
Supplementary Document

Non-Ergodic Alternating Proximal Augmented Lagrangian

Algorithms with Optimal Rates

A Properties of Augmented Lagrangian Function and Optimality Bounds

In this section, we investigate some properties of the augmented Lagrangian function L⇢ in (5).
1.1 Properties of the augmented Lagrangian function

Let us recall the augmented Lagrangian function L⇢ in (5) associated with problem (1). To investigate
its properties, we define the following two functions:

 ⇢(u,�) :=
⇢
2kuk

2
� h�, ui, and �⇢(z,�) := ⇢(Ax+By � c,�). (12)

Since ru ⇢(u, �̂) = ⇢u� �̂ is ⇢-Lipschitz continuous in u for any given �̂ 2 Rn, it is obvious that

 ⇢(u+, �̂)  ⇢(u, �̂) + hru ⇢(u, �̂), u+ � ui+ ⇢
2ku+ � uk2

 ⇢(u+, �̂) � ⇢(u, �̂) + hru ⇢(u, �̂), u+ � ui+ 1
2⇢kru ⇢(u+, �̂)�ru ⇢(u, �̂)k2,

(13)

for any u+, u 2 Rn, see, e.g., [18].

Given ẑk+1 := (xk+1, ŷk) 2 dom(F) and �̂k 2 Rn, we also define the following linear function:

`k⇢(z) := �⇢(ẑ
k+1, �̂k) + hrx�⇢(ẑ

k+1, �̂k), x� xk+1
i+ hry�⇢(ẑk+1, �̂

k), y � ŷki. (14)

If we define sk := Axk +Byk � c and ŝk+1 := Axk+1 +Bŷk � c, then using the definition of `k⇢
and �⇢, we can easily show that

`k⇢(z) = �⇢(z, �̂k)�
⇢
2kA(x� xk+1) +B(y � ŷk)k2, 8z 2 dom(F),

`k⇢(z
?) = �

⇢
2kŝ

k+1
k
2 and `k⇢(z

k) = �⇢(zk, �̂k)�
⇢
2ks

k
� ŝk+1

k
2,

(15)

where z? 2 Z
? is any solution of (1).

For any matrix B := [B1, · · · , Bm] concatenated from m matrices Bi for i = 1, · · · ,m, we define
LB := kBk

2 and L̄B := m ·max
�
kBik

2
| 1  i  m

, where kBk and kBik is the operator norms

of B and Bi, respectively. For any d = [d1, · · · , dm] 2 Rp̂, we can easily show that

kBdk2 = k

mX

i=1

Bidik
2
 kBk

2
kdk2  m

mX

i=1

kBik
2
kdik

2
 L̄Bkdk

2. (16)

By the definition of �⇢, using (14), (15), and (16), for any (x, y) 2 dom(F), ŷ 2 dom(g), and
�̂ 2 Rn, we can derive

�⇢(x, y, �̂)� �⇢(x, ŷ, �̂)� hry�⇢(x, ŷ, �̂), y � ŷi =
⇢

2
kB(y � ŷ)k2.

Hence, by (16), we can show that

�⇢(x, y, �̂)� �⇢(x, ŷ, �̂)� hry�⇢(x, ŷ, �̂), y � ŷi 
⇢LB

2
ky � ŷk2 

⇢L̄B

2
ky � ŷk2. (17)

1.2 The proof of Lemma 2.1: Approximate optimal solutions of (1)
For any z 2 dom(F), we have F ? = L(z?,�?)  L(z,�?) = F (z) � h�?, Ax + By � ci. Using
the definition of S⇢(·), we obtain

S⇢(z,�) + h�, Ax+By � ci �
⇢

2
kAx+By � ck2 = F (z)� F (z?) � h�?, Ax+By � ci. (18)

This inequality implies
⇢
2kAx+By � ck2 � k�� �?kkAx+By � ck � S⇢(z,�)  0, (19)

10

which leads to
2⇢S⇢(z,�) + k�� �?k2 � ⇢2kAx+By � ck2 � 2⇢k�� �?kkAx+By � ck+ k�� �?k2

= [⇢kAx+By � ck � k�� �?k]2 � 0.

From from (19), we also have kAx + By � ck 
1
⇢

h
k�� �?k+

p
k�� �?k2 + 2⇢S⇢(z,�)

i
by

solving a quadratic inequation. This is the second inequality of (6).

Next, from (18), we have

F (z)� F ?
 S⇢(z,�)�

⇢
2kAx+By � ck2 + k�kkAx+By � ck

 S⇢(z,�)�
⇢
2

h
kAx+By � ck � k�k

⇢

i2
+ k�k2

2⇢

 S⇢(z,�) +
k�k2

2⇢ .

Using the Cauchy-Schwarz inequality, it follows from F ?
 F (z) � h�?, Ax + By � ci that

�k�?kkAx+By � ck  F (z)� F ?. Combining these two inequalities and the second estimate of
(6), we obtain the first estimate of (6). ⇤
B Convergence analysis of Algorithm 1

Lemma B.1 and Lemma B.2 below are key to analyze the convergence of Algorithm 1.
Lemma B.1. Assume that L⇢ is defined by (5), and `k⇢k

is defined by (14). Let zk+1
be computed by

Algorithm 1. Then, for any z 2 dom(F), we have

L⇢k(z
k+1, �̂k)  F (z) + `k⇢k

(z) + �khxk+1
� x̂k, x� x̂k

i � �kkxk+1
� x̂k

k
2

+ �khyk+1
� ŷk, y � ŷki � (2�k�⇢kLB)

2 kyk+1
� ŷkk2.

(20)

Proof. Using (17) with ⇢ = ⇢k, (x, y) = (xk+1, yk+1) = zk+1, (x, ŷ) = (xk+1, ŷk) = ẑk+1, and
�̂ = �̂k, we have

�⇢k(z
k+1, �̂k)  �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), yk+1

� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2. (21)

Next, using again �⇢ from (12), we can write down the optimality condition of the x-subproblem at
Step 5 and the yi-subproblem at Step 6 of Algorithm 1 as follows:
(

0 = rf(xk+1) +rx�⇢k(ẑ
k+1, �̂k) + �k(xk+1

� x̂k), rf(xk+1) 2 @f(xk+1),

0 = rgi(y
k+1
i) +ryi�⇢k(ẑ

k+1, �̂k) + �k(y
k+1
i � ŷki), rgi(y

k+1
i) 2 @gi(y

k+1
i).

(22)

Using the convexity of f and g, for any x 2 dom(f) and y 2 dom(g), we have

f(xk+1)  f(x) + hrf(xk+1), xk+1
� xi, rf(xk+1) 2 @f(xk+1),

g(yk+1)  g(y) + hrg(yk+1), yk+1
� yi, rg(yk+1) 2 @g(yk+1).

(23)

Combining (21), (22), and (23), and then using the definition (5) of L⇢, for any z = (x, y) 2 dom(F),
we can derive that

L⇢k(z
k+1, �̂k)= f(xk+1) + g(yk+1) + �⇢k(z

k+1, �̂k)

(21),(23)
 f(x) + hrf(xk+1), xk+1

� xi+ g(y) + hrg(yk+1), yk+1
� yi

+ �⇢k(ẑ
k+1, �̂k) + hry�⇢k(ẑ

k+1, �̂k), yk+1
� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2

(22)
 F (z) + �⇢k(ẑ

k+1, �̂k) + hrx�⇢k(ẑ
k+1, �̂k), x� xk+1

i+ hry�⇢k(ẑ
k+1, �̂k), y � ŷki

+ �khx̂k
� xk+1, xk+1

� xi+ �khŷk � yk+1, yk+1
� yi+ ⇢kLB

2 kyk+1
� ŷkk2

(14)
= F (z) + `k⇢k

(z) + �khxk+1
� x̂k, x� x̂k

i � �kkxk+1
� x̂k

k
2

+ �khyk+1
� ŷk, y � ŷki � (2�k�⇢kLB)

2 kyk+1
� ŷkk2,

which is exactly (20).

11

Lemma B.2. Let (zk, �̂k, zk+1, z̃k+1) be generated by Algorithm 1. Then, for any � 2 Rn
, if

0  2⌘k  ⇢k⌧k, then one has

L⇢k(z
k+1,�)  (1� ⌧k)L⇢k�1(z

k,�) + ⌧kF (z?) + �k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤

+�k⌧
2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤
+ ⌧k

2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤

�
(�k�2⇢kLB)

2 kyk+1
� ŷkk2 � (1�⌧k)

2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2,

(24)

where ⌧k 2 [0, 1], and ⇢k, �k, �k, and ⌘k are positive parameters, and sk := Axk +Byk � c.

Proof. Using (20) with z = zk and z = z?, respectively, and then using (15), we obtain

L⇢k(z
k+1, �̂k)

(15)
 L⇢k(z

k, �̂k)� ⇢k

2 ksk � ŝk+1
k
2 + �khxk+1

� x̂k, xk
� x̂k

i

��kkxk+1
� x̂k

k
2 + �khyk+1

� ŷk, yk � ŷki � (2�k�⇢kLB)
2 kyk+1

� ŷkk2,

L⇢k(z
k+1, �̂k)

(15)
 F (z?)� ⇢k

2 kŝk+1
k
2 + �khxk+1

� x̂k, x?
� x̂k

i � �kkxk+1
� x̂k

k
2

+�khyk+1
� ŷk, y? � ŷki � (2�k�⇢kLB)

2 kyk+1
� ŷkk2.

Here, sk := Axk + Byk � c and ŝk+1 := Axk+1 + Bŷk � c. Multiplying the first inequality by
(1� ⌧k) 2 [0, 1] and the second one by ⌧k 2 [0, 1] and summing up the results, and then using the
fact that L⇢k(z

k, �̂k) = L⇢k�1(z
k, �̂k) + (⇢k�⇢k�1)

2 kskk2, we can estimate

L⇢k(z
k+1, �̂k)  (1� ⌧k)L⇢k(z

k, �̂k) + ⌧kF (z?)� (1�⌧k)⇢k

2 ksk � ŝk+1
k
2
�

⌧k⇢k

2 kŝk+1
k
2

+ �k⌧khx
k+1

� x̂k, x?
� x̃k

i � �kkx
k+1

� x̂k
k
2 + �k⌧khy

k+1
� ŷk, y? � ỹki

�
�k

2 kyk+1
� ŷkk2 � (�k�⇢kLB)

2 kyk+1
� ŷkk2

= (1� ⌧k)L⇢k�1(z
k, �̂k) + ⌧kF (z?)� �k

2 kxk+1
� x̂k

k
2
�

(�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

+ �k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤
+ �k⌧

2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤

�
(1�⌧k)⇢k

2 ksk � ŝk+1
k
2
�

⌧k⇢k

2 kŝk+1
k
2 + (1�⌧k)(⇢k�⇢k�1)

2 kskk2. (25)

Here, we use ⌧kx̃k = x̂k
� (1 � ⌧k)xk, ⌧ ỹk = ŷk � (1 � ⌧k)yk, ⌧k(x̃k+1

� x̃k) = xk+1
� x̂k,

⌧k(ỹk+1
� ỹk) = yk+1

� ŷk, and an elementary expression 2ha, bi � kak2 = ka� bk2 � kbk2.

Now, let s̃k+1/2 := Ax̃k+1 +Bỹk � c. Then, it is trivial to estimate the quantity Tk below

Tk := (1�⌧k)⇢k

2 ksk � ŝk+1
k
2 + ⌧k⇢k

2 kŝk+1
k
2
�

(1�⌧k)(⇢k�⇢k�1)
2 kskk2

= ⇢k

2 kŝk+1
� (1� ⌧k)skk2 +

(1�⌧k)
2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2

= ⇢k⌧
2
k

2 ks̃k+1/2
k
2 + (1�⌧k)

2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2.

(26)

Here, we use the fact that ŝk+1
� (1� ⌧k)sk = Axk+1 +Bŷk � c� (1� ⌧k)(Axk +Byk � c) =

⌧k(Ax̃k+1 +Bỹk � c) = ⌧ks̃k+1/2.

Using the relation L⇢(z,�) = L⇢(z, �̂)+h�̂��, Ax+By�ci from (5), zk+1
�(1�⌧k)zk = ⌧kz̃k+1,

and (26), we can further derive from (25) for any � 2 Rn that

L⇢k(z
k+1,�)  (1� ⌧k)L⇢k�1(z

k,�) + ⌧kF (z?)� (1�⌧k)
2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2

+�k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤
+ �k⌧

2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤

�
�k

2 kxk+1
� x̂k

k
2
�

(�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

+⌧kh�̂k � �, Ax̃k+1 +Bỹk+1
� ci � ⇢k⌧

2
k

2 ks̃k+1/2
k
2.

(27)

Let s̃k+1 := Ax̃k+1 +Bỹk+1
� c. From the update rule �̂k+1 := �̂k � ⌘k(Ax̃k+1 +Bỹk+1

� c) =
�̂k � ⌘ks̃k+1, if we define Mk := ⌧kh�̂k � �, Ax̃k+1 +Bỹk+1

� ci, then we can estimate Mk as

Mk = ⌧k
⌘k
h�̂k � �, �̂k � �̂k+1

i = ⌧k
2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤
+ ⌧k

2⌘k
k�̂k � �̂k+1

k
2

= ⌧k
2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤
+ ⌘k⌧k

2 ks̃k+1
k
2.

(28)

12

Substituting (28) into (27) we obtain

L⇢k(z
k+1,�)  (1� ⌧k)L⇢k�1(z

k,�) + ⌧kF (z?) + �k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤

+ �k⌧
2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤
+ ⌧k

2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤

+ ⌘k⌧k
2 ks̃k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2
�

(�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

�
(1�⌧k)

2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2.

(29)

Finally, by using kuk2 � 2kvk2  2ku� vk2, it is straightforward to show that if 2⌘k  ⇢k⌧k, then

⌘k⌧k
2 ks̃k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2


LB⇢k⌧
2
k

2 kỹk+1
� ỹkk2.

Therefore, substituting this estimate into (29), we obtain (24).

From Lemma B.2, we need to derive rules for updating the parameters ⌧k, ⇢k, �k, �k, and ⌘k. These
updates are guided by the following lemma, which is shown in Algorithm 1.
Lemma B.3. If the parameters ⌧k, ⇢k, �k, �k, and ⌘k are updated as

(
⌧k := 1

k+1 , ⇢k := ⇢0(k + 1), �k := 2LB⇢0(k + 1),

⌘k := ⇢0

2 , and 0  �k+1 
�
k+2
k+1

�
�k,

(30)

then the sequence
�
(zk, z̃k)

satisfies

2kS⇢k�1(z
k, �̂0)+

�k
k + 1

kx̃k
�x?

k
2+2⇢0LBkỹ

k
�y?k2  �0kx

0
�x?

k
2+2⇢0LBky

0
�y?k2, (31)

where S⇢k�1(z
k, �̂0) := L⇢k�1(z

k, �̂0)� F ?
, and ⇢0 > 0 and �0 � 0 are given.

Proof. First, we choose to update ⌧k as ⌧k = 1
k+1 . Then, ⌧0 = 1. From the last term of (24), we

impose ⇢k�1 � ⇢k(1� ⌧k) = 0. This suggests us to update ⇢k as ⇢k = ⇢0(k + 1).

We also choose �k := 2LB⇢k and ⌘k := ⇢k⌧k
2 to guarantee �k � 2⇢kLB � 0 and 2⌘k  ⇢k⌧k,

respectively. Using the update of ⌧k and ⇢k, we can easily show that �k = 2LB⇢0(k + 1) and
⌘k := ⇢0

2 as shown in (30).

Using the update (30) and � := �̂0 into (24) with Sk := L⇢k�1(z
k, �̂0)� F ?, we have

(k + 1)Sk+1 +
1
⇢0
k�̂k+1

� �̂0k2 + �k

2(k+1)kx̃
k+1

� x?
k
2 + ⇢0LBkỹk+1

� y?k2  kSk

+ 1
⇢0
k�̂k � �̂0k2 + �k

2(k+1)kx̃
k
� x?

k
2 + ⇢0LBkỹk � y?k2.

We also choose �k+1

k+2 
�k

k+1 . Hence, by induction, the last inequality leads to

kSk+
1
⇢0
k�̂k� �̂0k2+ �k

2(k+1)kx̃
k
�x?

k
2+⇢0LBkỹ

k
�y?k2 

�0

2 kx̃0
�x?

k
2+⇢0LBkỹ

0
�y?k2.

Since x̃0 = x0 and ỹ0 = y0, by ignoring the term 1
⇢0
k�̂k � �̂0k2, the last inequality leads to (31).

Finally, the condition �k+1

k+2 
�k

k+1 holds if 0  �k+1 
�
k+2
k+1

�
�k.

The proof of Theorem 3.1. Let R2
0 := �0kx0

� x?
k
2 + 2⇢0LBky0 � y?k2. From (31), we have

S⇢k�1(z
k, �̂0) = L⇢k(z

k, �̂0)� F ?


R2
0

2k . Moreover, ⇢k�1 = ⇢0k. Substituting these two expres-
sions into (6), we obtain (8).

C Lower bound on convergence rates of Algorithm 1

In order to show that the convergence rate of Algorithm 1 is optimal, we consider the following
example studied in [28]:

min
z:=[x,y]

n
F (z) := f(x) + g(y) | x� y = 0

o
, (32)

13

which is a split reformulation of an additive composite objective function F (x) = f(x) + g(x).
Algorithm 1 for solving (32) can be cast as a special case of the following generic scheme:

8
>>>>><

>>>>>:

(ŷk, �̂k) are linear combinations of previous iterates

xk+1 := prox�kf

�
x̂k

� ��1
k �̂k

�

(x̃k+1, �̂k+1) are linear combinations of computed iterates

yk+1 := prox�kg

�
x̃k+1

� ��1
k �̂k+1

�
.

(33)

Then, there exist f and g defined on
�
x 2 R6k+5

| kxk  B

which are convex and Lf -Lipschitz
continuous such that the general primal-dual scheme (33) exhibits a lower bound:

F (x̆k) �
LfB

8(k + 1)
,

where x̆k :=
Pk

j=1 ↵jxj +
Pk

l=1 �ly
l for any ↵j and �l with j, l = 1, · · · , k. This example can

be found in [14, Proposition 5]. Consequently, Algorithm 1 has a lower bound convergence rate of
O
�
1
k

�
. Hence, the O

�
1
k

�
convergence rate stated in Theorem 3.1 is optimal within a constant factor.

D Convergence analysis of Algorithm 2

Lemmas D.1 and D.2 provide key estimates to prove the convergence of Algorithm 2.
Lemma D.1. Assume that L⇢ is defined by (5), and `k⇢ is defined by (14). Let Q

k
⇢ be defined as

Q
k
⇢k
(y) := �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), y � ŷki+ ⇢kLB

2 ky � ŷkk2. (34)

Then, �⇢k(x
k+1, y, �̂k)  Q

k
⇢k
(y) for any y 2 Rp̂

.

Let (xk+1, z̃k+1, ẑk, �̂k) be computed by Algorithm 2, and y̆k+1 := (1� ⌧k)yk + ⌧kỹk+1
. Then, for

any z 2 dom(F), we have

L̆
k+1
⇢k

:= f(xk+1) + g(y̆k+1) +Q
k
⇢k
(y̆k+1)  (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤

+ ⌧k
⇥
F (z) + `k⇢k

(z)
⇤
+ �k⌧

2
k

2 kx̃k
� xk2 � �k⌧

2
k

2 kx̃k+1
� xk2 � �k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � yk2 � �k⌧
2
k+µg⌧k
2 kỹk+1

� yk2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2.

(35)

Proof. Since ẑk = (1� ⌧k)zk + ⌧kz̃k, we have (1� ⌧k)xk + ⌧kx̃k+1
� xk+1 = 0 and y̆k+1

� ŷk =
⌧k(ỹk+1

� ỹk). Using these expressions, y̆k+1, `k⇢k
in (14), and Q

k
⇢k

in (34), we can derive

Q
k
⇢k
(y̆k+1) = �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), y̆k+1

� ŷki+ ⇢kLB

2 ky̆k+1
� ŷkk2

= (1�⌧k)
h
�⇢k(ẑ

k+1, �̂k)+hrx�⇢k(ẑ
k+1, �̂k), xk

�xk+1
i+hry�⇢k(ẑ

k+1, �̂k), yk�ŷki
i

+ ⌧k
h
�⇢k(ẑ

k+1, �̂k) + hrx�⇢k(ẑ
k+1, �̂k), x̃k+1

�xk+1
i+ hry�⇢k(ẑ

k+1, �̂k), ỹk+1�ŷki
i

+ hrx�⇢k(ẑ
k+1, �̂k), (1� ⌧k)x

k + ⌧kx̃
k+1

� xk+1
i+ ⇢k⌧

2
kLB

2 kỹk+1
� ỹkk2

(14)
= (1� ⌧k)`

k
⇢k
(zk) + ⌧k`

k
⇢k
(z̃k+1) + ⇢k⌧

2
kLB

2 kỹk+1
� ỹkk2. (36)

By the convexity of f and xk+1
� (1 � ⌧k)xk = ⌧kx̃k+1, for any x 2 dom(f) and rf(xk+1) 2

@f(xk+1), we can estimate that

f(xk+1)  f((1� ⌧k)xk + ⌧kx) + hrf(xk+1), xk+1
� (1� ⌧k)xk

� ⌧kxi

 (1� ⌧k)f(xk) + ⌧kf(x) + ⌧khrf(xk+1), x̃k+1
� xi,

(37)

Since y̆k+1 := (1� ⌧k)yk + ⌧kỹk+1, by µg-convexity of g, for any y 2 dom(g) and rg(ỹk+1) 2
@g(ỹk+1), we have

g(y̆k+1)  (1� ⌧k)g(yk) + ⌧kg(ỹk+1)� ⌧k(1�⌧k)µg

2 kỹk+1
� ykk2

 (1� ⌧k)g(yk) + ⌧kg(y) + ⌧khrg(ỹk+1), ỹk+1
� yi � ⌧kµg

2 kỹk+1
� yk2.

(38)

14

Next, note that

`k⇢k
(z̃k+1) = �⇢k(ẑ

k+1, �̂k)+hrx�⇢k(ẑ
k+1, �̂k), x̃k+1

�xk+1
i+hry�⇢k(ẑ

k+1, �̂k), ỹk+1
�ŷki

= �⇢k(ẑ
k+1, �̂k) + hrx�⇢k(ẑ

k+1, �̂k), x� xk+1
i+ hry�⇢k(ẑ

k+1, �̂k), y � ŷki

+ hrx�⇢k(ẑ
k+1, �̂k), x̃k+1

� xi+ hry�⇢k(ẑ
k+1, �̂k), ỹk+1

� yi

= `k⇢k
(z) + hrx�⇢k(ẑ

k+1, �̂k), x̃k+1
� xi+ hry�⇢k(ẑ

k+1, �̂k), ỹk+1
� yi.

(39)

Combining (36), (37), (38), and (39), for any z := (x, y) 2 dom(F), we can derive

L̆
k+1
⇢k

(34)
= f(xk+1) + g(y̆k+1) +Q

k
⇢k
(y̆k+1)

(37),(38),(39)
 (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤
+ ⌧k

⇥
F (z) + `k⇢k

(z)
⇤

+ ⌧khrf(xk+1)+rx�⇢k(ẑ
k+1, �̂k), x̃k+1

�xi+⌧khrg(ỹk+1)+ry�⇢k(ẑ
k+1, �̂k), ỹk+1�yi

�
⌧kµg

2 kỹk+1
� yk2 + ⇢k⌧

2
kLB

2 kỹk+1
� ỹkk2.

(40)

Next, from the optimality condition of the x- and yi-subproblems in Algorithm 2, we can show that
(

rf(xk+1) +rx�⇢k(ẑ
k+1, �̂k) = �k(x̂k

� xk+1), rf(xk+1) 2 @f(xk+1),

rg(ỹk+1) +ry�⇢k(ẑ
k+1, �̂k) = ⌧k�k(ỹk � ỹk+1), rg(ỹk+1) 2 @g(ỹk+1).

(41)

Moreover, we also have

2⌧khx̂k
� xk+1, x̃k+1

� xi = ⌧2kkx̃
k
� xk2 � ⌧2kkx̃

k+1
� xk2 � kxk+1

� x̂k
k
2

2hỹk � ỹk+1, ỹk+1
� yi = kỹk � yk2 � kỹk+1

� yk2 � kỹk+1
� ỹkk2.

(42)

Using (41) and (42) into (40), we can further derive

L̆
k+1
⇢k

(35)
 (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤
+ ⌧k

⇥
F (z) + `k⇢k

(z)
⇤
�

⌧kµg

2 kỹk+1
� yk2

+⌧k�khx̂k
� xk+1, x̃k+1

� xi+ ⌧2k�khỹ
k
� ỹk+1, ỹk+1

� yi+ ⇢k⌧
2
kLB

2 kỹk+1
� ỹkk2

(42)
 (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤
+ ⌧k

⇥
F (z) + `k⇢k

(z)
⇤

+�k⌧
2
k

2 kx̃k
� xk2 � �k⌧

2
k

2 kx̃k+1
� xk2 � �k

2 kxk+1
� x̂k

k
2

+�k⌧
2
k

2 kỹk � yk2 �
(�k⌧

2
k+µg⌧k)
2 kỹk+1

� yk2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2,

which is exactly (35).

Lemma D.2. Let {(zk, ẑk, z̃k, �̂k)} be the sequence generated by Algorithm 2. Then

L⇢k(z
k+1, �̂k)  (1� ⌧k)L⇢k�1(z

k, �̂k) + ⌧kF (z?)� (1�⌧k)
2 (⇢k�1 � ⇢k(1� ⌧k))kskk2

+ �k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� y?k2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

�h�̂k � �̂0, B(yk+1
� y̆k+1)i � ⇢kLB

2 kyk+1
� y̆k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2,

(43)

where �k, �k, and ⇢k are positive parameters, ⌧k 2 [0, 1], sk := Axk + Byk � c, s̃k+1/2 :=
Ax̃k+1 +Bx̃k

� c, and y̆k+1 := (1� ⌧k)yk + ⌧kỹk+1
.

Proof. Using (35) with z = z?, and then combining the result with (15), we obtain

L̆
k+1
⇢k

 (1� ⌧k)L⇢k(z
k, �̂k) + ⌧kF (z?)� (1�⌧k)⇢k

2 kŝk+1
� skk2 � ⇢k⌧k

2 kŝk+1
k
2

+�k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � yk2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� yk2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2.

15

Next, using L⇢k(z
k, �̂k) = L⇢k�1(z

k, �̂k) + (⇢k�⇢k�1)
2 kskk2 in the last inequality, and then combin-

ing the result with (26), we obtain

L̆
k+1
⇢k

 (1� ⌧k)L⇢k�1(z
k, �̂k) + ⌧kF (z?)� (1�⌧k)(⇢k�1�⇢k(1�⌧k))

2 kskk2 � ⇢k⌧
2
k

2 ks̃k+1/2
k
2

+�k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+�k⌧
2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� y?k2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2.

(44)

Now, we consider two cases corresponding to the two options at Step 11 of Algorithm 2.

Option 1: If yk+1 = y̆k+1, then we have

L⇢k(z
k+1, �̂k) = f(xk+1) + g(yk+1) + �⇢k(z

k+1, �̂k)

(17)
 f(xk+1) + g(y̆k+1) + �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), y̆k+1

� ŷki

+ ⇢kLB

2 ky̆k+1
� ŷkk2

= f(xk+1) + g(y̆k+1) +Q
k
⇢k
(y̆k+1)

= L̆
k+1
⇢k

= L̆
k+1
⇢k

� h�̂k � �̂0, B(yk+1
� y̆k+1)i � ⇢kLB

2 kyk+1
� y̆k+1

k
2.

Here, the last relation follows from the fact that h�̂k��̂0, B(yk+1
�y̆k+1)i+ ⇢kLB

2 kyk+1
�y̆k+1

k
2 =

0 since yk+1 = y̆k+1. Combining the last estimate and (44), we obtain the key estimate (43).

Option 2: If we choose yk+1
i := proxgi/(⇢kLB)

�
ŷki �

1
⇢kLB

B>
i

�
⇢krk � �̂0

��
, then we write it as

yk+1
i = argmin

yi

n
gi(yi) + hryi�⇢k(ẑ

k+1, �̂0), yi � ŷki i+
⇢kLB

2 kyi � ŷki k
2
o

for all i = 1, · · · ,m.

From the optimality condition of these yi-subproblems, one can easily show that

g(yk+1) + hry�⇢k(ẑ
k+1, �̂0), yk+1

� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2

 g(y̆k+1) + hry�⇢k(ẑ
k+1, �̂0), y̆k+1

� ŷki+ ⇢kLB

2 ky̆k+1
� ŷkk2 � ⇢kLB

2 kyk+1
� y̆k+1

k
2.

Using �⇢k(x
k+1, y̆k+1, �̂k)  Q

k
⇢k
(y̆k+1) from Lemma D.1, and the last inequality, we can derive

L⇢k(z
k+1, �̂k) = f(xk+1) + g(yk+1) + �⇢k(z

k+1, �̂k)

(17)
 f(xk+1) + g(yk+1) + �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), yk+1

� ŷki

+ ⇢kLB

2 kyk+1
� ŷkk2

= f(xk+1) + �⇢k(ẑ
k+1, �̂k)� hB>(�̂k � �̂0), yk+1

� ŷki

+ g(yk+1) + hry�⇢k(ẑ
k+1, �̂0), yk+1

� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2

 f(xk+1) + �⇢k(ẑ
k+1, �̂k)� hB>(�̂k � �̂0), yk+1

� ŷki � ⇢kLB

2 kyk+1
� y̆k+1

k
2

+ g(y̆k+1) + hry�⇢k(ẑ
k+1, �̂0), y̆k+1

� ŷki+ ⇢kLB

2 ky̆k+1
� ŷkk2

 L̆
k+1
⇢k

�
⇢kLB

2 kyk+1
� y̆k+1

k
2
� h�̂k � �̂0, B(yk+1

� y̆k+1)i.

Combining this estimate and (44), we obtain the key estimate (43).

Our next step is to show how to choose the parameters �k,�k, ⇢k, and ⌧k 2 [0, 1] such that we can
obtain a convergence property of L⇢k(·).
Lemma D.3. If the parameters ⌧k, ⇢k, �k, �k, and ⌘k are updated as

(
⌧k := 1

2⌧k�1

�
(⌧2k�1 + 4)1/2 � ⌧k�1

�
, ⇢k := ⇢0

⌧2
k
,

�k := �0 � 0, �k := 2LB⇢k, and ⌘k := ⇢k⌧k
2 ,

(45)

with ⌧0 := 1 and ⇢0 2

⇣
0, µg

4LB

i
, then

L⇢k�1(z
k, �̂0)� F (z?) 

⌧2k�1

2

⇥
�0kx̃

0
� x?

k
2 + 2⇢0LBkỹ

0
� y?k2

⇤
. (46)

16

Proof. Since L⇢(z, �̂0) = L⇢(z, �̂k) + h�̂k � �̂0, Ax+By � ci, from (43), we have

L⇢k(z
k+1, �̂0)  (1� ⌧k)L⇢k�1(z

k, �̂0) + ⌧kF (z?)� (1�⌧k)
2 (⇢k�1 � ⇢k(1� ⌧k))kskk2

+ �k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

�y?k2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
�ỹkk2

+ h�̂k � �̂0, Axk+1 +Byk+1
� c� (1� ⌧k)(Axk +Byk � c)i

� h�̂k � �̂0, B(yk+1
� y̆k+1)i � ⇢kLB

2 kyk+1
� y̆k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2.

(47)

Now, using y̆k+1
� (1 � ⌧k)yk = ⌧kỹk+1, xk+1

� (1 � ⌧k)xk = ⌧kx̃k+1, and the dual update
�̂k+1 := �̂k � ⌘k(Ax̃k+1 +Bỹk+1

� c) = �̂k � ⌘ks̃k+1, we can show that

Mk := h�̂k � �̂0, Axk+1 +Byk+1
� c� (1� ⌧k)(Axk +Byk � c)�B(yk+1

� y̆k+1)i

= h�̂k � �̂0, Axk+1 +By̆k+1
� c� (1� ⌧k)(Axk +Byk � c)i

= ⌧kh�̂k � �̂0, Ax̃k+1 +Bỹk+1
� ci

= ⌧k
⌘k
h�̂k � �̂0, �̂k � �̂k+1

i = ⌧k
2⌘k

⇥
k�̂k � �̂0k2 � k�̂k+1

� �̂0k2
⇤
+ ⌘k⌧k

2 ks̃k+1
k
2.

Using this estimate of Mk into (47), similar to (29), if 2⌘k  ⇢k⌧k, then we can show that

L⇢k(z
k+1, �̂0)  (1� ⌧k)L⇢k�1(z

k, �̂0) + ⌧kF (z?)� (1�⌧k)
2 (⇢k�1 � ⇢k(1� ⌧k))kskk2

+ �k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2 + �k⌧

2
k

2 kỹk � y?k2

�
(�k⌧

2
k+µg⌧k)
2 kỹk+1

� y?k2 � (�k�2⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

�
⇢kLB

2 kyk+1
� y̆k+1

k
2 + ⌧k

2⌘k

⇥
k�̂k � �̂0k2 � k�̂k+1

� �̂0k2
⇤
.

(48)

Let us first update ⌧k as ⌧k = 1
2⌧k�1

�
(⌧2k�1+4)1/2�⌧k�1

�
with ⌧0 = 1, and ⇢k = ⇢k�1

1�⌧k
as in (45). It

is not hard to show that 1
k+1  ⌧k 

2
k+2 and ⇢k = ⇢0

⌧2
k

. Moreover,
Qk�1

i=1 (1� ⌧i) =
1

⌧2
k�1


4

(k+1)2 .
To guarantee �k � 2LB⇢k and 2⌘k  ⇢k⌧k, we can update �k := 2LB⇢k and ⌘k := ⇢k⌧k

2 . Therefore,
(48) can be simplified as

L⇢k(z
k+1, �̂0)  (1� ⌧k)L⇢k�1(z

k, �̂0) + ⌧kF (z?) + �k⌧
2
k

2 kx̃k
� x?

k
2

�
�k⌧

2
k

2 kx̃k+1
� x?

k
2 + �k⌧

2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� y?k2

+ 1
⇢k

⇥
k�̂k � �̂0k2 � k�̂k+1

� �̂0k2
⇤
.

(49)

Now, let us define

Ak := L⇢k�1(z
k, �̂0)�F ?+

1

⇢k
k�̂k��̂0k2+

�k�1⌧2k�1

2
kx̃k

�x?
k
2+

(�k�1⌧2k�1 + µg⌧k�1)

2
kỹk�y?k2.

Assume that
1

⇢k


1

⇢k�1
,

�k⌧2k
1� ⌧k

 �k�1⌧
2
k�1 + µg⌧k�1 and

�k⌧2k
1� ⌧k

 �k�1⌧
2
k�1. (50)

Then, (49) implies Ak+1  (1� ⌧k)Ak. By induction, and ⌧0 = 1, we can show that

Ak 
1

2

k�1Y

i=1

(1� ⌧i)

!
⇥
�0kx̃

0
� x?

k
2 + �0kỹ

0
� y?k2

⇤
,

Since
Qk�1

i=1 (1 � ⌧i) = ⌧2k�1 and �0 = 2LB⇢0, the last inequality implies S⇢k�1(z
k, �̂0) :=

L⇢k�1(z
k, �̂0)� F (z?) 

⌧2
k�1

2

⇥
�0kx̃0

� x?
k
2 + 2⇢0LBkỹ0 � y?k2

⇤
, which proves (46).

Since �k := 2LB⇢k, the condition �k⌧
2
k

1�⌧k
 �k�1⌧2k�1 + µg⌧k�1 becomes LB⇢k

⌧2
k

1�⌧k


LB⇢k�1⌧2k�1 +
µg

2 ⌧k�1. Using ⇢k = ⇢0

⌧2
k

and ⌧2
k

1�⌧k
= ⌧2k�1, the last condition holds if LB⇢0

⌧k�1

⌧k


µg

2 . Since 1 
⌧k�1

⌧k
 2, LB⇢0

⌧k�1

⌧k


µg

2 holds if 4LB⇢0  µg . This condition leads to ⇢0 
µg

4LB
.

17

Next, the condition �k⌧
2
k

1�⌧k
 �k�1⌧2k�1 shows that we can choose �k as �k  �k�1. This condition

holds if we fix �k := �0 � 0. Now, we find the condition for ⌘k in (45). Since ⇢k = ⇢0

⌧2
k

, the condition
1
⇢k


1

⇢k�1
in (50) is automatically satisfied.

The proof of Theorem 3.2. Let R2
0 := �0kx0

� x?
k
2 + 2⇢0LBky0 � y?k2. Since x̃0 = x0 and

ỹ0 = y0, from (46), we have S⇢k�1(z
k, �̂0) = L⇢k�1(z

k, �̂0)� F ?
 ⌧2k�1R

2
0 

2R2
0

(k+1)2 . Moreover,

⇢k�1 = ⇢0

⌧2
k�1

�
⇢0(k+1)2

4 and ⇢k�1S⇢k�1(z
k, �̂0)  ⇢0R2

0. Substituting these estimates into (6), we
obtain (9).

4.1 Lower bound of convergence rate for the semi-strongly convex case

We consider again example (32), where we assume that g is µg-strongly convex. Algorithm 2 for
solving (32) are special cases of (33) if g is strongly convex. Then, by [28, Theorem 2], the lower
bound complexity of (33) to achieve x̂ such that F (x̂)� F ?

 " is ⌦
⇣

1p
"

⌘
. Consequently, the rate

of Algorithm 2 stated in Theorem 3.2 is optimal.

E Additional numerical experiments

We provide more numerical examples to support our theory presented in the main text.
5.1 The `1-Regularized Least Absolute Derivation (LAD)

We consider the following `1-regularized least absolute derivation (LAD) problem widely studied in
the literature:

F ? := min
y2Rp2

n
F (y) := kBy � ck1 + kyk1

o
, (51)

where B 2 Rn⇥p̂ and c 2 Rn are given, and  > 0 is a regularization parameter. This problem is
completely nonsmooth. If we introduce x := By � c, then we can reformulate (51) into (1) with two
objective functions f(x) := kxk1 and g(y) := kyk1 and a linear constraint �x+By = c.

We use problem (51) to verify our theoretical results presented in Theorem 3.1 and Theorem
3.2. We implement Algorithm 1 (NEAPAL), its parallel scheme (NEAPAL-par), and Algorithm

2 (scvx-NEAPAL). We compare these algorithms with ASGARD [23] and its restarting variant,
Chambolle-Pock’s method [3], and standard ADMM [2]. For ADMM, we reformulate (51) into the
following constrained setting:

min
x,y,z

n
kxk1 + kzk1 | �x+By = c, y � z = 0

o

to avoid expensive subproblems. We solve the subproblem in x using a preconditioned conjugate
gradient method (PCG) with at most 20 iterations or up to 10�5 accuracy.

We generate a matrix B using standard Gaussian distribution N (0, 1) without and with correlated
columns, and normalize it to get unit column norms. The observed vector c is generated as c :=
Bx\ + �̂L(0, 1), where x\ is a given s-sparse vector drawn from N (0, 1), and �̂ = 0.01 is the
variance of noise generated from a Laplace distribution L(0, 1). For problems of the size (m,n, s) =
(2000, 700, 100), we tune to get a regularization parameter  = 0.5.

We test these algorithms on two problem instances. The configuration is as follows:

• For NEAPAL and NEAPAL-par, we set ⇢0 := 5, which is obtained by upper bounding
2k�?k

kBkky0�y?k as suggested by the theory. Here, y? and �? are computed with the best
accuracy using an interior-point algorithm in MOSEK.

• For scvx-NEAPAL we set ⇢0 = 1
4kBk2 by choosing µg = 0.5.

• For Chambolle-Pock’s method, we run two variants. In the first variant, we set step-sizes
⌧ = � = 1

kBk , and in the second one we choose ⌧ = 0.01 and � = 1
kBk2⌧ as suggested

in [3], and it works better than ⌧ = 1
kBk . We name these variants by CP and CP-0.01,

respectively.
• For ADMM, we tune different penalty parameters and arrive at ⇢ = 10 that works best in

this experiment.

18

The result of two problem instances are plotted in Figure 4. Here, ADMM-1 and ADMM-10 stand for
ADMM with ⇢ = 1 and ⇢ = 10, respectively. CP and CP-0.01 are the first and second variants of
Chambolle-Pock’s method, respectively. ASGARD-rs is a restarting variant of ASGARD, and avg-
stands for the relative objective residuals evaluated at the averaging sequence in Chambolle-Pock’s
method and ADMM. Note that the O

�
1
k

�
-rate of these two methods is proved for this averaging

sequence.

Iterations
0 500 1000 1500 2000

F
(y

k
)!

F
?

jF
?
j

-i
n

lo
g
sc

a
le

10-5

10-4

10-3

10-2

10-1

100

101

102

NEAPAL
NEAPAL-par

scvx-NEAPAL

ASGARD

ASGAR
D-rsCP

CP-0.01

ADMM
-1

ADMM-10

avg-CP
avg-CP-0.01

avg-ADMM-1

avg-ADMM-10

Iterations
0 500 1000 1500 2000

F
(y

k
)!

F
?

jF
?
j

-i
n

lo
g
sc

a
le

10-5

10-4

10-3

10-2

10-1

100

101

102

NEAPAL

NEAPAL-par

scvx-NEAPAL

ASGARD
ASGARD-rs

CP

CP-0.01

ADMM-1ADMM-10

avg-CP
avg-CP-0.01

avg-ADMM-1

avg-ADMM-10

Figure 4: Convergence behavior of 9 algorithmic variants on two instances of (51) after 1000 iterations. Left:
Without correlated columns; Right: With 50% correlated columns.

We can observe from Figure 4 that scvx-NEAPAL is the best. Both NEAPAL and NEAPAL-par have
the same performance in this example and slightly slower than CP-0.01, ADMM-10 and ASGARD-rs.
Note that ADMM requires to solve a linear system by PCG which is always slower than other
methods including NEAPAL and NEAPAL-par. CP-0.01 works better than CP in late iterations but
is slow in early iterations. ASGARD and ASGARD-rs remain comparable with CP-0.01. Since both
Chambolle-Pock’s method and ADMM have O

�
1
k

�
-convergence rate on the averaging sequence, we

also evaluate the relative objective residuals and plot them in Figure 4. Clearly, this sequence shows
its O

�
1
k

�
-rate but this rate is much slower than the last iterate sequence in all cases. It is also much

slower than NEAPAL and NEAPAL-par, where both schemes have a theoretical guarantee.

5.2 Image compression using compressive sensing

In this last example, we consider the following constrained convex optimization model in compressive
sensing of images:

min
Y 2Rp1⇥p2

n
f(Y) := kDY k2,1 | L(Y) = b

o
, (52)

where D is 2D discrete gradient operator representing a total variation (isotropic) norm, L : Rp1⇥p2 !

Rn is a linear operator obtained from a subsampled transformation scheme [2], and b 2 Rn is a
compressive measurement vector [1]. Our goal is to recover a good image Y from a small amount of
measurement b obtained via a model-based measurement operator L. To fit into our template (1), we
introduce x = DY to obtain two linear constraints L(Y) = b and �x+DY = 0. In this case, the
constrained reformulation of (52) becomes

F ? := min
x,Y

n
F (z) := kxk2,1 | x�DY = 0, L(Y) = b

o
,

where f(x) = kxk2,1, and g(Y) = 0.

We now apply Algorithm 1 (NEAPAL), its parallel variant (NEAPAL-par), and Algorithm 2
(scvx-NEAPAL) to solve this problem and compare them with the CP method in [3] and ADMM
[2]. We also compare our methods with a line-search variant Ls-CP of CP recently proposed in [3].

In CP and Ls-CP, we tune the step-size ⌧ and find that ⌧ = 0.01 works well. The other parameters
of Ls-CP are set as in the previous examples. For NEAPAL and NEAPAL-par, we use ⇢0 := 2kBk2.
We also use ⇢0 := 10kBk2 and call the variant of Algorithm 1 and its parallel scheme NEAPAL-v2
and NEAPAL-par-v2, respectively in this case. We set µg := 1

2kBk in scvx-NEAPAL as a guess for

19

restricted strong convexity parameter. For the standard ADMM algorithm, we tune its penalty parameter
and find that ⇢ := 20 works best.

We test all the algorithms on 4 MRI images: MRI-of-knee, MRI-brain-tumor, MRI-hands, and
MRI-wrist.3 We follow the procedure in [2] to generate the samples using a sample rate of 25%.
Then, the vector of measurements c is computed from c := L(Y \), where Y \ is the original image.

Table 2: Performance and results of 8 algorithms on 4 MRI images

Algorithms f(Y k) kL(Y k)�bk
kbk Error PSNR Time[s] f(Y k) kL(Y k)�bk

kbk Error PSNR Time[s]
MRI-knee (779 ⇥ 693) MRI-brain-tumor (630 ⇥ 611)

NEAPAL 24.350 2.637e-02 4.672e-02 83.93 80.15 36.101 2.724e-02 6.575e-02 79.50 53.77
NEAPAL-par 24.335 2.539e-02 4.676e-02 83.93 98.38 36.028 2.738e-02 6.595e-02 79.47 52.71
NEAPAL-v2 28.862 7.125e-05 4.143e-02 84.98 73.56 39.317 5.226e-05 6.310e-02 79.85 52.97

NEAPAL-par-v2 29.183 7.247e-05 4.007e-02 85.27 95.49 39.594 5.338e-05 6.258e-02 79.93 51.64
scvx-NEAPAL 24.633 2.295e-02 4.424e-02 84.41 87.96 36.783 2.184e-02 5.780e-02 80.62 65.12

CP 24.897 2.674e-02 4.629e-02 84.01 101.22 37.745 3.613e-02 7.896e-02 77.91 63.71
Ls-CP 24.955 2.638e-02 4.659e-02 83.96 106.11 38.139 3.414e-02 7.485e-02 78.37 66.12

ADMM 25.071 2.556e-02 4.654e-02 83.97 902.79 38.941 2.895e-02 6.135e-02 80.10 655.81
MRI-hands (1024 ⇥ 1024) MRI-wrist (1024 ⇥ 1024)

NEAPAL 45.207 2.081e-02 2.765e-02 91.37 146.41 29.459 1.802e-02 3.224e-02 90.04 152.51
NEAPAL-par 45.207 2.081e-02 2.765e-02 91.37 140.41 29.459 1.802e-02 3.224e-02 90.04 148.12
NEAPAL-v2 48.679 7.336e-05 2.074e-02 93.87 138.65 30.578 8.516e-05 2.572e-02 92.00 146.05

NEAPAL-parallel-v2 48.858 7.483e-05 2.008e-02 94.15 148.79 30.768 8.766e-05 2.473e-02 92.34 146.64
scvx-NEAPAL 45.426 1.820e-02 2.588e-02 91.95 154.35 29.403 1.647e-02 3.131e-02 90.29 157.35

CP 45.723 2.489e-02 3.895e-02 88.40 159.74 30.052 2.032e-02 3.661e-02 88.93 165.58
Ls-CP 53.640 2.724e-02 3.924e-02 88.33 162.94 39.396 2.353e-02 3.856e-02 88.48 168.29

ADMM 45.985 2.034e-02 3.443e-02 89.47 1691.53 29.922 1.825e-02 3.686e-02 88.88 1503.56

The performance and results of these algorithms are summarized in Table 2, where f(Y k) :=

kDY k
k2,1 is the objective value, Error := kY k�Y \kF

kY \kF
presents the relative error between the

original image Y \ to the reconstruction Y k after k = 300 iterations.

We observe the following facts from the results of Table 2.

• NEAPAL, NEAPAL-par, and scvx-NEAPAL are comparable with CP in terms of computational
time, PSNR, objective values, and solution errors.

• NEAPAL-v2 and NEAPAL-par-v2 give better PSNR and solution errors, but have slightly
worse objective value than the others.

• Ls-CP is slower than our methods due to additional computation.
• ADMM gives similar result in terms of the objective values, solution errors, and PSNR, but it

is much slower than other methods due to the PCG inner loop.

References

1. L. Baldassarre, Y.-H. Li, J. Scarlett, B. Gözcü, I. Bogunovic, and V. Cevher. Learning-based compressive
subsampling. IEEE Journal of Selected Topics in Signal Processing, 10(4):809–822, 2016.

2. F. Knoll, C. Clason, C. Diwoky, and R. Stollberger. Adapted random sampling patterns for accelerated MRI.
Magnetic resonance materials in physics, biology and medicine, 24(1):43–50, 2011.

3. Y. Malitsky and T. Pock. A first-order primal-dual algorithm with linesearch. SIAM J. Optim.: 28(1),
411–432, 2018.

3These images are from https://radiopaedia.org/cases/4090/studies/6567 and https://www.nibib.nih.gov

20

https://radiopaedia.org/cases/4090/studies/6567
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri

	Introduction
	Duality theory, fundamental assumption, and optimality conditions
	Non-Ergodic Alternating Proximal Augmented Lagrangian Algorithms
	NEAPAL for nonstrongly convex case
	NEAPAL for semi-strongly convex case
	Extension to the sum of smooth and nonsmooth objective functions

	Numerical experiments
	Square-root LASSO and Square-root Elastic-net
	Low-rank matrix recovery with square-root loss

	Conclusion
	Properties of Augmented Lagrangian Function and Optimality Bounds
	Properties of the augmented Lagrangian function
	The proof of Lemma 2.1: Approximate optimal solutions of (1)

	Convergence analysis of Algorithm 1
	Lower bound on convergence rates of Algorithm 1
	Convergence analysis of Algorithm 2
	Lower bound of convergence rate for the semi-strongly convex case

	Additional numerical experiments
	The 1-Regularized Least Absolute Derivation (LAD)
	Image compression using compressive sensing

