Supplementary Material: Multi-objective Maximization of Monotone Submodular Functions with Cardinality Constraint

1 Some More Notation and Preliminaries

Let $\beta(\eta) = 1 - \frac{1}{e^{\eta}} \in [0, 1 - 1/e]$ for $\eta \in [0, 1]$. Note that $\beta(1) = (1 - 1/e)$. Further, for $k' \leq k$,

$$
\beta(k'/k) = (1 - e^{1 - k'/k}/e) \ge (1 - 1/e)k'/k.
$$
\n(1)

This function appears naturally in our analysis and will be useful for expressing approximation guarantees. Next, the lemma below formalizes Stage 2 of the algorithm in [\[CVZ10\]](#page-3-0).

Lemma 8. ([\[CVZ10\]](#page-3-0) Lemma 7.3) Given submodular functions f_i and values V_i , cardinality k, the *continuous greedy algorithm finds a point* $\mathbf{x} \in [0,1]^n$ *such that* $F_i(\mathbf{x}(k)) \geq (1 - 1/e - \epsilon')V_i$ $\forall i$ *with* $\epsilon' = 1/\Omega(k)$, or outputs a certificate of infeasibility.

2 Missing Proofs from Section 3.1

Corollary 9. Given a point $\mathbf{x} \in [0, 1]^n$ with $|\mathbf{x}| = k$ and a multilinear extension F of a monotone *submodular function, for every* $k_1 \leq k$,

$$
F\left(\frac{k_1}{k}\mathbf{x}\right) \ge \frac{k_1}{k}F(\mathbf{x}).
$$

Proof. Note that the statement is true for concave F. The proof now follows directly from the concavity of multilinear extensions in positive directions (Section 2.1 of [\[CCPV11\]](#page-3-1)). \Box

Lemma 10. $F_i(\mathbf{x}(k_1)|\mathbf{x}_{S_1}) \geq (\beta(1) - \epsilon')\frac{k_1}{k}(V_i - f_i(S_1))$ for every *i*.

Proof. Recall that S_k denotes a feasible solution with cardinality k, and let x_{S_k} denote its characteristic vector. Clearly, $|\mathbf{x}_{S_k\setminus S_1}|\leq k$ and $F_i(\mathbf{x}_{S_k\setminus S_1}|\mathbf{x}_{S_1})=f_i(S_k|S_1)\geq (V_i-f_i(S_1))$ for very *i*. And now from Corollary [9,](#page-0-0) we have that there exists a point x' with $|x'| = k_1$ such that $F_i(\mathbf{x}'|\mathbf{x}_{S_1}) \geq \frac{k_1}{k} F_i(\mathbf{x}_{S_k \setminus S_1}|\mathbf{x}_{S_1})$ for every i. Finally, using Lemma [8](#page-0-1) we have $F_i(\mathbf{x}(k_1)|\mathbf{x}_{S_1}) \geq$ $(\beta(1) - \epsilon') F_i(\mathbf{x}^i | S_1)$, which gives the desired bound. \Box

3 Missing Proofs from Section 3.2

Lemma 3. $g^t(X^t) \geq \frac{k_1}{k} \alpha \sum_i \lambda_i^t, \forall t$.

Proof. Consider the optimal set S_k and note that $\sum_i \lambda_i^t \tilde{f}_i(S_k) \ge \sum_i \lambda_i^t$, $\forall t$. Now the function $g^t(.) = \sum_i \lambda_i^t \tilde{f}_i(.)$, being a convex combination of monotone submodular functions, is also monotone submodular. We would like to show that there exists a set S' of size k_1 such that $g^t(S') \geq \frac{k_1}{k} \sum_i \lambda_i^t$. Then the claim follows from the fact that A is an α approximation for monotone submodular maximization with cardinality constraint.

To see the existence of such a set S', greedily index the elements of S_k using $g^t(.)$. Suppose that the resulting order is $\{s_1, \ldots, s_k\}$, where s_i is such that $g^t(s_i | \{s_1, \ldots, s_{i-1}\}) \geq g^t(s_j | \{s_1, \ldots, s_{i-1}\})$ for every $j > i$. Then the truncated set $\{s_1, \ldots, s_{k-|S_1|}\}$ has the desired property, and we are done.

Lemma 4.

$$
\frac{\sum_{t} \tilde{f}_i(X^t)}{T} \ge \frac{k_1}{k} (1 - 1/e) - \delta, \forall i.
$$

Proof. Suppose we have,

$$
\frac{\sum_{t} \tilde{f}_{i}(X^{t}) - \alpha}{T} + \delta \ge \frac{1}{T} \sum_{t} \sum_{i} \frac{\lambda_{i}^{t}}{\sum_{i} \lambda_{i}^{t}} (\tilde{f}_{i}(X^{t}) - \alpha), \forall i.
$$
 (2)

Then assuming $\alpha = (1 - 1/e)$, the RHS above simplifies to,

$$
\frac{1}{T} \sum_{t} \frac{g(X^t)}{\sum_i \lambda_i^t} - (1 - 1/e) \qquad \ge (1 - 1/e) \left(\frac{k_1}{k} - 1\right) \quad \text{(using Lemma 3)}
$$

And we have for every i ,

$$
\frac{\sum_{t} \tilde{f}_i(X^t) - (1 - 1/e)}{T} + \delta \qquad \geq (1 - 1/e)(\frac{k_1}{k} - 1)
$$

$$
\frac{\sum_{t} \tilde{f}_i(X^t)}{T} \qquad \geq \frac{k_1}{k}(1 - 1/e) - \delta.
$$

Now, the proof for [\(2\)](#page-0-3) closely resembles the analysis in Theorem 3.3 and 2.1 in (author?) [AHK12.](#page-3-2) We will use the potential function $\Phi^t = \sum_i \lambda_i^t$. Let $p_i^t = \lambda_i^t / \Phi^t$ and $M^t = \sum_i p_i^t m_i^t$. Then we have,

$$
\Phi^{t+1} = \sum_{i} \lambda_i^t (1 - \delta m_i^t)
$$

$$
= \Phi^t - \delta \Phi^t \sum_{i} p_i^t m_i^t
$$

$$
= \Phi^t (1 - \delta M^t) \le \Phi^t e^{-\delta M^t}
$$

After T rounds, $\Phi^T \le \Phi^1 e^{-\delta \sum_t M^t}$. Further, for every i,

$$
\Phi^T \ge w_i^T = \frac{1}{m} \prod_t (1 - \delta m_i^t)
$$

$$
\ln(\Phi^1 e^{-\delta \sum_t M^t}) \ge \sum_t \ln(1 - \delta m_i^t) - \ln m
$$

$$
\delta \sum_t M^t \le \ln m + \sum_t \ln(1 - \delta m_i^t)
$$

Using $\ln(\frac{1}{1-\epsilon}) \leq \epsilon + \epsilon^2$ and $\ln(1+\epsilon) \geq \epsilon - \epsilon^2$ for $\epsilon \leq 0.5$, and with $T = \frac{2 \ln m}{\delta^2}$ and $\delta < (1-1/e)$ (for a positive approximation guarantee), we have,

$$
\frac{\sum_{t} M^{t}}{T} \leq \delta + \frac{\sum_{t} m_{i}^{t}}{T}, \forall i.
$$

 \Box

Lemma 5. Given monotone submodular function f, its multilinear extension F, sets X^t for $t \in$ $\{1, \ldots, T\}$ *, and a point* $\mathbf{x} = \sum_{t} X^{t}/T$ *, we have,*

$$
F(\mathbf{x}) \ge (1 - 1/e) \frac{1}{T} \sum_{t=1}^{T} f(X^{t}).
$$

Proof. Consider the concave closure of a submodular function f,

$$
f^{+}(\mathbf{x}) = \max_{\alpha} \{ \sum_{X} \alpha_{X} f(X) | \sum_{X} \alpha_{X} X = \mathbf{x}, \sum_{X} \alpha_{X} \leq 1, \alpha_{X} \geq 0 \,\forall X \subseteq N \}.
$$

Clearly, $f_i^+(\mathbf{x}) \ge \frac{\sum_t f_i(X^t)}{T}$ $\frac{f_i(X^{\varepsilon})}{T}$. So it suffices to show $F_i(\mathbf{x}) \ge (1 - 1/e)f_i^+(\mathbf{x})$, which in fact, follows from Lemmas 4 and 5 in [\[CCPV07\]](#page-3-3).

Alternatively, we now give a novel and direct proof for the statement. We abuse notation and use \mathbf{x}_{X^t} and X^t interchangeably. Let $\mathbf{x} = \sum_{t=1}^T X^t / T$ and w.l.o.g., assume that sets X^t are indexed such that $f(X^j) \ge f(X^{j+1})$ for every $j \ge 1$. Further, let $f(X^t)/T = a^t$ and $\sum_t a^t = A$.

Recall that $F(\mathbf{x})$ can be viewed as the expected function value of the set obtained by independently sampling element j with probability x_j . Instead, consider the alternative random process where starting with $t = 1$, one samples each element in set X^t independently with probability $1/T$. The random process runs in T steps and the probability of an element j being chosen at the end of the process is exactly $p_j = 1 - (1 - 1/T)^{T_x}$, independent of all other elements. Let $\mathbf{p} = (p_1, \ldots, p_n)$, it follows that the expected value of the set sampled using this process is given by $F(\mathbf{p})$. Observe that for every j, $p_j \leq x_j$ and therefore, $F(\mathbf{p}) \leq F(\mathbf{x})$. Now in step t, suppose the newly sampled

subset of X^t adds marginal value Δ^t . From submodularity we have, $\mathbb{E}[\Delta^1] \ge \frac{f(X^1)}{T} = a^1$ and in general, $\mathbb{E}[\Delta^t] \geq \frac{f(X^t) - \mathbb{E}[\sum_{j=1}^{t-1} \Delta_j]}{T} \geq a^t - \frac{1}{T} \sum_{j=1}^{t-1} \mathbb{E}[\Delta^j].$

To see that $\sum_t \mathbb{E}[\Delta^t] \ge (1 - 1/e)A$, consider a LP where the objective is to minimize $\sum_t \gamma^t$ subject to $b^1 \ge b^2 \cdots \ge b^T \ge 0$; $\sum b^t = A$ and $\gamma^t \ge b^t - \frac{1}{T} \sum_{j=1}^{t-1} \gamma^j$ with $\gamma^0 = 0$. Here A is a parameter and everything else is a variable. Observe that the extreme points are characterized by j such that, $\sum b^t = A$ and $b^t = b^1$ for all $t \leq j$ and $b^{j+1} = 0$. For all such points, it is not difficult to see that the objective is at least $(1 - 1/e)A$. Therefore, we have $F(\mathbf{p}) \ge (1 - 1/e)A = (1 - 1/e)\sum_t f(X^t)/T$, as desired.

$$
\Box
$$

4 Missing Proofs from Section 3.3

Lemma 7. *Given that there exists a set* S_k *such that* $f_i(S_k) \geq V_i$, $\forall i$ *and* $\epsilon < \frac{1}{8 \ln m}$ *. For every* $k' \in [m/\epsilon^3, k]$, there exists $S_{k'} \subseteq S_k$ of size k' , such that,

$$
f_i(S_{k'}) \ge (1 - \epsilon) \left(\frac{k' - m/\epsilon^3}{k - m/\epsilon^3}\right) V_i, \forall i.
$$

Proof. We restrict our ground set of elements to S_k and let S_1 be a subset of size at most m/ϵ^3 such that $f_i(e|S_1) < \epsilon^3 V_i, \forall e \in S_k \backslash S_1$ and $\forall i$ (recall, we discussed the existence of such a set in Section 2.1, Stage 1). The rest of the proof is similar to the proof of Lemma [10.](#page-0-4) Consider the point $\mathbf{x} = \frac{k' - |S_1|}{k - |S_1|}$ $\frac{k' - |S_1|}{k - |S_1|} \mathbf{x}_{S_k \setminus S_1}$. Clearly, $|\mathbf{x}| = k' - |S_1|$, and from Corollary [9,](#page-0-0) we have $F_i(\mathbf{x} | \mathbf{x}_{S_1}) \ge$ $k' - |S_1|$ $\frac{k'-|S_1|}{k-|S_1|}F_i(\mathbf{x}_{S_k\setminus S_1}|\mathbf{x}_{S_1})=\frac{k'-|S_1|}{k-|S_1|}$ $\frac{k' - |S_1|}{k - |S_1|} f_i(S_k \backslash S_1 | S_1) \geq \frac{k' - |S_1|}{k - |S_1|}$ $\frac{k-|S_1|}{k-|S_1|}(V_i - f_i(S_1)), \forall i$. Finally, using swap rounding Lemma 1, there exists a set S_2 of size $k' - |S_1|$, such that $f_i(S_1 \cup S_2) \ge (1 - \epsilon) \frac{k' - |S_1|}{k - |S_1|}$ $\frac{k-|S_1|}{k-|S_1|}V_i, \forall i.$ \Box

Theorem 8. For $k' = \frac{m}{\epsilon^4}$, choosing k'-tuples greedily w.r.t. $h(.) = \min_i f_i(.)$ yields approximation guarantee $(1 - 1/e)(1 - 2\epsilon)$ for $k \to \infty$, while making n^{m/ϵ^4} queries.

Proof. The analysis generalizes that of the standard greedy algorithm ([\[NW78,](#page-3-4) [NWF78\]](#page-3-5)). Let S_i denote the set at the end of iteration j. $S_0 = \emptyset$ and let the final set be $S_{\lfloor k/k'/\rfloor}$. Then from Theorem [7,](#page-2-0) we have that at step $j + 1$, there is some set $X \in S_k \backslash S_j$ of size k' such that

$$
f_i(X|S_j) \ge (1-\epsilon) \frac{k'-m/\epsilon^3}{k-m/\epsilon^3} (V_i - f_i(S_j)), \forall i.
$$

To simplify presentation let $\eta = (1 - \epsilon) \frac{k' - m}{k - m/\epsilon^3}$ and note that $\eta \le 1$. Further, $1/\eta \to \infty$ as $k \to \infty$ for fixed m and $k' = o(k)$. Now, we have for every i, $f_i(S_{j+1}) - (1 - \eta)f_i(S_j) \geq \eta V_i$. Call this inequality $j+1$. Observe that inequality $\lfloor k/k' \rfloor$ states $f_i(S_{\lfloor k/k' \rfloor}) - (1-\eta)f_i(S_{\lfloor k/k' \rfloor-1}) \ge \eta V_i, \forall i$. Therefore, multiplying inequality $\lfloor k/k' \rfloor - j$ by $(1 - \eta)^j$ and telescoping over j we get for every i,

$$
f_i(S_{\lfloor k/k'\rfloor}) \ge \sum_{j=0}^{\lfloor k/k'\rfloor-1} (1-\eta)^j \eta V_i
$$

\n
$$
\ge (1-(1-\eta)^{\lfloor k/k'\rfloor})V_i
$$

\n
$$
\ge (1-(1-\eta)^{\frac{1}{\eta}\eta\lfloor k/k'\rfloor})V_i
$$

\n
$$
\ge \beta(\eta\lfloor k/k'\rfloor)V_i \ge (1-1/e)(\eta\lfloor k/k'\rfloor)V_i.
$$

\n) for the last inequality, I, et $\epsilon = \frac{4}{\sqrt{m}}$, then we have

Where we used [\(1\)](#page-0-5) for the last inequality. Let $\epsilon = \sqrt[4]{\frac{m}{k'}}$, then we have,

$$
\eta[k/k'] \ge (1 - \epsilon) \frac{1 - m/k'\epsilon^3}{1 - m/k\epsilon^3} \left(1 - \frac{k'}{k}\right) \ge \frac{\left(1 - \sqrt[4]{\frac{m}{k'}}\right)^2}{1 - \frac{1}{k}\sqrt[4]{\frac{m}{(k')^3}}} \left(1 - \frac{k'}{k}\right)
$$

As $k \to \infty$ we get the asymptotic guarantee $(1 - 1/e) \left(1 - \sqrt[4]{\frac{m}{k'}}\right)^2 = (1 - 1/e)(1 - \epsilon)^2$. \Box

References

- [AHK12] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a metaalgorithm and applications. *Theory of Computing*, 8:121–164, 2012.
- [CCPV07] G. Calinescu, C. Chekuri, Martin Pál, and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. In *IPCO*, volume 7, pages 182–196, 2007.
- [CCPV11] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. *SIAM Journal on Computing*, 40(6):1740–1766, 2011.
- [CVZ10] C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding via exchange properties of combinatorial structures. In *FOCS 10*, pages 575–584. IEEE, 2010.
- [NW78] G.L. Nemhauser and L.A. Wolsey. Best algorithms for approximating the maximum of a submodular set function. *Mathematics of operations research*, 3(3):177–188, 1978.
- [NWF78] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maximizing submodular set functions—i. *Mathematical Programming*, 14(1):265–294, 1978.