
A Notation

Table 3: Nomenclature

n ∈ {1 . . . N} number of data points n
m ∈ {1 . . .M} number of inducing variables m
` ∈ {1 . . . L} number of output dimension of the GP `

wn the latent variable corresponding to data point n, w ∈ RDw

xn nth input variable, x ∈ RDx

yn nth output variable, y ∈ RDy

W matrix collecting all the latent variables W = {wn}Nn=1, W ∈ RN×Dw

X matrix collecting all the inputs X = {xn}Nn=1, X ∈ RN×Dx

Y matrix collecting all the observations Y = {yn}Nn=1, Y ∈ RN×Dy

σ2 observation noise

f` function f`(·) evaluated at certain inputs
f(·) collection of GPs, {f`(·)}L`=1

k(· , ·) prior covariance function of the dth GP

Z locations of variational pseudo-inputs
u` evaluations of the `th GP at the pseudo-inputs: u` = {f`(zm)}Mm=1.
U collection: U = {u`}L`=1
m` variational posterior mean u`
S` variational posterior covariance of u`

B Network Architectures

In all neural network setups we apply dropout to the output of the hidden layers. The optimal
dropout rate is found using grid-search over {0.2, 0.1, 0.01, 0.0}. We use the Adam optimizer for
optimization and perform grid-search over {0.01, 0.001, 0.0001} to determine the optimal learning
rate. The biases are initialized to zero and the weights using the Xavier distribution [14].

Heteroscedastic noise modeling on UCI datasets Given the modest size of the UCI datasets we
choose a relatively small encoder and decoder architecture. The encoder has layers of the following
size: Dx +Dy, 50, 100, 50 and 2×Dw. The decoder layers have size Dx +Dw, 10, 50, 50, 10 and
Dy. For this experiment we choose a unidimensional latent variable, Dw = 1. The targets of the
UCI datasets are also 1D. We use the tanh activation function for all hidden layers and the linear
activation function for the final layer.

Density estimation on MNIST In this experiment we follow Wu et al. [29] for the network
architecture. The decoder has 5 fully connected layers of size: Dx +Dw, 64, 256, 256, 256, 1024
and Dy. The tanh activation function is applied to the outputs of the hidden layers and the sigmoid
function on the final one. The encoder’s fully connected layers have size: Dx+Dy, 256, 64, 2×Dw.
We use the tanh activation function for the encoder’s hidden layers and the linear activation function
for the final layer. The inputs are one-hot encoding of the labels, Dx = 10 and Dy = 784.

12



C Inference details

In section 3.2 we follow Hensman et al. [15] and use sparse GPs to approximate the full GP. We
do this by introducing M inducing or pseudo-inputs zm ∈ RDx+Dw and collect them in the matrix
Z = {xm}Mm=1. The inducing outputs u` = f`(Z) are the function f`(·) evaluated at the inducing
inputs. Similarly, we collect the inducing outputs over all dimensions in the matrix U = {u`}L`=1.
We assume a Gaussian prior for the inducing outputs p(u`) = N (0,K) and define a posterior
distribution of the form q(u`) = N (m`,S`). The sparse GP framework assumes u` and f ` to be
jointly Gaussian. We can now write f`(·) conditioned on the inducing outputs u` as

f`(·) |u` ∼ GP
(
k>Z (·)K

−1
ZZ u`, k(·, ·)− k>Z (·)K

−1
ZZ kZ(·)

)
,

where [kZ(·)]m = k(·, zm) and [KZZ]mm′ = k(zm, zm′). Marginalizing with respect to u` ∼
N (m`,S`) leads to the variational posterior q(f`(·))

f`(·) ∼ GP
(
k>Z (·)K

−1
ZZ m`, k(·, ·)− k>Z (·)K

−1
ZZ (KZZ − S`)K

−1
ZZ kZ(·)

)
=: GP(µ`(·), σ2

` (·)).

As both, the variational posterior over the GP and the likelihood, are Gaussian, Lwn (defined in
(3)) can be calculated analytically. We start by using the fact that the likelihood factorizes over the
output dimension Eq(f(·))

[
log p(yn |f(·),xn,wn)

]
=
∑
` Eq(f`(·))

[
log p(yn,l | f`(·),xn,wn)

]
.

We define a single term of the previous sum as L`wn , which can be computed as

L`wn = Eq(f`(·))
[
− 1

2 log(2πσ
2)− 1

2σ2

(
y2n,` + f2n,` − 2 yn,`fn,`

) ]
= − 1

2 log(2πσ
2)− 1

2σ2

(
y2n,` + (σ2

` ([xn,wn])− µ2
`([xn,wn]))− 2 yn,`µ`([xn,wn])

)
.

D Proof of optimality for latent variable posterior

In Section 3.2 we argue that using the optimal free-form distribution q(wn) leads to a tighter lower
bound. The bound for the optimal and Gaussian form q(wn) are, respectively

LGAUSS =
∑

n

{
Eq(wn) Lwn − KL [p(wn)‖p(wn)]

}
−
∑

`
KL [q(u`)‖p(u`)]

LFREE = logEp(W)

{
exp

(∑
n
Lwn −

∑
`

KL [q(u`)‖p(u`)]
)}
.

Starting from LFREE and using Jensen’s inequality, we get

LFREE = logEq(W)

{p(W)

q(W)
exp

(∑
n
Lwn −

∑
`

KL [q(u`)‖p(u`)]
)}

≥
∑

n

{
Eq(wn) Lwn − KL [p(wn)‖p(wn)]

}
−
∑

`
KL [q(u`)‖p(u`)] .

Therefore
log p(Y |X) ≥ LFREE ≥ LGAUSS.

13



E Density estimation on MNIST: complete table

Table 4: Log-likelihoods of the CVAE and GP-CDE model. N is the number of training images per
class. Higher test log-likelihood is better.

CVAE GP-CDE

Fixed σ2 σ2 optimized Fixed σ2 σ2 optimized

N Test Train Test Train σ2
opt Test Train Test Train σ2

opt

2 -129.72 180.97 -1296.63 956.39 0.01378 161.9 242.2 74.01 130.4 0.0303
4 -60.03 178.22 -759.18 956.26 0.01364 195.2 254.2 86.59 160.3 0.0310
8 -31.37 176.76 -616.474 949.83 0.01358 234.1 269.8 124.6 168.2 0.0312
16 -15.50 173.34 -497.15 924.11 0.01382 290.1 305.8 141.5 163.5 0.0303
32 -1.04 161.10 -382.20 800.03 0.01577 452.7 443 131.9 131.7 0.0322
64 18.03 130.78 -227.06 530.40 0.02348 545.2 515.7 141.2 114 0.0342

128 41.94 97.23 76.15 399.78 0.02959 508.3 447 93.6 89.1 0.0364
256 52.17 76.18 218.08 325.72 0.03272 606.2 545 108.1 105.4 0.0378
512 54.48 65.30 244.88 286.38 0.03407 606.7 512 124.2 120.7 0.0388

14



F Additional Figures

Figure 5: Kernel density estimation models, unconditional (top row), and conditioned on the 50
nearest neighbors.

15



Figure 6: MDN. Top row: 5 components. Bottom row: 50 components

16



Figure 7: Five samples from the posterior conditioned on 120 labels randomly chosen from the
training set. The model saw 20 examples of each image. An example image from the data is shown
to the left of each set

17



Figure 8: Five samples from the posterior conditioned on 120 labels randomly chosen from the test
set. The model saw 4 examples of each image. An example image from the data is shown to the left
of each set

18



w=-1.5000 w=-1.1667 w=-0.8333 w=-0.5000 w=-0.1667 w=0.1667 w=0.5000 w=0.8333 w=1.1667 w=1.5000

Figure 9: The mean of the GP mapping conditioned on the 1D latent variable, for a dataset of 100
‘1’s. Top: the analytic solution of Titsias and Lawrence [26]. Middle: our natural gradient approach,
with a step size of 0.1. Bottom: using the Adam optimizer to optimize the variational parameters m
and S. We see that the ordinary gradient approach is prone to getting ‘stuck’ in poor local optima,
due to the difficulty of optimization.

0 250 500 750 1000 1250 1500 1750 2000
iterations

36000

38000

40000

42000

44000

46000

48000

50000

52000

EL
BO

0 250 500 750 1000 1250 1500 1750 2000
iterations

4000000

3000000

2000000

1000000

0

EL
BO

0 250 500 750 1000 1250 1500 1750 2000
iterations

10000

15000

20000

25000

30000

35000

40000

45000

50000

EL
BO

optimal
nat grads
ordinary grads

Figure 10: The training objective for the dataset of 100 ‘1’s. The three plots show the same three
curves with different ranges on the y-axis to highlight the similarities and differences. We can see that
natural gradients provide a striking improvement. See Fig. 9 for the samples at the end of training

19


	Notation
	Network Architectures
	Inference details
	Proof of optimality for latent variable posterior
	Density estimation on MNIST: complete table
	Additional Figures

