
Supplementary Material: Multi-objective Maximization of
Monotone Submodular Functions with Cardinality Constraint

1 Some More Notation and Preliminaries

Let β(η) = 1− 1
eη ∈ [0, 1− 1/e] for η ∈ [0, 1]. Note that β(1) = (1− 1/e). Further, for k′ ≤ k,

β(k′/k) = (1− e1−k′/k/e) ≥ (1− 1/e)k′/k. (1)

This function appears naturally in our analysis and will be useful for expressing approximation
guarantees. Next, the lemma below formalizes Stage 2 of the algorithm in [CVZ10].
Lemma 8. ([CVZ10] Lemma 7.3) Given submodular functions fi and values Vi, cardinality k, the
continuous greedy algorithm finds a point x ∈ [0, 1]n such that Fi(x(k)) ≥ (1− 1/e− ε′)Vi ∀i with
ε′ = 1/Ω(k), or outputs a certificate of infeasibility.

2 Missing Proofs from Section 3.1

Corollary 9. Given a point x ∈ [0, 1]n with |x| = k and a multilinear extension F of a monotone
submodular function, for every k1 ≤ k,

F
(k1

k
x
)
≥ k1

k
F (x).

Proof. Note that the statement is true for concave F . The proof now follows directly from the
concavity of multilinear extensions in positive directions (Section 2.1 of [CCPV11]).

Lemma 10. Fi(x(k1)|xS1
) ≥ (β(1)− ε′)k1k (Vi − fi(S1)) for every i.

Proof. Recall that Sk denotes a feasible solution with cardinality k, and let xSk denote its char-
acteristic vector. Clearly, |xSk\S1

| ≤ k and Fi(xSk\S1
|xS1

) = fi(Sk|S1) ≥ (Vi − fi(S1)) for
very i. And now from Corollary 9, we have that there exists a point x′ with |x′| = k1 such that
Fi(x

′|xS1) ≥ k1
k Fi(xSk\S1

|xS1
) for every i. Finally, using Lemma 8 we have Fi(x(k1)|xS1) ≥

(β(1)− ε′)Fi(x′|S1), which gives the desired bound.

3 Missing Proofs from Section 3.2

Lemma 3. gt(Xt) ≥ k1
k α
∑
i λ

t
i,∀t.

Proof. Consider the optimal set Sk and note that
∑
i λ

t
if̃i(Sk) ≥

∑
i λ

t
i,∀t. Now the function

gt(.) =
∑
i λ

t
if̃i(.), being a convex combination of monotone submodular functions, is also monotone

submodular. We would like to show that there exists a set S′ of size k1 such that gt(S′) ≥ k1
k

∑
i λ

t
i.

Then the claim follows from the fact that A is an α approximation for monotone submodular
maximization with cardinality constraint.

To see the existence of such a set S′, greedily index the elements of Sk using gt(.). Suppose that the
resulting order is {s1, . . . , sk}, where si is such that gt(si|{s1, . . . , si−1}) ≥ gt(sj |{s1, . . . , si−1})
for every j > i. Then the truncated set {s1, . . . , sk−|S1|} has the desired property, and we are
done.

Lemma 4. ∑
t f̃i(X

t)

T
≥ k1

k
(1− 1/e)− δ ,∀i.

Proof. Suppose we have,∑
t f̃i(X

t)− α
T

+ δ ≥ 1

T

∑
t

∑
i

λti∑
i λ

t
i

(f̃i(X
t)− α),∀i. (2)
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Then assuming α = (1− 1/e), the RHS above simplifies to,

1

T

∑
t

g(Xt)∑
i λ

t
i

− (1− 1/e) ≥ (1− 1/e)(
k1

k
− 1) (using Lemma 3)

And we have for every i,∑
t f̃i(X

t)− (1− 1/e)

T
+ δ ≥ (1− 1/e)(

k1

k
− 1)∑

t f̃i(X
t)

T
≥ k1

k
(1− 1/e)− δ.

Now, the proof for (2) closely resembles the analysis in Theorem 3.3 and 2.1 in (author?) AHK12.
We will use the potential function Φt =

∑
i λ

t
i. Let pti = λti/Φ

t and M t =
∑
i p
t
im

t
i. Then we have,

Φt+1 =
∑
i

λti(1− δmt
i)

= Φt − δΦt
∑
i

ptim
t
i

= Φt(1− δM t) ≤ Φte−δM
t

After T rounds, ΦT ≤ Φ1e−δ
∑
tM

t

. Further, for every i,

ΦT ≥ wTi = 1
m

∏
t(1− δmt

i)

ln(Φ1e−δ
∑
tM

t

) ≥
∑
t ln(1− δmt

i)− lnm

δ
∑
tM

t ≤ lnm+
∑
t ln(1− δmt

i)

Using ln( 1
1−ε ) ≤ ε+ ε2 and ln(1 + ε) ≥ ε− ε2 for ε ≤ 0.5, and with T = 2 lnm

δ2 and δ < (1− 1/e)
(for a positive approximation guarantee), we have,∑

tM
t

T
≤ δ +

∑
tm

t
i

T
,∀i.

Lemma 5. Given monotone submodular function f , its multilinear extension F , sets Xt for t ∈
{1, . . . , T}, and a point x =

∑
tX

t/T , we have,

F (x) ≥ (1− 1/e)
1

T

T∑
t=1

f(Xt).

Proof. Consider the concave closure of a submodular function f ,

f+(x) = max
α
{
∑
X

αXf(X)|
∑
X

αXX = x,
∑
X

αX ≤ 1, αX ≥ 0 ∀X ⊆ N}.

Clearly, f+
i (x) ≥

∑
t fi(X

t)

T . So it suffices to show Fi(x) ≥ (1− 1/e)f+
i (x), which in fact, follows

from Lemmas 4 and 5 in [CCPV07].

Alternatively, we now give a novel and direct proof for the statement. We abuse notation and use xXt
and Xt interchangeably. Let x =

∑T
t=1X

t/T and w.l.o.g., assume that sets Xt are indexed such
that f(Xj) ≥ f(Xj+1) for every j ≥ 1. Further, let f(Xt)/T = at and

∑
t a
t = A.

Recall that F (x) can be viewed as the expected function value of the set obtained by independently
sampling element j with probability xj . Instead, consider the alternative random process where
starting with t = 1, one samples each element in set Xt independently with probability 1/T . The
random process runs in T steps and the probability of an element j being chosen at the end of the
process is exactly pj = 1− (1− 1/T )Txj , independent of all other elements. Let p = (p1, . . . , pn),
it follows that the expected value of the set sampled using this process is given by F (p). Observe
that for every j, pj ≤ xj and therefore, F (p) ≤ F (x). Now in step t, suppose the newly sampled
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subset of Xt adds marginal value ∆t. From submodularity we have, E[∆1] ≥ f(X1)
T = a1 and in

general, E[∆t] ≥ f(Xt)−E[
∑t−1
j=1 ∆j ]

T ≥ at − 1
T

∑t−1
j=1 E[∆j ].

To see that
∑
t E[∆t] ≥ (1− 1/e)A, consider a LP where the objective is to minimize

∑
t γ

t subject
to b1 ≥ b2 · · · ≥ bT ≥ 0;

∑
bt = A and γt ≥ bt − 1

T

∑t−1
j=1 γ

j with γ0 = 0. Here A is a parameter
and everything else is a variable. Observe that the extreme points are characterized by j such that,∑
bt = A and bt = b1 for all t ≤ j and bj+1 = 0. For all such points, it is not difficult to see that the

objective is at least (1− 1/e)A. Therefore, we have F (p) ≥ (1− 1/e)A = (1− 1/e)
∑
t f(Xt)/T ,

as desired.

4 Missing Proofs from Section 3.3

Lemma 7. Given that there exists a set Sk such that fi(Sk) ≥ Vi,∀i and ε < 1
8 lnm . For every

k′ ∈ [m/ε3, k], there exists Sk′ ⊆ Sk of size k′, such that,

fi(Sk′) ≥ (1− ε)
(k′ −m/ε3
k −m/ε3

)
Vi,∀i.

Proof. We restrict our ground set of elements to Sk and let S1 be a subset of size at most m/ε3
such that fi(e|S1) < ε3Vi,∀e ∈ Sk\S1 and ∀i (recall, we discussed the existence of such a set in
Section 2.1, Stage 1). The rest of the proof is similar to the proof of Lemma 10. Consider the
point x = k′−|S1|

k−|S1| xSk\S1
. Clearly, |x| = k′ − |S1|, and from Corollary 9, we have Fi(x|xS1

) ≥
k′−|S1|
k−|S1| Fi(xSk\S1

|xS1
) = k′−|S1|

k−|S1| fi(Sk\S1|S1) ≥ k′−|S1|
k−|S1| (Vi − fi(S1)),∀i. Finally, using swap

rounding Lemma 1, there exists a set S2 of size k′−|S1|, such that fi(S1∪S2) ≥ (1−ε)k
′−|S1|
k−|S1| Vi,∀i.

Theorem 8. For k′ = m
ε4 , choosing k′-tuples greedily w.r.t. h(.) = mini fi(.) yields approximation

guarantee (1− 1/e)(1− 2ε) for k →∞, while making nm/ε
4

queries.

Proof. The analysis generalizes that of the standard greedy algorithm ([NW78, NWF78]). Let Sj
denote the set at the end of iteration j. S0 = ∅ and let the final set be Sbk/k′c. Then from Theorem 7,
we have that at step j + 1, there is some set X ∈ Sk\Sj of size k′ such that

fi(X|Sj) ≥ (1− ε)k
′ −m/ε3

k −m/ε3
(
Vi − fi(Sj)

)
,∀i.

To simplify presentation let η = (1− ε)k
′−m/ε3
k−m/ε3 and note that η ≤ 1. Further, 1/η →∞ as k →∞

for fixed m and k′ = o(k). Now, we have for every i, fi(Sj+1) − (1 − η)fi(Sj) ≥ ηVi. Call this
inequality j+ 1. Observe that inequality bk/k′c states fi(Sbk/k′c)− (1−η)fi(Sbk/k′c−1) ≥ ηVi,∀i.
Therefore, multiplying inequality bk/k′c − j by (1− η)j and telescoping over j we get for every i,

fi(Sbk/k′c) ≥
bk/k′c−1∑
j=0

(1− η)jηVi

≥
(
1− (1− η)bk/k

′c)Vi

≥
(
1− (1− η)

1
η ηbk/k′c)Vi

≥ β(ηbk/k′c)Vi ≥ (1− 1/e)(ηbk/k′c)Vi.
Where we used (1) for the last inequality. Let ε = 4

√
m
k′ , then we have,

ηbk/k′c ≥ (1− ε)1−m/k′ε3

1−m/kε3
(

1− k′

k

)
≥

(
1− 4

√
m
k′

)2

1− 1
k

4

√
m

(k′)3

(
1− k′

k

)
As k →∞ we get the asymptotic guarantee (1− 1/e)

(
1− 4

√
m
k′

)2

= (1− 1/e)(1− ε)2.
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