
L4: Practical loss-based stepsize adaptation for deep
learning - Supplementary material

Michal Rolínek and Georg Martius
Max-Planck-Institute for Intelligent Systems Tübingen, Germany

michal.rolinek@tuebingen.mpg.de and georg.martius@tuebingen.mpg.de

Abstract

In this supplementary material, we provide the missing details of the proposed
stepsize adaptation and we report the results from additional experiments.

A Precise algorithmic description

The pseudocode of the L4 algorithm is provided in Algorithm 1 and for moving averages with bias
correction in Algorithm 2.

Algorithm 1 L4, a meta algorithm for stochastic optimization, compatible e. g. with momentum SGD,
Adam. The default hyperparameters are: α = 0.15, γ = 0.9, γ0 = 0.75, τ = 1000, and ε = 10−12.

Require: α: Stepsize/fraction
Require: γ, γ0: optimism loss improvement fraction
Require: τ : timescale of forgetting minimum loss
Require: Lt: non-negative stochastic loss at time step t.
Require: θ0: initial parameter vector
Require: V (L, θ), G(L, θ): gradient direction function, gradient step function
t← 0, Lmin ← γ0 · L0 (fraction of initial loss)
while θt not converged do
t← t+ 1
v ← V (Lt, θt−1) (gradient step)
g ← G(Lt, θt−1) (gradient estimator)
Lmin
t ← min(Lmin

t−1, Lt) (minimum loss)

θt = θt−1 − α · Lt−γ·Lmin
t

g>·v+ε v (parameter update)
Lmin
t ← (1 + 1/τ) · Lmin

t (forgetting minimum loss)
end while

Algorithm 2 Bias corrected moving average
Require: τ : timescape
mt ← 0 (initialize mean with zero vector)
t← 0 (initialize step counter)
update_average(x): (x: input vector to be averaged)
t← t+ 1
mt ← (1− 1/τ) ·mt−1 + 1/τ · x (update average)
return: mt/(1− (1− 1/τ)t) (correct bias)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Table A2: Test accuracies on Fashion MNIST. Both L4Mom and L4Adam reach (slightly) higher
accuracies. This effect is strenghtened by increasing the dropout rate to p = 0.7. Reported are mean
and standard deviation of five independent restarts.

L4Adam (p=0.7) L4Mom (p=0.7) L4Adam L4Mom Adam* Mom*

93.6± 0.25 93.45± 0.15 93.35± 0.15 93.25± 0.2 93.1± 0.2 93.0± 0.15

B Additional experiments

B.1 Comparison with LMA

As an extension of the experiments on badly conditioned regression, we also include a comparison
with the classical Levenberg-Marquardt algorithm (LMA) [1] which can be viewed as a Gauss-
Newton method with a trust region. In Tab. A1 the speed of the algorithms, both in terms of the
number of iterations as well as wall-clock time1 is reported. The same comparison is also performed
on an instance of twice the size (all dimensions doubled).

The results show that the gradients provided by LMA reach convergence in a much smaller number
of steps. However, at the same time, LMA is significantly more computationally expensive since each
step involves solving a least squares problem. This can be clearly seen from comparing performance
on the problem sizes in Tab. A1.

Table A1: Comparison with Levenberg-Marquardt algorithm. Time and the number of gradient
updates needed to reach convergence (L < 10−8) is reported. The average is with respect to 5 restarts.
Two problem setups are considered, the default from [2] (x ∈ R6, W1 ∈ R10×6, W2 ∈ R6×6,
y ∈ R10, κ(A) = 1010) and its “scaled up by two” version. Stepsize α = 0.3 was selected for LMA
as the best performing one, and α = 0.25 is chosen for both L4 optimizers.

Method Steps Time (s)

96 trainable weights

L4Adam* 2325± 765 1.4± 0.5
L4Mom* 1606± 32 1.0± 0.02

LMA* 68± 3 3.0± 1.4

192 trainable weights

L4Adam* 2222± 311 2.1± 0.4
L4Mom* 1933± 116 1.8± 0.2

LMA* 212± 114 123± 64

B.2 Fashion MNIST

The Fashion MNIST dataset [5] is a drop-in replacement for MNIST that is considered to better
represent modern computer vision tasks. We ran it on a TensorFlow official implementation of a
ConvNet for MNIST [4]. The architecture consists of two convolutional layers followed by two
fully connected layers that a have a dropout [3] in between. By default, the batch size is 100 and the
optimizer is Adam.

We see in Fig. A1, that both L4 optimizers work out-of-the-box and despite the presence of dropout
during training, both achieve a loss that is roughly an order of maginute lower than the losses of
optimized baselines. This leads to a mild gain in test accuracy as can be seen in Tab. A2.

Such low training loss of L4 optimizers despite the presence of dropout suggests increasing the
dropout rate in hope for better generalization. And indeed when switching from the default rate
p = 0.4 to value p = 0.7, one can see (also in Tab. A2) an additional gain in test accuracy.

1The experiments were conducted on a machine with i7-7800X CPU @ 3.50GHz with 8 cores.

2



0 10 20 30
Epoch

10−3

10−2

10−1

100

101

Lo
ss

L4Mom
L4Adam
mSGD*
Adam*

Figure A1: Training performance on Fashion MNIST. Default L4 optimizers reach lower level of
the loss depsite the presence of dropout (rate p = 0.4).The optimized learning rates for mSGD and
Adam were 0.01 and 0.0003, respectively. Results are reported over five independent restarts.

(a) L4Adam (b) L4Mom

0 10 20 30
Epoch

10−10

10−8

10−6

10−4

10−2

100

Tr
ai

ni
ng

lo
ss

L4Adam (64)
L4Adam (32)
L4Adam (16)
L4Adam (8)

0 10 20 30
Epoch

10−10

10−8

10−6

10−4

10−2

100

Tr
ai

ni
ng

lo
ss

L4Mom (64)
L4Mom (32)
L4Mom (16)
L4Mom (8)

Figure A2: Sweeping over batch sizes for MNIST. The plotted curves are averages over five restarts
(with smoothing in log-spcae). All smaller batch sizes outperform the batch size 64 used in the main
paper.

Although generalization performance was not our main focus in this paper, we firmly believe that
superior performance in optimization is convertible to better results in test time. This case of
increasing the dropout rate is one promising example of it.

B.3 Sweeping over batch sizes

Since L4 recomputes the stepsize individually for each batch, it is natural to investigate how its
performance depends on the batch size. For this experiment we chose the MNIST and DNC datasets,
since there L4 displayed the most variance in the effective learning rates, and thus behaved “most
different” from standard optimizers. Of particular interest is the “high variance” regime of small
batch sizes, where the stepsize adaptation can be expected to evolve the learning rate rapidly. The
same default setting (α = 0.15) of both L4Mom and L4Adam was consistently applied.

In both cases we swept over batch size 8, 16, 32, and 64. In the experiments from the main text of the
paper, the selected batch sizes were 64, and 16, respectively for MNIST and DNC.

The results for MNIST are plotted in Fig. A2. It turns out that the original setting is the least favorable
for both L4 optimizers. In fact, the performance increases with decreasing the batch size.

For DNC, we report the performance in Fig. A3. We also observe that L4 favors small batch sizes.
Here batch size 8 is probably the limit of what L4 can tolerate. This is not directly visible on the loss

3



(a) L4Adam (b) L4Mom

0 5 10 15

Examples (x10000)

10−8

10−6

10−4

10−2

100

Lo
ss

L4Adam (64)
L4Adam (32)
L4Adam (16)
L4Adam (8)

0 5 10 15

Examples (x10000)

10−8

10−6

10−4

10−2

100

Lo
ss

L4Mom (64)
L4Mom (32)
L4Mom (16)
L4Mom (8) 4/5

Figure A3: Sweeping over batch sizes for DNC. Results are averaged over five independent restarts.
The x-axis is normalized per number of data points processed. In case of L4Mom (b) with batch size
8, one run diverged (after already having reached convergence). The reported curve is the average
over the remaining four runs.

curves but in fact one of the runs of L4Mom diverged (after processing 50000 examples and reaching
10−7 loss). In all other cases, good level of convergence was reached.

In conclusion, adapting the stepsize for every batch shows to be gradually more beneficial as we
lower the batch sizes (loss estimates increase in variance). This is a further validation for applying
learning rates that are highly varying from mini-batch to mini-batch.

Although the batch sizes in both cases range almost over an order of magnitude, no severe deterioration
of performance was ever detected.

4



References
[1] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.

Quarterly of Applied Mathematics, 2:164–168, 1944.

[2] Benjamin Recht. Gradient descent doesn’t find a local minimum, 2017. https://github.com/
benjamin-recht/shallow-linear-net Commit d192d96.

[3] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958, January 2014.

[4] TensorFlow GitHub Repository. Tensorflow implementation of ConvNet for MNIST, 2016.
Commit 1f34fcaf.

[5] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms, 2017.

5

https://github.com/benjamin-recht/shallow-linear-net
https://github.com/benjamin-recht/shallow-linear-net

	Precise algorithmic description
	Additional experiments
	Comparison with LMA
	Fashion MNIST
	Sweeping over batch sizes


