1 Appendix

1.1 Update in M-step

For μ , we choose the gradient ascent method. The gradient of μ_j^t for one rating point y_{ij}^t is:

$$\frac{\partial L}{\partial \mu_j^t} = (1 - y_{ij}^t) \frac{Q_{ij} - 1}{\mu_j^t (Q_{ij} - 1) + 1} + y_{ij}^t \frac{1}{\mu_j^t} + \frac{a^t - 1}{\mu_j^t} - \frac{b^t - 1}{1 - \mu_j^t},\tag{1}$$

where $Q_{ij} = \frac{\mathcal{N}(0|U_i^T V_j, \lambda_y^{-1})}{\mathcal{N}(0|U_i^T V_j, \lambda_y^{-1}) + \mathcal{N}(1|U_i^T V_j, \lambda_y^{-1})}$. This process is repeated until convergence. For U and V, we set their derivatives to zero and get the following update formulas:

$$U_i \leftarrow (\lambda_y \sum_j \bar{\alpha}_{ij} V_j V_j^T + \lambda_V I_K)^{-1} (\sum_j \lambda_y \bar{\alpha}_{ij} y_{ij}^t V_j),$$
(2)

$$V_j \leftarrow (\lambda_y \sum_i \bar{\alpha}_{ij} U_i U_i^T + \lambda_U I_K)^{-1} (\sum_i \lambda_y \bar{\alpha}_{ij} y_{ij}^t U_i),$$
(3)

where

$$\bar{\alpha}_{ij} = \frac{\bar{\mu}_{ij} \mathcal{N}(0 | U_i^T V_j, \lambda_y^{-1})}{\bar{\mu}_{ij} \mathcal{N}(0 | U_i^T V_j, \lambda_y^{-1}) + 1 - \bar{\mu}_{ij}},$$

$$\bar{\mu}_{ij} = \begin{cases} \mu_{ij}^t, & \text{if } y_{ij}^t = 1\\ \sum_{d=1}^D \mu_j^d / D, & \text{otherwise} \end{cases}$$

$$(4)$$

When y_{ij}^t is not rated $(y_{ij}^t = 0)$, the $\bar{\mu}_{ij}$ is set as the average of all possible μ_j^d .

1.2 Recommendation Overlaps

Below we show the recommendation overlaps when D = 4 and D = 5.

	Recommendation Overlaps of Different User Intents											
Dataset	Movielens-100K			Movielens-1M			LastFM					
User Intent	D=4		D=5		D=4		D=5		D=4		D=5	
	H4MF	$H4MF_c$	H4MF	$H4MF_c$	H4MF	$H4MF_c$	H4MF	$H4MF_c$	H4MF	$H4MF_c$	H4MF	$H4MF_c$
U1 vs U2	78%	22%	74%	10%	86%	10%	86%	0%	30%	4%	30%	0%
U1 vs U3	72%	44%	64%	10%	84%	0%	84%	0%	44%	10%	38%	0%
U1 vs U4	70%	18%	66%	0%	86%	8%	86%	0%	28%	2%	32%	4%
U2 vs U3	66%	24%	66%	20%	90%	0%	82%	0%	46%	6%	28%	6%
U2 vs U4	72%	16%	72%	0%	90%	16%	88%	8%	48%	10%	24%	2%
U3 vs U4	70%	16%	64%	0%	84%	0%	92%	2%	32%	2%	30%	0%
U1 vs U5	-	-	70%	0%	-	-	90%	4%	-	-	26%	2%
U2 vs U5	-	-	72%	0%	-	-	88%	4%	-	-	32%	10%
U3 vs U5	-	-	78%	0%	-	-	84%	2%	-	-	26%	2%
U4 vs U5	-	-	66%	0%	-	-	84%	0%	-	-	28%	8%

Table 1: Recommendation overlaps of different user intents on three datasets when D = 4 and D = 5. U1, U2, U3, U4, and U5 indicate the indices of user intents.

1.3 Experimental Runtime Results

Below we show the experimental runtime results of $H4MF_c$. We implement the model with Python and our machine settings are listed as follows: Ubuntu 16.04.4 LTS, Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, and 12GB 2600 MHz memory. We can see that the runtime is heavily influenced by the state number and the length of the data sequence. When D increases, the runtime increases dramatically. As expected, *Movielens-1M* costs much more time than *Movielens-100K* because users in *Movielens-1M* have longer length of the data sequence.

Experimental Runtime Results (In Seconds)					
State number	MovieLens-100K	MovieLens-1M	LastFM		
D=1	1102 ± 5	23359 ± 100	13639 ± 34		
D=2	2442 ± 23	36350 ± 134	18268 ± 41		
D=3	3239 ± 40	42461 ± 200	24694 ± 45		
D=4	4856 ± 54	54461 ± 389	29545 ± 50		

Table 2: Runtime results of $H4MF_c$.

1.4 Notation

Symbol	Description
y_i^t	The item that user i rated at time t
$egin{array}{c} lpha_{ij}^t \ S^t \end{array}$	Missingness variable of user i toward item j at time t
S^{t}	User intent (state) at time t
P_{ij}	User preference of user i toward item j
$P_{ij}\ \mu^t_j\ a^t, b^t$	Prior probability of S^t for item j
a^{t}, b^{t}	Beta priors of S^t
U_i, V_j	User-specific and item-specific latent feature factors
I_K	The identity matrix of dimension K
$\lambda_u,\lambda_v,\lambda_y$	Regularization parameters for U, V, Y
$\lambda_{\mathrm{Inner}}, \lambda_{\mathrm{Outer}}$	The scale parameters for update of item constraints
$\sigma_j^{S^t} \ \omega_j^{S^t}$	The occurrence probability of item j under S^t
$\omega_i^{S^t}$	The occurrence probability of item j
5	that is "triggered" by S^t

Table 3: Notation