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Abstract

We introduce a principled approach for unsupervised structure learning of deep
neural networks. We propose a new interpretation for depth and inter-layer con-
nectivity where conditional independencies in the input distribution are encoded
hierarchically in the network structure. Thus, the depth of the network is determined
inherently. The proposed method casts the problem of neural network structure
learning as a problem of Bayesian network structure learning. Then, instead of
directly learning the discriminative structure, it learns a generative graph, constructs
its stochastic inverse, and then constructs a discriminative graph. We prove that
conditional-dependency relations among the latent variables in the generative graph
are preserved in the class-conditional discriminative graph. We demonstrate on
image classification benchmarks that the deepest layers (convolutional and dense)
of common networks can be replaced by significantly smaller learned structures,
while maintaining classification accuracy—state-of-the-art on tested benchmarks.
Our structure learning algorithm requires a small computational cost and runs
efficiently on a standard desktop CPU.

1 Introduction

Over the last decade, deep neural networks have proven their effectiveness in solving many chal-
lenging problems in various domains such as speech recognition (Graves & Schmidhuber, 2005),
computer vision (Krizhevsky et al., 2012; Girshick et al., 2014; Szegedy et al., 2015) and machine
translation (Collobert et al., 2011). As compute resources became more available, large scale models
having millions of parameters could be trained on massive volumes of data, to achieve state-of-the-art
solutions. Building these models requires various design choices such as network topology, cost
function, optimization technique, and the configuration of related hyper-parameters.

In this paper, we focus on the design of network topology—structure learning. Generally, exploration
of this design space is a time consuming iterative process that requires close supervision by a human
expert. Many studies provide guidelines for design choices such as network depth (Simonyan &
Zisserman, 2014), layer width (Zagoruyko & Komodakis, 2016), building blocks (Szegedy et al.,
2015), and connectivity (He et al., 2016; Huang et al., 2016). Based on these guidelines, these studies
propose several meta-architectures, trained on huge volumes of data. These were applied to other
tasks by leveraging the representational power of their convolutional layers and fine-tuning their
deepest layers for the task at hand (Donahue et al., 2014; Hinton et al., 2015; Long et al., 2015; Chen
et al., 2015; Liu et al., 2015). However, these meta-architectures may be unnecessarily large and
require large computational power and memory for training and inference.
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The problem of model structure learning has been widely researched for many years in the proba-
bilistic graphical models domain. Specifically, Bayesian networks for density estimation and causal
discovery (Pearl, 2009; Spirtes et al., 2000). Two main approaches were studied: score-based and
constraint-based. Score-based approaches combine a scoring function, such as BDe (Cooper &
Herskovits, 1992), with a strategy for searching in the space of structures, such as greedy equivalence
search (Chickering, 2002). Adams et al. (2010) introduced an algorithm for sampling deep belief
networks (generative model) and demonstrated its applicability to high-dimensional image datasets.

Constraint-based approaches (Pearl, 2009; Spirtes et al., 2000) find the optimal structures in the large
sample limit by testing conditional independence (CI) between pairs of variables. They are generally
faster than score-based approaches (Yehezkel & Lerner, 2009) and have a well-defined stopping
criterion (e.g., maximal order of conditional independence). However, these methods are sensitive to
errors in the independence tests, especially in the case of high-order CI tests and small training sets.

Motivated by these methods, we propose a new interpretation for depth and inter-layer connectivity in
deep neural networks. We derive a structure learning algorithm such that a hierarchy of independencies
in the input distribution is encoded in a deep generative graph, where lower-order independencies are
encoded in deeper layers. Thus, the number of layers is automatically determined, which is a desirable
virtue in any architecture learning method. We then convert the generative graph into a discriminative
graph, demonstrating the ability of the latter to mimic (preserve conditional dependencies) of the
former. In the resulting structure, a neuron in a layer is allowed to connect to neurons in deeper layers
skipping intermediate layers. This is similar to the shortcut connection (Raiko et al., 2012), while
our method derives it automatically. Moreover, neurons in deeper layers represent low-order (small
condition sets) independencies and have a wide scope of the input, whereas neurons in the first layers
represent higher-order (larger condition sets) independencies and have a narrower scope. An example
of a learned structure, for MNIST, is given in Figure 1 (X are image pixels).

X
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Figure 1: An example of a structure learned by our algorithm (classifying MNIST digits, 99.07%
accuracy). Neurons in a layer may connect to neurons in any deeper layer. Depth is determined
automatically. Each gather layer selects a subset of the input, where each input variable is gathered
only once. A neural route, starting with a gather layer, passes through densely connected layers where
it may split (copy) and merge (concatenate) with other routes in correspondence with the hierarchy of
independencies identified by the algorithm. All routes merge into the final output layer.

The paper is organized as follows. We discuss related work in Section 2. In Section 3 we describe
our method and prove its correctness in supplementary material Sec. A. We provide experimental
results in Section 4, and conclude in Section 5.

2 Related Work

Recent studies have focused on automating the exploration of the design space, posing it as a hyper-
parameter optimization problem and proposing various approaches to solve it. Miconi (2016) learns
the topology of an RNN introducing structural parameters into the model and optimizing them along
with the model weights by the common gradient descent methods. Smith et al. (2016) take a similar
approach incorporating the structure learning into the parameter learning scheme, gradually growing
the network up to a maximum size.
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A common approach is to define the design space in a way that enables a feasible exploration process
and design an effective method for exploring it. Zoph & Le (2016) (NAS) first define a set of
hyper-parameters characterizing a layer (number of filters, kernel size, stride). Then they use a
controller-RNN for finding the optimal sequence of layer configurations for a “trainee network”. This
is done using policy gradients (REINFORCE) for optimizing the objective function that is based
on the accuracy achieved by the “trainee” on a validation set. Although this work demonstrates
capabilities to solve large-scale problems (Imagenet), it comes with huge computational cost. In a
following work, Zoph et al. (2017) address the same problem but apply a hierarchical approach. They
use NAS to design network modules on a small-scale dataset (CIFAR-10) and transfer this knowledge
to a large-scale problem by learning the optimal topology composed of these modules. Baker et al.
(2016) use reinforcement learning as well and apply Q-learning with epsilon-greedy exploration
strategy and experience replay. Negrinho & Gordon (2017) propose a language that allows a human
expert to compactly represent a complex search-space over architectures and hyper-parameters as a
tree and then use methods such as MCTS or SMBO to traverse this tree. Smithson et al. (2016) present
a multi objective design space exploration, taking into account not only the classification accuracy
but also the computational cost. In order to reduce the cost involved in evaluating the network’s
accuracy, they train a Response Surface Model that predicts the accuracy at a much lower cost,
reducing the number of candidates that go through actual validation accuracy evaluation. Another
common approach for architecture search is based on evolutionary strategies to define and search the
design space. Real et al. (2017) and Miikkulainen et al. (2017) use evolutionary algorithm to evolve
an initial model or blueprint based on its validation performance.

Common to all these recent studies is the fact that structure learning is done in a supervised manner,
eventually learning a discriminative model. Moreoever, these approaches require huge compute
resources, rendering the solution unfeasible for most applications given limited compute and time.

3 Proposed Method

Preliminaries. Consider X = {Xi}Ni=1 a set of observed (input) random variables, H a set of latent
variables, and Y a target (classification or regression) variable. Each variable is represented by a
single node, and a single edge connects two distinct nodes. The parent set of a nodeX inG is denoted
Pa(X;G), and the children set is denoted Ch(X;G). Consider four graphical models, G, Ginv, Gdis,
and gX . Graph G is a generative DAG defined over X ∪H , where Ch(X;G) = ∅,∀X ∈X . Graph
G can be described as a layered deep Bayesian network where the parents of a node can be in any
deeper layer and not restricted to the previous layer1. In a graph with m latent layers, we index the
deepest layer as 0 and the layer connected to the input as m − 1. The root nodes (parentless) are
latent, H(0), and the leaves (childless) are the observed nodes, X , and Pa(X;G) ⊂H . Graph Ginv

is called a stochastic inverse of G, defined over X ∪H , where Pa(X;Ginv) = ∅,∀X ∈X . Graph
Gdis is a discriminative graph defined over X ∪H ∪ Y , where Pa(X;Gdis) = ∅,∀X ∈ X and
Ch(Y ;Gdis) = ∅. Graph gX is a CPDAG (a family of Markov equivalent Bayesian networks) defined
over X . Graph gX is generated and maintained as an internal state of the algorithm, serving as an
auxiliary graph. The order of an independence relation between two variables is defined to be the
condition set size. For example, if X1 and X2 are independent given X3, X4, and X5 (d-separated in
the faithful DAG X1 ⊥⊥X2|{X3, X4, X5}), then the independence order is |{X3, X4, X5}| = 3.

3.1 Key Idea

We cast the problem of learning the structure of a deep neural network as a problem of learning the
structure of a deep (discriminative) probabilistic graphical model, Gdis. That is, a graph of the form
X  H(m−1)  · · ·  H(0) → Y , where “ ” represent a sparse connectivity which we learn,
and “→” represents full connectivity. The joint probability factorizes as P (X)P (H|X)P (Y |H(0))

and the posterior is P (Y |X) =
∫
P (H|X)P (Y |H(0))dH , where H = {H(i)}m−10 . We refer

to the P (H|X) part of the equation as the recognition network of an unknown “true” underlying
generative model, P (X|H). That is, the network corresponding to P (H|X) approximates the
posterior (e.g., as in amortized inference). The key idea is to approximate the latents H that

1This differs from the common definition of deep belief networks (Hinton et al., 2006; Adams et al., 2010)
where the parents are restricted to the next layer.
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generated the observed X , and then use these values of H(0) for classification. That is, avoid
learning Gdis directly and instead, learn a generative structure X  H , and then reverse the flow by
constructing a stochastic inverse (Stuhlmüller et al., 2013) X  H . Finally, add Y and modify the
graph to preserve conditional dependencies (Gdis can mimic G; Gdis does not include sparsity that is
not supported by G). Lastly, Gdis is converted into a deep neural network by replacing each latent
variable by a neural layer. We call this method B2N (Bayesian to Neural), as it learns the connectivity
of a deep neural network through Bayesian network structure.

3.2 Constructing a Deep Generative Graph

The key idea of constructing G, the generative graph, is to recursively introduce a new latent layer,
H(n), after testing n-th order conditional independence in X , and connect it, as a parent, to latent
layers created by subsequent recursive calls that test conditional independence of order n+1. To better
understand why deeper layer represent smaller condition independence sets, consider an ancestral
sampling of the generative graph. First, the values of nodes in the deepest layer, corresponding to
marginal independence, are sampled—each node is sampled independently. In the next layer, nodes
can be sampled independently given the values of deeper nodes. This enables gradually factorizing
(“disentangling”) the joint distribution over X . Hence, approximating the values of latents, H , in
the deepest layer provides us with statistically independent features of the data, which can be fed in
to a single layer linear classifier. Yehezkel & Lerner (2009) introduced an efficient algorithm (RAI)
for constructing a CPDAG over X by a recursive application of conditional independence tests with
increasing condition set sizes. Our algorithm is based on this framework for testing independence in
X and updating the auxiliary graph gX .

Our proposed recursive algorithm for constructing G, is presented in Algorithm 1 (DeepGen) and a
flow chart is shown in the supplementary material Sec. B. The algorithm starts with condition set
n = 0, gX a complete graph (defined over X), and a set of exogenous nodes, Xex = ∅. The set Xex

is exogenous to gX and consists of parents of X . Note that there are two exit points, lines 4 and 14.
Also, there are multiple recursive calls, lines 8 (within a loop) and 9, leading to multiple parallel
recursive-traces, which will construct multiple generative flows rooted at some deeper layer.

The algorithm starts by testing the exit condition (line 2). It is satisfied if there are not enough nodes
in X for a condition set of size n. In this case, the maximal depth is reached and an empty graph is
returned (a layer composed of observed nodes). From this point, the recursive procedure will trace
back, adding latent parent layers.

Algorithm 1: G←− DeepGen(gX ,X,Xex, n)

1 DeepGen (gX ,X,Xex, n)
Input: an initial CPDAG gX over endogeneous X & exogenous Xex observed nodes, and a desired

resolution n.
Output: G, a latent structure over X and H

2 if the maximal indegree of gX(X) is below n+ 1 then . exit condition
3 G←−an empty graph over X . create a gather layer
4 return G

5 g′X ←−IncSeparation(gX , n) . n-th order independencies

6 {XD,XA1, . . . ,XAk} ←−SplitAutonomous(X, g′X) . identify autonomies

7 for i ∈ {1 . . . k} do
8 GAi ←− DeepGen(g′X ,XAi,Xex, n+ 1) . a recursive call

9 GD ←− DeepGen(g′X ,XD,Xex ∪ {XAi}ki=1, n+ 1) . a recursive call

10 G←− (
⋃k

i=1 GAi) ∪GD . merge results
11 Create in G, k latent nodes H(n) = {H(n)

1 , . . . , H
(n)
k } . create a latent layer

12 Let HA
(n+1)
i and H

(n+1)
D be the sets of parentless nodes in GAi and GD, respectively.

13 Set each H
(n)
i to be a parent of {HA

(n+1)
i ∪H

(n+1)
D } . connect

14 return G
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The procedure IncSeparation (line 5) disconnects (in gX ) conditionally independent variables
in two steps. First, it tests dependency between Xex and X , i.e., X ⊥⊥X ′|S for every connected
pair X ∈ X and X ′ ∈ Xex given a condition set S ⊂ {Xex ∪ X} of size n. Next, it tests
dependency within X , i.e., Xi ⊥⊥ Xj |S for every connected pair Xi, Xj ∈ X given a condition
set S ⊂ {Xex ∪X} of size n. After removing the corresponding edges, the remaining edges are
directed by applying two rules (Pearl, 2009; Spirtes et al., 2000). First, v-structures are identified
and directed. Then, edges are continually directed, by avoiding the creation of new v-structures and
directed cycles, until no more edges can be directed. Following the terminology of Yehezkel & Lerner
(2009), we say that this function increases the graph d-separation resolution from n− 1 to n.

The procedure SplitAutonomous (line 6) identifies autonomous sets, one descendant set, XD,
and k ancestor sets, XA1, . . . ,XAk in two steps. First, the nodes having the lowest topological
order are grouped into XD. Then, XD is removed (temporarily) from gX revealing unconnected
sub-structures. The number of unconnected sub-structures is denoted by k and the nodes set of each
sub-structure is denoted by XAi (i ∈ {1 . . . k}).
An autonomous set in gX includes all its nodes’ parents (complying with the Markov property) and
therefore a corresponding latent structure can be further learned independently, using a recursive call.
Thus, the algorithm is called recursively and independently for the k ancestor sets (line 8), and then
for the descendant set, treating the ancestor sets as exogenous (line 9). This recursive decomposition
of X is illustrated in Figure 2. Each recursive call returns a latent structure for each autonomous
set. Recall that each latent structure encodes a generative distribution over the observed variables
where layer H(n+1), the last added layer (parentless nodes), is a representation of some input subset
X′ ⊂X . Thus, latent variables, H(n), are introduced as parents of the H(n+1) layers (lines 11–13).

It is important to note that conditional independence is tested only between input variables, X , and
condition sets do not include latent variables. Conditioning on latent variables or testing independence
between them is not required by our approach. A 2-layer toy-example is given in Figure 3.

   

 

 

 
 

 

 

  
 

 

 

 
 

Figure 2: An example of a recursive decomposition of the observed set, X . Each circle represents
a distinct subset of observed variables (e.g., X(1)

A1 in different circles represents different subsets).
At n = 0, a single circle represents all the variables. Each set of variables is split into autonomous
ancestors X(n)

Ai and descendent X(n)
D subsets. An arrow indicates a recursive call. Best viewed in

color.
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Figure 3: An example of learning a 2-layer generative model. [a] An example Bayesian network
encoding the underlying independencies in X . [b] gX after marginal independence testing (n = 0).
Only A and B are marginally independent (A⊥⊥B). [c] gX after a recursive call to learn the structure
of nodes {C,D,E} with n = 2 (C ⊥⊥D|{A,B}). Exit condition is met in subsequent recursive calls
and thus latent variables are added to G at n = 2 [d], and then at n = 0 [e] (the final structure).

3.3 Constructing a Discriminative Graph

We now describe how to convert G into a discriminative graph, Gdis, with target variable, Y
(classification/regression). First, we construct Ginv, a graphical model that preserves all conditional
dependencies in G but has a different node ordering in which the observed variables, X , have the
highest topological order (parentless)—a stochastic inverse of G. Stuhlmüller et al. (2013) and
Paige & Wood (2016) presented a heuristic algorithm for constructing such stochastic inverses.
However, limiting Ginv to a DAG, although preserving all conditional dependencies, may omit many
independencies and add new edges between layers. Instead, we allow it to be a projection of a latent
structure (Pearl, 2009). That is, we assume the presence of additional hidden variables Q that are not
in Ginv but induce dependency (for example, “interactive forks” (Pearl, 2009)) among H . For clarity,
we omit these variables from the graph and use bi-directional edges to represent the dependency
induced by them. Ginv is constructed in two steps:

1. Invert the direction of all the edges in G (invert inter-layer connectivity).
2. Connect each pair of latent variables, sharing a common child in G, with a bi-directional

edge.

These steps ensure the preservation of conditional dependence.
Proposition 1. Graph Ginv preserves all conditional dependencies in G (i.e., G � Ginv).

Note that conditional dependencies among X are not required to be preserved in Ginv and Gdis as
these are observed variables (Paige & Wood, 2016).

Finally, a discriminative graphGdis is constructed by replacing the bi-directional dependency relations
in Ginv (induced by Q) with explaining-away relations, which are provided by adding the observed
class variable Y . Node Y is set in Gdis to be the common child of the leaves in Ginv (latents
introduced after testing marginal independencies in X). See an example in Figure 4. This ensures the
preservation of conditional dependency relations in Ginv. That is, Gdis, given Y , can mimic Ginv.

[a]
C E D BA

HA HB

HC HD

[b]
C E D BA

HA HB

HC HD

[c]
C E D BA

HA HB

HC HD

Y

Figure 4: An example of the three graphs constructed by our algorithm: [a] a generative deep latent
structure G, [b] its stochastic inverse Ginv (Stuhlmüller et al., 2013; Paige & Wood, 2016), and [c] a
discriminative structure Gdis (target node Y is added).

Proposition 2. Graph Gdis, conditioned on Y , preserves all conditional dependencies in Ginv

(i.e., Ginv � Gdis|Y ).

It follows that G � Ginv � Gdis conditioned on Y .
Proposition 3. Graph Gdis, conditioned on Y , preserves all conditional dependencies in G
(i.e., G � Gdis).

Details and proofs for all the propositions are provided in supplementary material Sec. A.
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3.4 Constructing a Feed-Forward Neural Network

We construct a neural network based on the connectivity in Gdis. Sigmoid belief networks (Neal,
1992) have been shown to be powerful neural network density estimators (Larochelle & Murray,
2011; Germain et al., 2015). In these networks, conditional probabilities are defined as logistic
regressors. Similarly, for Gdis we may define for each latent variable H ′ ∈ H , p(H ′ = 1|X ′) =
sigm

(
W ′X ′ + b′

)
where sigm(x) = 1/(1+exp(−x)), X ′ = Pa(H ′;Gdis), and (W ′, b′) are the

parameters of the neural network. Nair & Hinton (2010) proposed replacing each binary stochastic
node H ′ by an infinite number of copies having the same weights but with decreasing bias offsets by
one. They showed that this infinite set can be approximated by

∑N
i=1 sigm(v−i+0.5) ≈ log(1+ev),

where v = W ′X ′ + b′. They further approximate this function by max(0, v + ε) where ε is a zero-
centered Gaussian noise. Following these approximations, they provide an approximate probabilistic
interpretation for the ReLU function, max(0, v). As demonstrated by Jarrett et al. (2009) and Nair &
Hinton (2010), these units are able to learn better features for object classification in images.

In order to further increase the representational power, we represent each H ′ by a set of neurons
having ReLU activation functions. That is, each latent variable H ′ in Gdis is represented in the neural
network by a fully-connected layer. Finally, the class node Y is represented by a softmax layer.

4 Experiments

Our structure learning algorithm is implemented using BNT (Murphy, 2001) and runs efficiently on
a standard desktop CPU (excluding neural network parameter learning). For the learned structures,
all layers were allocated an equal number of neurons. Threshold for independence tests, and the
number of neurons-per-layer were selected by using a validation set. In all the experiments, we used
ReLU activations, ADAM (Kingma & Ba, 2015) optimization, batch normalization (Ioffe & Szegedy,
2015), and dropout (Srivastava et al., 2014) to all the dense layers. All optimization hyper-parameters
that were tuned for the vanilla topologies were also used, without additional tuning, for the learned
structures. In all the experiments, parameter learning was repeated five times where average and
standard deviation of the classification accuracy were recorded. Only test-set accuracy is reported.

4.1 Learning the Structure of the Deepest Layers in Common Topologies

We evaluate the quality of our learned structures using five image classification benchmarks and
seven common topologies (and simpler hand-crafted structures), which we call “vanilla topologies”.
The benchmarks and vanilla topologies are described in Table 1. Similarly to Li et al. (2017), we
used the VGG-16 network that was previously modified and adapted for the CIFAR-10 dataset. This
VGG-16 version contains significantly fewer parameters than the original one.

Table 1: Benchmarks and vanilla topologies used in our experiments. MNIST-Man and SVHN-Man
topologies were manually created by us. MNIST-Man has two convolutional layer (32 and 64 filters
each) and one dense layer with 128 neurons. SVHN-Man was created as a small network reference
having reasonable accuracy (Acc.) compared to Maxout-NiN.

Vanilla Topology

Dataset Id. Topology Description Size Acc.

MNIST (LeCun et al., 1998) A MNIST-Man 32-64-FC:128 127K 99.35

SVHN (Netzer et al., 2011) B Maxout NiN (Chang & Chen, 2015) 1.6M 98.10
C SVHN-Man 16-16-32-32-64-FC:256 105K 97.10

CIFAR 10 (Krizhevsky &
Hinton, 2009)

D VGG-16 (Simonyan & Zisserman, 2014) 15M 92.32
E WRN-40-4 (Zagoruyko & Komodakis, 2016) 9M 95.09

CIFAR 100 (Krizhevsky &
Hinton, 2009)

F VGG-16 (Simonyan & Zisserman, 2014) 15M 68.86

ImageNet (Deng et al., 2009) G AlexNet (Krizhevsky et al., 2012) 61M 57.20
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In preliminary experiments we found that, for SVHN and ImageNet, a small subset of the training
data is sufficient for learning the structure. As a result, for SVHN only the basic training data is used
(without the extra data), i.e., 13% of the available training data, and for ImageNet 5% of the training
data is used. Parameters were optimized using all of the training data.

Convolutional layers are powerful feature extractors for images exploiting spatial smoothness proper-
ties, translational invariance and symmetry. We therefore evaluate our algorithm by using the first
convolutional layers of the vanilla topologies as “feature extractors” (mostly below 50% of the vanilla
network size) and then learning a deep structure, “learned head”, from their output. That is, the
deepest layers of the vanilla network, “vanilla head”, is removed and replaced by a structure which is
learned, in an unsupervised manner, by our algorithm2. This results in a new architecture which we
train end-to-end. Finally, a softmax layer is added and the entire network parameters are optimized.

First, we evaluate the accuracy of the learned structure as a function of the number of parameters
and compare it to a densely connected network (fully connected layers) having the same depth and
size (Figure 5). For SVHN, we used the Batch Normalized Maxout Network-in-Network topology
(Chang & Chen, 2015) and removed the deepest layers starting from the output of the second NiN
block (MMLP-2-2). For CIFAR-10, we used the VGG-16 and removed the deepest layers starting
from the output of conv.7 layer. It is evident that accuracies of the learned structures are significantly
higher (error bars represent 2 standard deviations) than those produced by a set of fully connected
layers, especially in cases where the network is limited to a small number of parameters.
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Figure 5: Classification accuracy of MNIST, SVHN, and CIFAR-10, as a function of network size.
Error bars indicate two standard deviations.

Next, in Figure 6 and Table 2 we provide a summary of network sizes and classification accuracies,
achieved by replacing the deepest layers of common topologies (vanilla) with a learned structure. In
all the cases, the size of the learned structure is significantly smaller than that of the vanilla topology.
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Figure 6: A comparison between the vanilla and our learned structure (B2N), in terms of normalized
number of parameters. The first few layers of the vanilla topology are used for feature extraction.
Stacked bars refer to either the vanilla or our learned structure. The total number of parameters of the
vanilla network is indicated on top of each stacked bar.

2We also learned a structure for classifying MNIST digits directly from image pixels, without using convolu-
tional layers for feature extraction. The resulting network structure (Figure 1), achieves an accuracy of 99.07%,
whereas a network with 3 fully-connected layers achieves 98.75%.
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4.2 Comparison to Other Methods

Our structure learning algorithm runs efficiently on a standard desktop CPU, while providing struc-
tures with competitive classification accuracies and network sizes. First, we compare our method to
the NAS algorithm (Zoph & Le, 2016). NAS achieves for CIFAR-10 an error rate of 5.5% with a
network of size 4.2M. Our method, using the feature extraction of the WRN-40-4 network, achieves
this same error rate with a 26% smaller network (3.1M total size). Using the same feature extraction,
the lowest classification error rate achieved by our algorithm for CIFAR 10 is 4.58% with a network
of size 6M whereas the NAS algorithm achieves an error rate of 4.47% with a network of size 7.1M.
Recall that the NAS algorithm requires training thousands of networks using hundreds of GPUs,
which is impractical for most real-world applications.

When compared to recent pruning methods, which focus on reducing the number of parameters in
a pre-trained network, our method demonstrates state-of-the-art reduction in parameters. Recently
reported results are summarized in Table 3. It is important to note that although these methods prune
all the network layers, whereas our method only replaces the network head, our method was found
significantly superior. Moreover, pruning can be applied to the feature extraction part of the network
which may further improve parameter reduction.

Table 2: Parameter reduction ratio
(vanilla size/learned size) and differ-
ence in classification accuracy (Acc.
Diff.=learned−vanilla, higher is better).
“Full”=feature extration+head.

Param. Reduc.

Id. Acc. Diff. Full Head

A +0.10± 0.04 2.7× 4.2×
B −0.40± 0.05 1.4× 10.0×
C −0.86± 0.05 2.5× 3.5×
D +0.29± 0.14 7.0× 28.3×
E +0.33± 0.14 1.5× 2.8×
F +0.05± 0.17 7.7× 53.2×
G +0.00± 0.03 13.3× 23.0×

Table 3: Parameter reduction ratio (vanilla/learned size)
compared to recent pruning methods (reducing the size
of a pre-trained network with minimal accuracy degra-
dation). Results indicated by “acc. deg.” correspond to
accuracy degradation after pruning.

Network Method Reduction

VGG-16 Li et al. (2017) 3×
(CIFAR-10) Ayinde & Zurada (2018) 4.6×

Ding et al. (2018) (acc. deg.) 5.4×
Huang et al. (2018) (acc. deg.) 6×
B2N (our) 7×

AlexNet Denton et al. (2014) 5×
(ImageNet) Yang et al. (2015) 3.2×

Han et al. (2015, 2016) 9×
Manessi et al. (2017) (acc. deg.) 12×
B2N (our) 13.3×

5 Conclusions

We presented a principled approach for learning the structure of deep neural networks. Our proposed
algorithm learns in an unsupervised manner and requires small computational cost. The resulting
structures encode a hierarchy of independencies in the input distribution, where a node in one layer
may connect to another node in any deeper layer, and network depth is determined automatically.

We demonstrated that our algorithm learns small structures, and maintains classification accuracies
for common image classification benchmarks. It is also demonstrated that while convolution layers
are very useful at exploiting domain knowledge, such as spatial smoothness, translational invariance,
and symmetry, in some cases, they are outperformed by a learned structure for the deeper layers.
Moreover, while the use of common topologies (meta-architectures), for a variety of classification
tasks is computationally inefficient, we would expect our approach to learn smaller and more accurate
networks for each classification task, uniquely.

As only unlabeled data is required for learning the structure, we expect our approach to be practical
for many domains, beyond image classification, such as knowledge discovery, and plan to explore
the interpretability of the learned structures. Casting the problem of learning the connectivity of
deep neural network as a Bayesian network structure learning problem, enables the development
of new principled and efficient approaches. This can lead to the development of new topologies
and connectivity models, and can provide a greater understanding of the domain. One possible
extension to our work which we plan to explore, is learning the connectivity between feature maps in
convolutional layers.
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