C

where π(R) = (π0(R), π1(R), · · · , πS(R)) is the stationary distribution defined in (17) obtained by
normalizing the matrix R. Recall that for i = 1, 2, Fi denotes the joint distribution on the sufficient
statistic (X0,C) under the prior µi. Our goal is to show that TV(F1, F2)→ 0. Note that X0 and C
are dependent; however, the key observation is that, by concentration, the distribution ofX0 is close to
a fixed distribution P0 on the state space {0, 1, · · · , S}, where P0 ,

S(1+
√
αS)

(S
√
αS, 1, 1, · · · , 1).

Thus, X0 and C are approximately independent. For clarity, we denote F1 = PX0,C, F2 = QX0,C.
By the triangle inequality of the total variation distance, we have

TV(F1, F2) ≤ TV(PX0,C, P0 ⊗ PC) + TV(P0 ⊗ PC, P0 ⊗QC) + TV(QX0,C, P0 ⊗QC). (92)

To upper bound the first term, note that C → R → X0 forms a Markov chain. Hence, by the
convexity of total variation distance, we have

TV(PX0,C, P0 ⊗ PC) = EPC
[TV(PX0|C, P0)] (93)

≤ EPR
[TV(PX0|R, P0)]

= E[TV(π(R), P0)]

=
1

2

(
E
∣∣∣∣π0(R)− 1

1 +
√
αS

∣∣∣∣+

S∑
i=1

E
∣∣∣∣πi(R)− 1

S(1 +
√
αS)

∣∣∣∣
)
. (94)

We start by showing that the row sums of R concentrate. Let ri =
∑S
i=0Rij = a +

∑S
i=1 Uij ,

where a =
√
αS. It follows from the Hoeffding inequality in Lemma 15 that

P
(∣∣∣ri − (

√
αS + αS)

∣∣∣ ≥ u, i = 1, . . . , S
)
≤ 2S exp

 −2u2

S
(
d21S lnS

n

)2

→ 0, (95)

provided that u� (S lnS)3/2

n .

Next consider the entrywise sum of R. Write r ,
∑

0≤i,j≤S Rij = b+ 2aS +
∑

1≤i<j≤S 2Uij +∑
1≤i≤S Uii. Note that E[r] = b+ 2aS + S2α = S(1 +

√
αS)2, by (64). Then, it follows from the

Hoeffding inequality in Lemma 15 that

P
(∣∣∣r − S(1 +

√
αS)2

∣∣∣ ≥ √Su) ≤ 2 exp

 −2Su2

S(S−1)
2 4

(
d21S lnS

n

)2

+ S
(
d21S lnS

n

)2

→ 0 (96)

provided that u� S3/2 lnS
n . Henceforth, we set

u =
(S ln2 S)3/2

n
. (97)

Hence, with probability tending to one, |ri − (
√
αS + αS)| ≤ u for i = 1, 2, · · · , S and |r − S(1 +√

αS)2| ≤
√
Su. Conditioning on this event, for i = 1, 2, · · · , S we have∣∣∣∣∣πi(R)−

√
αS

S(1 +
√
αS)

∣∣∣∣∣ ≤ (
√
αS + αS)

∣∣∣∣1r − 1

E[r]

∣∣∣∣+
u

r
≤ 2u

S
3
2

+
u

S
. (98)
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For i = 0, π0(R) = S(1+
√
αS)

r , we have∣∣∣∣π0(R)− 1

1 +
√
αS

∣∣∣∣ = S(1 +
√
αS)

∣∣∣∣1r − 1

E[r]

∣∣∣∣ ≤ 2u√
S
. (99)

Therefore, in view of (94), we have

TV(PX0,C, P0 ⊗ PC) ≤

(
2u√
S

+

S∑
i=1

(
2u

S
3
2

+
u

S

))
+ 2 · o(1) =

4u√
S

+ u+ o(1) = o(1)

(100)

as S →∞. Similarly, we also have TV(QX0,C, P0 ⊗QC) = o(1).

By (92), it remains to show that TV(P0 ⊗ PC, P0 ⊗QC) = o(1). Note that PC, QC are products of
Poisson mixtures, by the triangle inequality of total variation distance again we have

TV(P0 ⊗ PC, P0 ⊗QC) = TV(PC, QC) ≤
∑

1≤i≤j≤S

TV

(
E[Poi(

4n

τ
Uij)],E[Poi(

4n

τ
U ′ij)]

)
.

(101)

We upper bound the individual terms in (101). For the total variation distance between Poisson
mixtures, note that the random variables 4n

S Uij and 4n
S U

′
ij match moments up to order

D
√
η

= Dd1 lnS, (102)

and are both supported on [0, αη−1 · 4n
S ] = [0,

d21S lnS
n

4n
S ] = [0, 4d2

1 lnS]. It follows from Lemma 9
that if

Dd1 lnS ≥ 8e2d2
1 lnS, (103)

we have

TV

(
E
[
Poi

(
4n

S
Uij

)]
,E
[
Poi

(
4n

S
U ′ij

)])
≤ 1

2Dd1 lnS
(104)

≤ 1

S
D2 ln 2

4e2

(105)

≤ 1

S100
. (106)

where we set d1 = D
8e2 and used the fact that D ≥ 100. By (101),

TV(P0 ⊗ PC, P0 ⊗QC) ≤ S2 · 1

S100
=

1

S98
= o(1) (107)

as S →∞, establishing the desired lemma.

G.5 Proof of Lemma 11

Let ∆ = cS2

8n logS = cαS
8 , where c is the constant from Lemma 8. Recall that φ(x) = x log 1

x . In view
of (65), we have

H̄(T (R)) =
1

r

 S∑
i,j=0

φ(Rij)−
S∑
i=0

φ(ri)


=

1

r
(φ(b) + 2Sφ(a) + φ(b+ aS)) +

1

r

S∑
i,j=1

φ(Rij)−
1

r

S∑
i=0

φ(ri)

=
1

r
(φ(b) + 2Sφ(a) + φ(b+ aS))︸ ︷︷ ︸

H1

+
1

r

2
∑

1≤i<j≤S

φ(Uij) +
∑

1≤i≤S

φ(Uii)


︸ ︷︷ ︸

H2

− 1

r

S∑
i=0

φ(ri)︸ ︷︷ ︸
H3

,
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where the last step follows from the symmetry of the matrix U.

For the first term, note that |φ(b)+2Sφ(a)+φ(b+aS)| = |φ(S)+2Sφ(
√
αS)+φ(S(1+

√
αS))| ≤

10S logS. Thus, conditioned on (96), we have∣∣∣∣1r − 1

E[r]

∣∣∣∣ ≤ u

S
3
2

, (108)

where E[r] = S(1 +
√
αS)2. Put h1 , φ(b)+2Sφ(a)+φ(b+aS)

S(1+
√
αS)2

, we have

|H1 − h1| ≤
10u lnS√

S
. (109)

with probability tending to one.

For the second term, by Definition 4, for any i, j, Uij is supported on [0,
d21S lnS

n ]. Thus, φ(Uij) is

supported on [0,
d21S lnS

n ln n
d21S lnS

] for any i, j. Hence, it follows from the Hoeffding inequality in
Lemma 15 that

P

∣∣∣∣∣∣2
∑

1≤i<j≤S

φ(Uij) +
∑

1≤i≤S

φ(Uii)− S2E[φ(U)]

∣∣∣∣∣∣ ≥ ∆S

4

 (110)

≤ 2 exp

 −2(∆S/4)2∑
1≤i<j≤S

(
2
d21S lnS

n ln n
d21S lnS

)2

+
∑

1≤i≤S

(
d21S lnS

n ln n
d21S lnS

)2

 (111)

≤ 2 exp

(
−Ω

(
S2

(lnn)2(lnS)4

))
(112)

→ 0 (113)

as S →∞, provided that lnn� S
ln2 S

. Put h2 = S
(1+
√
αS)2

E[φ(U)]. Using (108) and the fact that

0 ≤ φ(U) ≤ d21S lnS
n ln n

d21S lnS
, we have

|H2 − h2| ≤ u ·
d2

1S
3
2 lnS

n
ln

n

d2
1S lnS

+
∆

4
. (114)

For the third term, condition on the event in (95), we have |φ(ri)− φ(αS +
√
αS)| ≤ Cu lnS and

|φ(ri)| ≤ C, for some absolute constant C. Put h3 = 1
(1+
√
αS)2

φ(αS +
√
αS). We have

|H3 − h3| ≤
Cu√
S

+ Cu lnS. (115)

Finally, combining (109), (114), (115) as well as (97), with probability tending to one,

|H̄(T (R))− (h1 + h2 − h3)| ≤ ∆

4
+ C ′

S3/2 ln4 S

n
(116)

for some absolute constant C ′. Likewise, with probability tending to one, we have

|H̄(T (R′))− (h1 + h′2 − h3)| ≤ ∆

4
+ C ′

S3/2 ln4 S

n
(117)

where h′2 = S
(1+
√
αS)2

E[φ(U ′)]. In view of Lemma 8, we have

|h2 − h′2| ≥
cαS

(1 +
√
αS)2

≥ 2∆. (118)

This completes the proof.
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G.6 Proof of Lemma 12

We only consider the random matrix R = (Rij) which is distributed according to the prior µ1; the
case of µ2 is entirely analogous.

First we lower bound πmin with high probability. Recall the definition of u in (97), and (95), (96).
Since u ≤ αS = S2

n lnS , we have S ≤ r ≤ 5S and ri ≥
√
αS for all i ∈ [S] with probability tending

to one. Furthermore, r0 = S(1 +
√
αS) ≥

√
αS. Consequently,

πmin =
1

r
min

0≤i≤S
ri ≥

√
αS

5S
=

1

5
√
n lnS

,

as desired.

Next, we deal with the spectral gap. Recall T = T (R) is the normalized version of R. Let
D = diag(r0, . . . , rS) and Dπ = diag(π0, . . . , πS), where ri =

∑S
j=0Rij , r =

∑S
i,j=0Rij , and

πi = ri
r . Then we have T = D−1R. Furthermore, by the reversiblity of T ,

T ′ , D1/2
π TD−1/2

π = D−1/2RD−1/2, (119)

is a symmetric matrix. Since T ′ is a similarity transform of T , they share the same spectrum. Let
1 = λ1(T ) ≥ . . . ≥ λS+1(T ) (recall that T is an (S+ 1)× (S+ 1) matrix). In view of (63), we have

L , E[R] =


b a · · · a
a α · · ·α
...

...
a α · · ·α

 , Z , R− E[R] =

 0 0 · · · 0
0

U− E[U]
...
0


Crucially, the choice of a =

√
αS, b = S in (64) is such that bα = a2, so that E[R] is a symmetric

positive semidefinite rank-one matrix. Thus, we have from (119)

T ′ = D−1/2LD−1/2 +D−1/2ZD−1/2.

Note that L′ , D−1/2LD−1/2 is also a symmetric positive semidefinite rank-one matrix. Let
λ1(L′) ≥ 0 = λ2(L′) = · · · = λS+1(L′). By Weyl’s inequality [38, Eq. (1.64)], for i = 2, . . . , S+1,
we have

|λi(T )| ≤ ‖D−1/2ZD−1/2‖2 ≤ ‖D−1/2‖22‖Z‖2 =
1

min0≤i≤S ri
‖U− E[U]‖2. (120)

Here and below ‖ ·‖2 stands for the spectral norm (largest singular values). So far everything has been

determinimistic. Next we show that with high probability, the RHS of (120) is at most Ω(
√

S ln3 S
n ).

Note that U − E[U] is a zero-mean Wigner matrix. Furthermore, Uij takes values in [0, αη−1] =

[0,
d21S lnS

n ], where d1 is an absolute constant. It follows from the standard tail estimate of the spectral
norm for the Wigner ensemble (see, e.g. [38, Corollary 2.3.6]) that there exist universal constants
C, c, c′ > 0 such that

P

(
‖U− E[U]‖2 >

CS3/2 lnS

n

)
≤ c′e−cS . (121)

Combining (95), (120), and (121), the absolute spectral gap of T = T (R) satisfies

P

γ∗(T (R)) ≥ 1− C

√
S ln3 S

n

→ 1,

as S →∞. By union bound, we have shown that P (R ∈ R (S, γ, τ, q))→ 1, with γ, τ, q as chosen
in Lemma 12.
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G.7 Proof of Lemma 13

The representation (73) follows from definition of conditional entropy. It remains to show (74).
Let P̂ denote the transition matrix corresponding to the empirical conditional distribution, that is,
P̂ij , P̂X2=j|X1=i. Then, for any transition matrix P = (Pij),

1

n
ln

1

PXn1 |X0
(xn1 |x0)

=
1

n

n∑
m=1

S∑
i=1

S∑
j=1

1(xm−1 = i, xm = j) ln
1

Pij

=
1

n

S∑
i=1

S∑
j=1

(nπ̂iP̂ij) ln
1

Pij

=

S∑
i=1

π̂i

S∑
j=1

P̂ij ln
1

Pij

= H̄emp +

S∑
i=1

π̂iD(P̂i·‖Pi·),

where in the last step D(p‖q) =
∑
i pi ln pi

qi
≥ 0 stands for the Kullback–Leibler (KL) divergence

between probability vectors p and q. Then (74) follows from the fact that the nonnegativity of the KL
divergence.
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