
Generalisation of structural knowledge in the
hippocampal-entorhinal system:

Supplementary Material

James C.R. Whittington*
University of Oxford, UK

james.whittington@magd.ox.ac.uk

Timothy H. Muller*
University of Oxford, UK

timothymuller127@gmail.com

Shirley Mark
University College London, UK

s.mark@ucl.ac.uk

Caswell Barry
University College London, UK
caswell.barry@ucl.ac.uk

Timothy E.J. Behrens
University of Oxford, UK

behrens@fmrib.ox.ac.uk

1 Additional model details

We denote a layer of activations with vector notation e.g. pt or pft for a given frequency. Otherwise
variables with subscripts s and/ or j represent elements of the corresponding vector e.g. pft,s,j - a
place cell in frequency f of (compressed) sensory preference s and of grid preference j. We use w
to denote scalar weights, W for matrices and b for biases. The sensory data xt is a one-hot vector
where each of its ns elements xt,s represent a particular sensory identity s. This sensory data is later
compressed to dimension ns∗ . We consider place and grid cells, pt and gt respectively, to come in
different frequencies indexed by the superscript f . A grid cell in a given frequency is denoted by gft,j ,
where the index j is over the number of grid cells in that frequency. A place cell also has a particular
(compressed) sensory preference - we denote this by pft,s,j where the index j is over the number of
’phases’ in that frequency (nf), i.e. there are nfns∗ place cells for frequency f . Note there may be
more than nf grid cells per frequency due to the function fg(gt) (see below).

1.1 Generative model

Grid cell generation. We chose the function fµg (· · ·) to be linear, but thresholded at ±1. fσg (· · ·)
is a simple MLP and fD(· · ·) similarly.

Place cell generation. pθ (pt | Mt−1,gt) = N (µ(Mt−1,gt), σ(Mt−1,gt) where µ(Mt−1,gt) is
the retrieved memory, and σ is a simple MLP of µ. The input to the attractor network, fg(gt), we
define as a subset of gt repeated appropriately to have the correct dimensions (for each frequency).

Data generation. pθ (xt | pt) is a categorical distribution. We define fx(· · ·) to be
softmax

(
fc∗

(∑f∗

f wfx
∑
j p

f
t,s,j + bx

))
, summing over ’phases’, where wfx is a learnable pa-

rameter for each frequency and fc∗ is a MLP for ’decompressing’ into the correct input dimensions.
We choose f∗ to be 0 (i.e. only include highest frequency).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

1.2 Inference network

Place cell inference. qφ (pt | x≤t,gt). We describe the process to obtain the mean of this distribu-
tion first. We treat these neurons as a conjunction between sensorium and structural information from
the grid cells. To obtain the sensorium we first compress our one-hot encoding of instantaneous data
fc(· · ·), which we choose to be a two-hot encoding (or a learnable encoding). We then exponentially
smooth this with xft = (1 − αf)xft−1 +αffc(xt) into different temporal scales using learnable
smoothing constants αf . We then normalise each frequency with fn(x

f
t), where fn() demeans then

applies a relu followed by unit normalisation. We combine conjunctively with µt = fp(g̃t · x̃t) where
g̃ft,s,j = fg(g)

f
t,j and x̃ft,s,j = wfpfn(x

f
t)s i.e. repeated ns∗ and tiled nf times respectively to have

the correct dimensions. The distribution’s variance, σ, is given by a MLP with input [fn(x
f
t),g

f
t].

We choose the fp to be a leaky relu to ensure the only neurons active are those ’consistent’ with
both the sensorium and the structural information. This also sparsifies our memories and prevents
interference.

Grid cell inference. We describe the optional additional distribution qφ (gt | x≤t,Mt−1) further.
It provides information on location from the current sensorium. Since memories are a conjunction
between location and sensorium, a memory contains information regarding location. We use x̃t as the
input to the attractor network to retrieve the memory associated with the current sensorium. We use a,
per frequency, MLP from the retrieved memory to give the mean of the distribution. The variance of
the distribution is a function of the length of the retrieved memory, as well as how well the retrieved
memory is able to reproduce the sensorium, i.e. if we are able to successfully retrieve a memory, we
can be more confident that our memory is informative on current location. This factored distribution
is a Gaussian with a precision weighted mean - i.e. we refine our generated location estimate with
sensory information.

1.3 Hebbian memories

Each time the agent enters a new environment, the Hebbian memory, Mt, is reset to be empty (all
weights zero). The exact Hebbian learning rule we choose is somewhat arbitrary, in that there are
many other types of Hebbian learning rules which we found to be effective. Some other examples are
Mt = λMt−1 +η(p

i
t−pgt)g̃

T
t or Mt = λMt−1 +η(p

i
t p

i
t
T − pgt p

g
t
T
).

When using the sensorium to constrain the grid code, we can either use the same memory matrix as
the generative case (as the brain presumably does), or we can use a separate memory matrix. Best
results (and those presented) were when two separate matrices were used. We used the following
learning rule for the inference based matrix: M∗t = λM∗t−1 +η(p

i
t−pxt)(p

i
t+pxt)

T , where pxt is
the retrieved memory with the sensorium as input to the attractor. This second matrix did not have
any restrictions on its connectivity.

1.4 Training

We wish to learn the parameters for both the generative model and inference network, θ and φ, by
maximising the ELBO, a lower bound on ln pθ (x≤T). Following [4] (Section 5), we obtain a free
energy F =

∑T
t=1 Eqφ(g<t,p<t|x<t)

[Jt], with Jt = Eqφ(...)[ln pθ (xt | pt) + ln pθ(pt|Mt−1,gt)

qφ(pt|x≤t,gt)
+

ln
pθ(gt|gt−1)

qφ(gt|x≤t,Mt−1,gt−1)
] as a per time-step free energy. We use the variational autoencoder framework

[6, 7] to optimise this generative temporal model.

2 Implementation details

Although we have presented a Bayesian formulation, best results (those presented) were obtained by
using a network of the identical architecture, however only using the means of the above distributions
- i.e. not sampling from the distributions. We use the following surrogate loss function: Ltotal =∑

t Lxt + Lgt + Lpt with Lxt being a cross entropy loss, and Lpt and Lgt are squared error losses
between ’inferred’ and ’generated’ variables - in an equivalent way to the Bayesian energy function.
We augment with a next time-step prediction loss, as well as a prediction loss from the inferred grid

2

cells. An additional squared error loss between the inferred memory and the retrieved memory given
sensory input is used, should that module be included. We note that, like [3], a higher ratio of grid to
band cells is observed if additional l2 regularisation of grid cell activity is used.

We use backpropagation through time truncated to 25 steps, and optimise with ADAM [5] with a
learning rate that is annealed from 1e − 3 to 1e − 4. We use ns = 45, ns∗ = 10 and 5 different
frequencies, with nf as [10, 10, 8, 6, 6]. Our environments are square with possible widths [8, 10, 12].
The agent changes to a completely new environment after a certain number of steps (∼ 2000-
5000). The agent has a slight bias for straight paths to facilitate equal exploration. λ and η are
set to 0.9999 and 0.5 respectively. at is a direction signal, where the agent can move, up, down,
left, right or stay still. Initially we down-weight costs not associated with prediction. We do
not train on vertices that the agent has not seen before. Code will be made available at http:
//www.github.com/djcrw/generalising-structural-knowledge.

For all simulations presented above, we use the additional memory module in grid cell inference. We
do so using two separate memory matrices. For simulations involving object vector cells, we also use
an extra factored distribution in grid cell inference: qφ (gt | st) - where st is an indicator telling the
network if it is at the location of a ’shiny’ state. We also remove at from the generative model, but
it is still included in the inference network - i.e. two different distributions for grid transitions, one
with direction information (inference) and one without (generative). We do this so that the generative
model can more easily capture the true underlying transition statistics.

Typically after 200 − 300 environments, the agent has fully learned the structure. This equates to
∼ 50000 gradient updates. There are many simple extensions to improve performance, at the expense
of computation, e.g. hyper-parameter tuning, normalisation for the attractor ([1, 2]).

3

http://www.github.com/djcrw/generalising-structural-knowledge
http://www.github.com/djcrw/generalising-structural-knowledge

3 Grid cell representations

Here we show learned grid cells. Note the distinct frequency modules. These cells are not all from
the same model or environment size.

Figure 1: Higher frequency grid cells

Figure 2: Middle frequency grid cells

Figure 3: Lower frequency grid cells

4

4 Place cell representations

Here we show learned place cells. Note the distinct frequency modules. These cells are not all from
the same model or environment size.

Figure 4: Higher frequency place cells

Figure 5: Middle frequency place cells

Figure 6: Lower frequency place cells

5

5 Derivation of variational lower bound

We follow the derivation from [4]. Exploiting Jensen’s inequality, we can re-write as the following

ln pθ (x≤t) ≥ E
qφ(p≤t,g≤t|x≤t)

ln
pθ
(
x≤t,p≤t,g≤t

)
qφ
(
p≤t,g≤t | x≤t

)
Should we factorise both our generative and recognition distribution temporally as follows (we use
the specific distributions from the paper later)

pθ
(
x≤t,p≤t,g≤t

)
=

T∏
t=1

pθ
(
xt | x<t,p≤t,g≤t

)
pθ
(
pt | x<t,p<t,g≤t

)
pθ (gt | x<t,p<t,g<t)

qφ
(
p≤t,g≤t | x≤t

)
=

T∏
t=1

qφ (pt,gt | x≤t,p<t,g<t)

We can then write things as the following

ln pθ (x≤t) ≥ E
qφ(p≤t,g≤t|x≤t)

T∑
t=1

Jt

Where

Jt = ln
pθ
(
xt | x<t,p≤t,g≤t

)
pθ
(
pt | x<t,p<t,g≤t

)
pθ (gt | x<t,p<t,g<t)

qφ (pt,gt | x≤t,p<t,g<t)

Thus

ln pθ (x≤t) ≥ E
qφ(p≤t,g≤t|x≤t)

T∑
t=1

Jt

=

∫
qφ (pt,gt | x1)

∫
...

∫
qφ (pT ,gT | x≤T ,p<T ,g<T)

T∑
t=1

Jt

Since Jt is not a function of elements from the set {pt+1,gt+1,pt+2,gt+2 ...pT ,gT }, we can
rewrite the above equation as the following:

=

∫
qφ (pt,gt | x1) J1

∫
qφ (p2,g2 | x≤2,p1,g1) ...

∫
qφ (pT ,gT | x≤T ,p<T ,g<T)

+

∫
qφ (pt,gt | x1)

∫
qφ (p2,g2 | x≤2,p1,g1) J2...

∫
qφ (pT ,gT | x≤T ,p<T ,g<T)

+ ...

+

∫
qφ (pt,gt | x1)

∫
qφ (p2,g2 | x≤2,p1,g1) ...

∫
qφ (pT ,gT | x≤T ,p<T ,g<T) JT

All inner integrals integrate to 1, and so we are left with the following:

F =

T∑
t=1

E∏t
τ=1 qφ(pτ ,gτ |x≤τ ,p<τ ,g<τ)

[Jt]

6

This can all we rewritten as:

F =

T∑
t=1

E∏t−1
τ=1 qφ(pτ ,gτ |x≤τ ,p<τ ,g<τ)

[E
qφ(pt,gt|x≤t,p<t,g<t)

[ln pθ
(
xt | x<t,p≤t,g≤t

)
+ ln pθ

(
pt | x<t,p<t,g≤t

)
+ ln pθ (gt | x<t,p<t,g<t)
− ln qφ (pt,gt | x≤t,p<t,g<t)]]

We can see that this is now an per time-step cost function that we can optimise. We now use add in
our choice of distributions. First our generative distribution:

qφ (pt,gt | x≤t,p<t,g<t) = qφ (pt | x≤t,gt) qφ
(
gt | x≤t,Mt−1,gt−1

)
and now our recognition distribution:

pθ
(
x≤t,p≤t,g≤t

)
= pθ (xt | pt) pθ (pt | gt,Mt−1) pθ

(
gt | gt−1

)
With Mt−1 being the memory composed of previous pt representations (stored in synaptic weights).

We can now simplify to the following:

F =

T∑
t=1

E∏t−1
τ=1 qφ(pτ ,gτ |x≤τ ,p<τ ,g<τ)

[

+ E
qφ(pt,gt|x≤t,p<t,g<t)

[ln pθ (xt | pt)]

− E
qφ(gt|x≤t,Mt−1,gt−1)

DKL(qφ (pt | x≤t,gt) ‖ pθ (pt | x<t,gt))

−DKL(pθ
(
gt | x<t,Mt−1,gt−1

)
‖ qφ

(
gt | x≤t,Mt−1,gt−1

)
)]]

References
[1] Jimmy Lei Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using Fast Weights

to Attend to the Recent Past. Advances in Neural Information Processing Systems, pages 1–10, 2016. URL
http://arxiv.org/abs/1610.06258.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv, 2016. ISSN
1607.06450. doi: 10.1038/nature14236. URL http://arxiv.org/abs/1607.06450.

[3] Christopher J. Cueva and Xue-Xin Wei. Emergence of grid-like representations by training recurrent neural
networks to perform spatial localization. pages 1–19, 2018. URL http://arxiv.org/abs/1803.07770.

[4] Mevlana Gemici, Chia-Chun Hung, Adam Santoro, Greg Wayne, Shakir Mohamed, Danilo J. Rezende,
David Amos, and Timothy Lillicrap. Generative Temporal Models with Memory. pages 1–25, 2017. ISSN
1702.04649. URL http://arxiv.org/abs/1702.04649.

[5] Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Optimization. pages 1–15,
2014. ISSN 09252312. doi: http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503. URL
http://arxiv.org/abs/1412.6980.

[6] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. (Ml):1–14, 2013. ISSN
1312.6114v10. doi: 10.1051/0004-6361/201527329. URL http://arxiv.org/abs/1312.6114.

[7] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models. 2014. ISSN 10495258. doi: 10.1051/0004-6361/201527329.
URL http://arxiv.org/abs/1401.4082.

7

http://arxiv.org/abs/1610.06258
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1803.07770
http://arxiv.org/abs/1702.04649
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1401.4082

	Additional model details
	Generative model
	Inference network
	Hebbian memories
	Training

	Implementation details
	Grid cell representations
	Place cell representations
	Derivation of variational lower bound

