
Adversarial vulnerability for any classifier
(Supplementary material)

Alhussein Fawzi
DeepMind

afawzi@google.com

Hamza Fawzi
Department of Applied Mathematics

& Theoretical Physics
University of Cambridge

h.fawzi@damtp.cam.ac.uk

Omar Fawzi
ENS de Lyon∗

omar.fawzi@ens-lyon.fr

A Proofs

A.1 Useful results

Recall that we write the cumulative distribution function for the standard Gaussian distribution
Φ(x) = 1√

2π

∫ x
−∞ e−u

2/2du. We state the Gaussian isoperimetric inequality [1, 2], the main technical
tool used in to prove the results in this paper.
Theorem A.1 (Gaussian isoperimetric inequality). Let νd be the Gaussian measure on Rd. Let A ⊆
Rd and let Aη = {z ∈ Rd : ∃z′ ∈ A s.t. ‖z− z′‖2 ≤ η}. If νd(A) = Φ(a) then νd(Aη) ≥ Φ(a+η).

We then state some useful bounds on the cumulative distribution function for the Gaussian distribution
Φ.
Lemma A.1 (see e.g., [3]). We have for x ≥ 0,

1− e−x
2/2

√
2π

2

x+
√
x2 + 8/π

≤ Φ(x) ≤ 1− e−x
2/2

√
2π

2

x+
√
x2 + 4

. (A.1)

Lemma A.2. Let p ∈ [1/2, 1], we have for all η > 0,

Φ(Φ−1(p) + η) ≥ 1− (1− p)
√
π

2
e−η

2/2e−ηΦ−1(p) . (A.2)

If p = 1− 1
K for K ≥ 5 and η ≥ 1, we have

Φ(Φ−1(1− 1

K
) + η) ≥ 1− 1

K

√
π

2
e−η

2/2e
−η
√

log
(

K2

4π log(K)

)
. (A.3)

Proof. As p ≥ 1/2, we have Φ−1(p) ≥ 0. Thus,

Φ(Φ−1(p) + η) ≥ 1− 1√
2π

2e−(Φ−1(p)+η)2/2

Φ−1(p) + η +
√

(Φ−1(p) + η)2 + 8/π

= 1− 1√
2π

2e−Φ−1(p)2/2−η2/2−ηΦ−1(p)

Φ−1(p) + η +
√

(Φ−1(p) + η)2 + 8/π

= 1−

(
1√
2π

2e−Φ−1(p)2/2

Φ−1(p) +
√

Φ−1(p)2 + 4

)

×
Φ−1(p) +

√
Φ−1(p)2 + 4

Φ−1(p) + η +
√

(Φ−1(p) + η)2 + 8/π
e−η

2/2−ηΦ−1(p) .
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Now we use the fact that(
1√
2π

2e−Φ−1(p)2/2

Φ−1(p) +
√

Φ−1(p)2 + 4

)
≤ 1− Φ(Φ−1(p)) = 1− p .

As a result,
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≥ 1− (1− p)e−η
2/2−ηΦ−1(p) Φ−1(p) +

√
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In the case p = 1− 1
K , it suffices to show that that for K ≥ 5, we have

Φ−1(1− 1/K) ≥

√
log

(
K2

4π log(K)

)
. (A.4)

Using the upper bound in (A.1), and the fact that x +
√
x2 + 2 ≤ 2

√
x2 + 1, it suffices to show

that 1
2

e−x
2

√
π
√
x2+1

≥ 1
K where x =

√
1
2 log

(
K2

4π log(K)

)
. This inequality is equivalent to showing that√

log(K) ≥
√
x2 + 1 for the same value of x. If we let u = log(K) this amounts to showing that

√
u ≥

√
u− 1

2 log(4πu) + 1 for all u ≥ log(5). For such u one can verify that− 1
2 log(4πu)+1 ≤ 0

and so clearly the inequality is satisfied.

A.2 Proof of Theorem 1

Proof. To prove the general bound in Eq. (2), we define

Ci→ = {x ∈ Ci : dist(x,∪j 6=iCj) ≤ η}.

Here, dist(x,C) is defined as infx′∈C ‖x − x′‖. Let us also introduce the following sets in the
z-space: Bi = g−1(Ci) and Bi→ = {z ∈ Bi : dist(z,∪j 6=iBj) ≤ ω−1(η)}. It is easy to verify that
g(Bi→) ⊆ Ci→. Thus we have P(Ci→) = ν(g−1(Ci→)) ≥ ν(Bi→). Now note that Bi→

⋃
∪j 6=iBj

is nothing but the set of points that are at distance at most ω−1(η) from ∪j 6=iBj . As such, by the
Gaussian isoperimetric inequality (Theorem A.1) applied with A = ∪j 6=iBj and a = a6=i, we have
ν(Bi→(η)) + ν(∪j 6=iBj) ≥ Φ(a6=i + ω−1(η)), i.e., ν(Bi→) ≥ Φ(a6=i + ω−1(η)) − Φ(a6=i). As
Bi→ are disjoint for different i, we have

ν(∪iBi→(η)) ≥
K∑
i=1

(Φ(a6=i + ω−1(η))− Φ(a6=i)) .

The proof of inequality (2) of the main text then follows by using P(Ci→) ≥ ν(Bi→).
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To prove inequality (3), observe that if P(Ci) ≤ 1
2 for all i, then P(∪j 6=iCj) ≥ 1

2 for all i. Then we
use the bound (A.2) to get,

P(∪iCi→(η)) ≥
K∑
i=1

(Φ(Φ−1(P(∪j 6=iCj)) + η)− P(∪j 6=iCj))

≥
K∑
i=1

(1− (1− P(∪j 6=iCj))
√
π

2
e−η

2/2 − P(∪j 6=iCj))

= (1−
√
π

2
e−η

2/2)
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(1− P(∪j 6=iCj))

= 1−
√
π

2
e−η

2/2 .

For the bound (4) that makes explicit the dependence on the number of classes, we simply use the
more explicit bound in (A.3).

A.3 Proof of Theorem 2

Proof. Let x = g(z) ∈ X and x′ ∈ X . Let z∗ be such that f̃(x′) = f(g(z∗)). By definition of f̃ ,
we have ‖x′ − g(z∗)‖ ≤ ‖x′ − g(z)‖. As such, using the triangle inequality, we get

‖g(z)− g(z∗)‖ ≤ ‖g(z)− x′‖+ ‖x′ − g(z∗)‖
≤ 2‖g(z)− x′‖ .

Taking the minimum over all x′ such that f̃(x) 6= f̃(x′), we obtain

rin(x) ≤ 2runc(x).

A.4 Proof of Theorem 3

Proof. We use the same notations as in the proof of Theorem 1: let Bi(f) = g−1(Ci(f)) and
Bi(h) = g−1(Ci(h)), and let

Bi→ = {z ∈ Bi(f) ∪Bi(h) : dist(x,Bi(f) ∩Bi(h)) ≤ ω−1(η)}.
where the notation B stands for the complement of B.

Note that Bi(f) ∪ Bi(h) = Bi(f) ∩Bi(h). We have ν(Bi(f) ∩ Bi(h)) ≥ ν(Bi(f)) − δ =

1− ν(Bi(f))− δ ≥ 1
2 . Thus, using the Gaussian isoperimetric inequality with A = Bi(f) ∩Bi(h),

we obtain

ν(Bi→) + ν(Bi(f) ∩Bi(h)) ≥ 1−
(

1− ν(Bi(f) ∩Bi(h))
)√π

2
e−η

2/2,

where we also used inequality (A.2). As a result,

ν(Bi→) ≥ (1− ν(Bi(f) ∩Bi(h))(1−
√
π

2
e−η

2/2)

≥ ν(Bi(f))(1−
√
π

2
e−η

2/2) .

Now assume that z ∈ Bi→ but also z ∈ Bi(f) ∩ Bi(h). Then it is classified as i for both f
and h. In addition, the condition z ∈ Bi→ ensures that there exists z′ ∈ Bi(f) ∩ Bi(h) such
that ‖z − z′‖2 ≤ ω−1(η). Setting v = g(z′) − g(z), we have that f(g(z) + v) 6= f(g(z)) and
h(g(z) + v) 6= h(g(z)) and ‖v‖ ≤ ω(‖z − z′‖) ≤ η. As such it suffices to show that the set
Bi→ ∩ (Bi(f) ∩Bi(h)) has sufficiently large measure. Indeed, we have

ν(Bi→ ∩ (Bi(f) ∩Bi(h)))

≥ ν(Bi→)− ν(Bi(f) ∩Bi(h))− ν(Bi(f) ∩Bi(h)) .
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Summing over i, we get

K∑
i=1

ν(Bi→ ∩ (Bi(f) ∩Bi(h))) ≥ 1−
√
π

2
e−η

2/2 − 2δ ,

because
∑K
i=1 ν(Bi(f) ∩Bi(h)) + ν(Bi(f) ∩Bi(h)) = 2 · ν {f ◦ g(z) 6= h ◦ g(z)} ≤ 2δ.

A.5 Proof of Theorem 4

Proof. We first treat the case δ = 0. Given z we denote by rZ(z) =
min {‖r‖2 : f(g(z + r)) 6= f(g(z))}. Then it is easy to see that rin(g(z)) ≤ ω(rZ(z)). As
such we have Ex[rin(x)] = Ez[rin(g(z))] ≤ Ez[ω(rZ(z))] ≤ ω(Ez[rZ(z)]). Now we have

Ez[rZ(z)] =

∫ ∞
0

Pz[rZ(z) ≥ η]dη.

Using a bound similar to Theorem 1 applied to rZ we get

Ez[rZ(z)] ≤
∫ ∞

0

(
1−

K∑
i=1

Φ(a 6=i + η)− Φ(a 6=i)

)
dη

=

K∑
i=1

∫ ∞
0

Φ(−a6=i − η)dη

where in the equality, we used the fact that 1 =
∑K
i=1(1−Φ(a6=i)). Now observe that for any a ∈ R,∫ ∞

0

Φ(−a− η)dη =

∫ ∞
a

∫ −u
−∞

e−t
2/2

√
2π

dtdu

=

∫ ∞
−∞

(∫ ∞
a

1t≤−udu

)
e−t

2/2

√
2π

dt

=

∫ ∞
−∞

(−t− a)1a≤−t
e−t

2/2

√
2π

dt

=
e−a

2/2

√
2π
− aΦ(−a).

As a result,

Ez[rZ(z)] ≤
K∑
i=1

−a6=iΦ(−a6=i) +
e−a

2
6=i/2

√
2π

This establishes the first inequality.

Assuming now that the classes are equiprobable, i.e., a6=i = Φ−1(1− 1/K) =: a(K) for all i we get
that

E[rin(x)] ≤ ω
(
−a(K)2 +

K√
2π
e−a(K)2/2

)
.

Using the bound (A.4) on a(K) we get:

E[rin(x)] ≤ ω
(√

2 log(K)−
√

2 log(K)− log(4π log(K))
)

= ω

(
log(4π log(K))√

2 log(K) +
√

2 log(K)− log(4π log(K))

)

≤ ω

(
log(4π log(K))√

2 log(K)

)
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Figure 1: Left: Illustration of checkerboard example. Right: Lower bound on robustness as a function
of η for the general result in Theorem 1 (blue curve) and the checkerboard example in Eq. A.5 (red
curve).

We assume now that g is such that W (g∗(ν), µ) ≤ δ, where W denotes the Wasserstein distance in
(X , ‖ · ‖). Let (X,X ′) be a coupling with X ∼ µ and X ′ ∼ g∗(ν). We will construct a random
variable X ′′ such that almost surely X ′′ and X are classified differently. We define X ′′ = X ′ if X
and X ′ are classified differently and otherwise X ′′ = X ′ + ~r∗(X ′) where ~r∗(X ′) is defined to be a
vector of minimum norm such that X ′ + ~r∗(X ′) and X ′ are classified differently. Then we have

E
x∼µ

runc(x)

≤ E‖X −X ′′‖
= E(1f(X)6=f(X′)‖X −X ′‖) + E(1f(X)=f(X′)‖X − (X ′ + ~r∗(X ′))‖)
≤ E‖X −X ′‖+ E‖~r∗(X ′))‖ .

By choosing a coupling such that W (g∗(ν), ν) = E‖X −X ′‖, we get E‖X −X ′‖ ≤ δ. In addition,
E‖~r∗(X ′))‖ ≤ Exrin(x). The statement therefore follows.

B Toy example: tightness of Theorem 1

As an illustration to Remark 4, we explicitly show through a toy example that a classifier which is not
linear in the Z-space can be significantly less robust than a linear one.
Example B.1 (Checkerboard class partitions). Assume that B1 = g−1(C1) and B2 = g−1(C2) are
given by:

• B1 = {(z1, . . . , zd) :
∑d
i=1 bzic mod 2 = 0},

• B2 = Rd −B1.

See Fig. 1a for an illustration. Then, we have

P (z ∈ B1 and dist(z,B2) ≤ η) + P (z ∈ B2 and dist(z,B1) ≤ η) ≥ 1− (1− η)d. (A.5)

Fig 1b compares the general bound in Theorem 1 to Eq. (A.5). As can be seen, in the checkerboard
partition example, the probability of fooling converges much quicker to 1 (wrt η) than the general
result in Theorem 1. Hence, a classifier that creates many disconnected classification regions can be
much more vulnerable to perturbations than a linear classifier in the latent space.

Proof. We have ν(B1) = ν(B2) = 1
2 . Let z ∈ Rd in B2 be such that for some i ∈ {1, . . . , d},

zi−bzic ∈ [0, η)∪ (1− η, 1), then z− ηei ∈ B1 or z+ ηei ∈ B1, and thus z is at distance at most η
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fromB1. As a result, if z is at distance> η fromB1, then for all i ∈ {1, . . . , d}, zi−bzic ∈ [η, 1−η].
As a result,

Pz(z ∈ B2,dist(z,B1) > η)

≤ Pz(z ∈ B2,∀i, zi − bzic ∈ [η, 1− η])

=
1
√

2π
d

∑
(j1,...,jd)∈Zd,

j1+···+jd mod 2=1

∫ j1+1−η

j1+η

dz1· · ·
∫ jd+1−η

jd+η

dzde
−
∑
i z

2
i

2 .

Now observe that for any j ∈ Z, as the function z 7→ e−z
2/2 is monotone on the interval [j, j + 1]

(nondecreasing if j < 0 and nonincreasing if j ≥ 0). Thus, we have
∫ j+1−η
j+η

e−
z2

2 dz ≤ (1 −

η)
∫ j+1

j
e−

z2

2 dz, when η ≤ 1
2 . As a result,

Pz(z ∈ B2,dist(z,B1) > η)

≤ 1
√

2π
d

(1− η)d
∑

(j1,...,jd)∈Zd,∑
i ji mod 2=1

∫ j1+1

j1

dz1· · ·
∫ jd+1

jd

dzde
−
∑
i z

2
i

2

= (1− η)dPz(z ∈ B2)

=
1

2
(1− η)d .

With the same reasoning, Pz(z ∈ B1,dist(z,B2) > η) ≤ 1
2 (1− η)d and gives inequality (A.5).

C Experimental results

C.1 Details of the used models

For the SVHN dataset, we resize the images to 64 × 64. For the generative model, we use the
PyTorch implementation of DCGAN available on https://github.com/pytorch/examples/
blob/master/dcgan/main.py using the default parameters for architecture and optimization. The
2-layer LeNet classifier has the following architecture:

Conv(5, 2, 16)→ ReLU→ MaxPool(4)

→ Conv(5, 2, 32)→ ReLU→ MaxPool(4)→ FC(10),

where the parameters of Conv are kernel size, padding and number of filters, respectively. We
used the ResNet18 and ResNet101 architectures available on https://github.com/kuangliu/
pytorch-cifar/blob/master/models/resnet.py, with a kernel size of 5 for Conv1 and a stride
of 2. For all 3 architectures, we used SGD with a learning rate of 0.01, momentum of 0.9, batch
size of 100. To solve the problem in Eq. A.6, we use gradient descent (for the maximization of
‖g(z)− g(z′)‖2) with learning rate 0.1 for 1, 000 steps. The upper bound was computed based on
100 samples of z.

For the CIFAR-10 experiment, we use a similar DCGAN generative model. The VGG-
type architecture has 11 conv layers, each of kernel size 3, with number of output channels
(64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 512) and stride (1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1). Each
conv layer is followed by BatchNorm and a ReLU function. For the WideResNet ar-
chitecture, we use the WRN-28-10 model available on https://github.com/szagoruyko/
wide-residual-networks. SGD is used with learning rate 0.1, momentum 0.9, and batchsize 100.
For the adversarially trained Wide ResNet with PGD training, we have used the model of [4].

C.2 Numerical evaluation of the upper bound

To evaluate numerically the upper bound, we have used a probabilistic version of the modulus
of continuity, where the property is not required to be satisfied for all z, z′, but rather with high
probability, and accounted for the error probability in the bound. Specifically, while the modulus
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of continuity function is given by ω(δ) = maxz maxz′:‖z−z′‖2≤δ ‖g(z) − g(z′)‖2, we use in the
experiments a probabilistic version of the modulus of continuity, given by:

ωκ(δ) = min

{
α : P

(
sup

z′:‖z−z′‖2≤δ
‖g(z)− g(z′)‖2 ≥ α

)
≤ κ

}
. (A.6)

Then, the following bound holds for any δ, κ:

P (rin(x) ≥ ωκ(δ)) ≤ κ+ P (∃r : ‖r‖2 ≥ δ : f(g(z + r)) 6= f(g(z))) .︸ ︷︷ ︸
1− probability in Theorem 1 with ω identity.

(A.7)

For example, when κ is set to 0, we recover the exact bounds in Theorem 1. When κ > 0, we have to
account for the use of a probabilistic definition of the modulus of continuity in the bound; this exactly
corresponds to the additive κ term in the probability in Eq. (A.7).

In practice, for a fixed target probability (set to 0.25 in the experiments of the main paper), it is
possible to choose the value of δ that yields the best bound, since Eq. (A.7) is valid for any δ. For
a fixed value of δ, we used gradient descent (until the loss function stabilizes) in order to solve the
optimization problem supz:‖z′−z‖2≤δ ‖g(z)− g(z′)‖. For a fixed value of δ, we hence summarize
the procedure used to evaluate the upper bound in Algorithm 1. We have used in practice 100 samples
to estimate the upper bound, for each value of δ. For any value of δ, Algorithm 1 provides an estimate
of the upper bound; such an estimate can be improved by using many different values of δ.

Algorithm 1 Numerical evaluation of the upper bound.
1: // input: δ, target probability pt.
2: // output: numerical upper bound.
3: p← pt − pu(δ). // pu(δ) is the probability from Theorem 1 with ω set to identity.
4: repeat: i = 1, . . .
5: Sample zi ∼ N (0, Id).
6: Compute si ← supz′:‖zi−z′‖2≤δ‖g(zi)− g(z

′)‖.
7: until enough samples are taken
8: Use the above si to estimate α such that P̃ (si ≥ α) ≤ p, where P̃ is the empirical probability distribution.

return α.

C.3 Illustration of generated images

Fig. 2 illustrates generated images for SVHN, as well as corresponding perturbed images that fool a
ResNet-18 classifier (in-distribution robustness). Similarly, Fig. 3 illustrates examples of generated
images for CIFAR-10, as well as perturbed samples required to fool the VGG classifier, where
perturbed images are constrained to belong to the data distribution (i.e., in-distribution setting).

3 8 5 6 8 2

5 9 2 91 4

Figure 2: Examples of generated images with DCGAN for the SVHN dataset, and associated
perturbed images (in-distribution perturbations). For each pair of images, the left shows the original
image, and the right shows the perturbed image. The estimated label (using ResNet-18) of each
image is shown on top of each image.
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