
6 Supplemental Methods

6.1 CNN architectures

For all of our CNN architectures, we use Elu nonlinearities. The 6-layer feedforward CNN,
referenced in Figure 2b as “FF”, had the following architecture:

Layer Kernel Size Channels Stride Max Pooling
1 7⇥ 7 64 2 2⇥ 2
2 3⇥ 3 128 1 2⇥ 2
3 3⇥ 3 256 1 2⇥ 2
4 3⇥ 3 256 1 2⇥ 2
5 3⇥ 3 512 1 2⇥ 2
6 2⇥ 2 1000 1 No

The variant of the above 6-layer feedforward CNN, referenced in Figure 2b as “FF wider” is given
below:

Layer Kernel Size Channels Stride Max Pooling
1 7⇥ 7 128 2 2⇥ 2
2 3⇥ 3 512 1 2⇥ 2
3 3⇥ 3 512 1 2⇥ 2
4 3⇥ 3 512 1 2⇥ 2
5 3⇥ 3 1024 1 2⇥ 2
6 2⇥ 2 1000 1 None

The “FF deeper” model referenced in Figure 2b is given below:

Layer Kernel Size Depth Stride Max Pooling
1 7⇥ 7 64 2 2⇥ 2
2 3⇥ 3 64 1 None
3 3⇥ 3 64 1 None
4 3⇥ 3 128 1 2⇥ 2
5 3⇥ 3 128 1 None
6 3⇥ 3 256 1 2⇥ 2
7 3⇥ 3 256 1 2⇥ 2
8 3⇥ 3 512 1 None
9 3⇥ 3 512 1 None
10 3⇥ 3 512 1 2⇥ 2
11 None (Avg. Pool FC) 1000 None None

The 18 layer CNN modeled after ResNet-18 (using MaxPooling rather than stride-2 convolutions to
perform downsampling) is given below:

Block Kernel Size Depth Stride Max Pooling Repeat
1 7⇥ 7 64 2 2⇥ 2 ⇥1
2 3⇥ 3 64 1 None ⇥2
3 3⇥ 3 64 1 None ⇥2
4 3⇥ 3 128 1 2⇥ 2 ⇥2
5 3⇥ 3 128 1 None ⇥2
6 3⇥ 3 256 1 2⇥ 2 ⇥2
7 3⇥ 3 256 1 2⇥ 2 ⇥2
8 3⇥ 3 512 1 None ⇥2
9 3⇥ 3 512 1 None ⇥2
10 3⇥ 3 512 1 2⇥ 2 ⇥2
11 None (Avg. Pool FC) 1000 None None ⇥1
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We additionally used an auxiliary classifier located at 70% of the way up the network, simi-
lar to [Zoph et al., 2017].

6.2 Reciprocal Gated Cell Equation

We will provide the update equations for the “Reciprocal Gated Cell”, diagrammed in Figure 2a
(bottom right). Let � denote Hadamard (elementwise) product, let ⇤ denote convolution, and let x`

t
denote the input to the cell at layer `. Then the update equations are as follows:

The update equation for the output of the cell, h`
t , is given by a gating of both the input and memory

c
`
t .

a
`
t+1 = (1� �(W `

ch ⇤ c`t)) � x`
t + (1� �(W `

hh ⇤ h`
t)) � h`

t

h
`
t = f

�
a
`
t

�
.

(1)

The update equation for the memory c
`
t is given by a gating of the input and the output of the cell h`

t .

c̃
`
t+1 = (1� �(W `

hc ⇤ h`
t)) � x`

t + (1� �(W `
cc ⇤ c`t)) � c`t

c
`
t = f(c̃`t).

(2)

6.3 RNN Cell Search Parametrization

Inspired by the Reciprocal Gated Cell equations above, there are a variety of possibilities for how
h
`
t�1, x

`
t, c

`
t , and h

`
t can be connected to one another. Figure 3a schematizes these possibilities.

Mathematically, Figure 3a can be formalized in terms of the following update equations.
First, we define our input sets and building block functions:

minin = {h`�1
t�1, x

`
t, c

`
t�1, h

`
t�1}

minina = minin [ {c`t}
mininb = minin [ {h`

t}
Sa ✓ minina

Sb ✓ mininb

Affine(x) 2 {+, 1⇥ 1 conv,K ⇥K conv,K ⇥K depth-separable conv}
K 2 {3, . . . , 7}

With those in hand, we have the following update equations:

⌧a = v
⌧
1 + v

⌧
2�(Affine(Sa))

⌧b = v
⌧
1 + v

⌧
2�(Affine(Sb))

gatea = v
g
1 + v

g
2�(Affine(Sa))

gateb = v
g
1 + v

g
2�(Affine(Sb))

a
`
t = {gatea} · in`

t + {⌧a} · h`
t�1

h
`
t = f(a`t)

b
`
t = {gateb} · in`

t + {⌧b} · c`t�1

c
`
t = f(b`t)

f 2 {elu, tanh,�}.
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For clarity, the following matrix summarizes the connectivity possibilities (with ? denoting the
possibility of a connection):

0

BBBBB@

h`�1
t�1 x`

t c`t�1 c`t h`
t�1 h`

t

h`�1
t�1 0 1 0 ? 0 ?
x`
t 0 0 0 ? 0 ?

c`t�1 0 0 0 ? 0 ?
c`t 0 0 0 0 0 ?

h`
t�1 0 0 0 ? 0 ?
h`
t 0 0 0 ? 0 0

1

CCCCCA

6.4 Training ConvRNN Models

ConvRNN models were trained by stochastic gradient descent on 128 px ImageNet using the same
learning rate schedule and data augmentation methods as the original ResNet models [He et al.,
2016] with the following modifications: we used a batch size of 128, an initial learning rate of 0.01,
and Nesterov momentum of 0.9. Standard ImageNet cross-entropy loss was computed from the last
time step of a ConvRNN. Gradients with absolute value greater than 0.7 were clipped.

6.5 Hyperparameter Optimization Methods

Models were trained synchronously 100 models at a time using the HyperOpt package [Bergstra
et al., 2015], for 5 epochs each. Each model was trained on its own Tensor Processing Unit (TPUv2),
and around 6000 models were sampled in total over the course of the search. During the search,
ConvRNN models were trained by stochastic gradient descent on 128 px ImageNet for efficiency.
The top performing ConvRNN models were then fully trained out on 224 px ImageNet with a batch
size of 64 (which was maximum that we could fit into memory), and the ResNet models were also
trained using this same batch size for fair comparison.

We employed a form of Bayesian optimization, a Tree-structured Parzen Estimator (TPE), to search the
space of continuous and categorical hyperparameters [Bergstra et al., 2011]. This algorithm constructs
a generative model of P [score | configuration] by updating a prior from a maintained history H

of hyperparameter configuration-loss pairs. The fitness function that is optimized over models is the
expected improvement, where a given configuration c is meant to optimize EI(c) =

R
x<t P [x | c,H].

This choice of Bayesian optimization algorithm models P [c | x] via a Gaussian mixture, and restricts
us to tree-structured configuration spaces.

6.6 Fitting Model Features to Neural Data

We fit trained model features to multi-unit array responses from [Majaj et al., 2015]. Briefly, we
fit to 256 recorded sites from two monkeys. These came from three multi-unit arrays per monkey:
one implanted in V4, one in posterior IT, and one in central and anterior IT. Each image was
presented approximately 50 times, using rapid visual stimulus presentation (RSVP). Each stimulus
was presented for 100 ms, followed by a mean gray background interleaved between images. Each
trial lasted 250 ms. The image set consisted of 5120 images based on 64 object categories. Each
image consisted of a 2D projection of a 3D model added to a random background. The pose, size, and
x- and y-position of the object was varied across the image set, whereby 2 levels of variation were
used (corresponding to medium and high variation from [Majaj et al., 2015]). Multi-unit responses to
these images were binned in 10ms windows, averaged across trials of the same image, and normalized
to the average response to a blank image. This produced a set of (5120 images x 256 units x 25 time
bins) responses, which were the targets for our model features to predict. To estimate a noise ceiling
for each mean response at each time bin, we computed the Spearman split-half reliability across
trials.

The 5120 images were split 75-25 within each object category into a training set and a held-out
testing set. All images were presented to the models for 10 time steps (corresponding to 100 ms),
followed by a mean gray stimulus for the remaining 15 time steps, to match the image presentation to
the monkeys.

Model features from each image (i.e. the activations of units in a given model layer) were linearly
fit to the neural responses by stochastic gradient descent with a standard L2 loss. Each of the 256
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Figure S1: Comparison of feedforward models and ConvRNNs to single images. (a) Examples
of a single pIT unit’s response to three different images from the held-out validation set. Dashed lines
are the ground truth response, solid lines are the model prediction. The feedforward model is forced
to have the dynamics of a square wave. (b) Correlations of ground truth with predicted responses
across time bins (50 to 250 ms). The temporal correlation is computed for each image and for each
unit. Plotted: the median across units from each array of the median temporal correlation across
single held-out validation images.

units was fit independently. We stipulated that units from each multi-unit array must be fit by features
from a single model layer. To determine which one, we fit the features from the feedforward model
to each time bin of a given unit’s response, averaged across time bins, and counted how many units
had minimal loss for a given model layer. This yielded a mapping from the V4 array to model layer 6,
pIT to layer 7, and cIT/aIT to layer 8. Finally, model features were fit to the entire set of 25 time bins
for each unit using a shared linear model: that is, a single set of regression coefficients was used for
all time bins. The loss for this fitting was the average L2 loss across training images and 25 time bins
for each unit.
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