1 Appendix

1.1 Update in M-step

For μ , we choose the gradient ascent method. The gradient of μ_j^t for one rating point y_{ij}^t is:

$$
\frac{\partial L}{\partial \mu_j^t} = (1 - y_{ij}^t) \frac{Q_{ij} - 1}{\mu_j^t (Q_{ij} - 1) + 1} + y_{ij}^t \frac{1}{\mu_j^t} + \frac{a^t - 1}{\mu_j^t} - \frac{b^t - 1}{1 - \mu_j^t},\tag{1}
$$

where $Q_{ij} = \frac{\mathcal{N}(0|U_i^TV_j, \lambda_y^{-1})}{\mathcal{N}(0|U_i^TV_j, \lambda_{1}^{-1}) + \mathcal{N}(1|U_i^T)}$ $\frac{\overline{\mathcal{N}(0|U_i^TV_j,\lambda_y^-)}}{\mathcal{N}(0|U_i^TV_j,\lambda_y^{-1})+\mathcal{N}(1|U_i^TV_j,\lambda_y^{-1})}$. This process is repeated until convergence. For U and V , we set their derivatives to zero and get the following update formulas:

$$
U_i \leftarrow (\lambda_y \sum_j \bar{\alpha}_{ij} V_j V_j^T + \lambda_V I_K)^{-1} (\sum_j \lambda_y \bar{\alpha}_{ij} y_{ij}^t V_j),
$$
\n(2)

$$
V_j \leftarrow (\lambda_y \sum_i \bar{\alpha}_{ij} U_i U_i^T + \lambda_U I_K)^{-1} \left(\sum_i \lambda_y \bar{\alpha}_{ij} y_{ij}^t U_i\right),\tag{3}
$$

where

$$
\bar{\alpha}_{ij} = \frac{\bar{\mu}_{ij} \mathcal{N}(0|U_i^T V_j, \lambda_y^{-1})}{\bar{\mu}_{ij} \mathcal{N}(0|U_i^T V_j, \lambda_y^{-1}) + 1 - \bar{\mu}_{ij}},
$$
\n
$$
\bar{\mu}_{ij} = \begin{cases}\n\mu_{ij}^t, & \text{if } y_{ij}^t = 1 \\
\sum_{d=1}^D \mu_j^d / D, & \text{otherwise}\n\end{cases}
$$
\n(4)

When y_{ij}^t is not rated $(y_{ij}^t = 0)$, the $\bar{\mu}_{ij}$ is set as the average of all possible μ_j^d .

1.2 Recommendation Overlaps

Below we show the recommendation overlaps when $D = 4$ and $D = 5$.

Table 1: Recommendation overlaps of different user intents on three datasets when $D = 4$ and $D = 5$. $U1$, $U2$, $U3$, $U4$, and $U5$ indicate the indices of user intents.

1.3 Experimental Runtime Results

Below we show the experimental runtime results of $H4MF_c$. We implement the model with Python and our machine settings are listed as follows: Ubuntu 16.04.4 LTS, Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, and 12GB 2600 MHz memory. We can see that the runtime is heavily influenced by the state number and the length of the data sequence. When D increases, the runtime increases dramatically. As expected, Movielens-1M costs much more time than Movielens-100K because users in Movielens-1M have longer length of the data sequence.

Experimental Runtime Results (In Seconds)			
State number	MovieLens-100K	MovieLens-1M	LastFM
$D=1$	$1102 + 5$	23359 ± 100	13639 ± 34
$D=2$	$2442 + 23$	36350 ± 134	$18268 + 41$
$D=3$	$3239 + 40$	42461 ± 200	24694 ± 45
$D=4$	$4856 + 54$	$54461 + 389$	29545 ± 50

Table 2: Runtime results of $\mathrm{H4MF}_{c}.$

1.4 Notation

Table 3: Notation