Learning to Solve SMT Formulas
Supplementary Material

Mislav Balunovi¢, Pavol Bielik, Martin Vechev
Department of Computer Science
ETH Ziirich
Switzerland
bmislav@ethz.ch, {pavol.bielik, martin.vechev}@inf.ethz.ch

We provide two appendices. Appendix |l|includes in depth descriptions of the algorithms used for
learning and synthesis. Appendix [2]provides two additional experiments - evaluating with time limit
of 10 minutes and the effect of iterative training used by Algorithm [T}

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

1 Additional details on learning and synthesis

Finding most likely strategies As described in Algorithm|[I] a key step of training is a procedure
that finds the top K most likely strategies to solve a given formula (line 4 of Algorithm[I). This
algorithm, shown in Algorithm 2] takes as input a single formula f € F, a model 7 (e.g., a neural
network policy, bilinear model, etc.) and integer K (number of strategies to explore).

During the search we keep a priority queue of tuples (s;,a;,p;) consisting of a state, possible action
and its associated probability, initialized with (sg, €, 1), so denoting initial state. At each step, we
remove the tuple with highest probability from the queue, apply its action to obtain a new state s;- and
update the priority queue with new tuples (s}, a,p;-m(a | s})) for all actions a € Tactics x Params
capturing the possible transitions from s; For practical reasons we approximate the set of all possible
actions (denoted as ACTIONS(s/;, 7)) as follows:

e If we are using the neural network policy, we consider the most likely parameters for each
tactic according to that policy, or

e If we are not using the neural network policy and instead are using models which do not
predict parameters, we consider 20 different parameter configurations for each tactic which
are selected at random before training starts.

As described in Section[d.1] we additionally perform pruning of states (line 9) which can not possibly
lead to an optimal strategy. Finally, we note that in practice we perform the search for batch of
formulas at once in order to leverage parallelization capabilities of our system.

Algorithm 2: Procedure for finding top K strategies

Data: Formula f, Model 7, Number of strategies to sample K
Result: Top K most likely strategies according to the model
so = (f, 6)

S=0

queue = PRIORITY_QUEUE()

queue.PUSH(Sg, €, 1)

forj=1:Kdo

(s5,a;,p5) = queue.POP()

A U B W N =

s BEN s > State s is obtained by applying action a; in state s;
8 S« SU{s).strategy} > Strategy is extracted from state s and added to S
9 if = PRUNED(s;-) then

10 for a c ACTIONS(S;-,) do

1 L | queue.PUSH(s}, a, p; - m(a | s7))

~

12 return S

Building the training dataset In Section[d.1|we described how we construct the dataset used to
train the neural network policy. Here we illustrate the process on a concrete example. Let us consider
an example where the model explored seven different states as shown in Fig. @] (left). Further, in
addition to the visited states we also keep information about the cumulative runtime required to
compute the state (starting from the initial state s¢) as well as whether the state successfully solves
the formula. Then, according to the procedure described in Section[4.1] the dataset is constructed by
generating one training sample {(c(¢;), p;), s;) for each non-terminal state that eventually succeeded
in solving the formula. In our example, this corresponds to generating one training sample for states
s1, So and s3 as shown in Table E] where we use € to denote that no tactic was applied so far. Note that
for state s; there are two possible tactics which lead to solving the formula (simplify(flat = true)
and bit_blast) and therefore we assign non-zero target probability to both of these tactics. However,
the best strategies in respective subtrees have different runtimes hence probabilities assigned to the
corresponding tactics are different as shown in Table[d] Finally, in case both states s and s7 would not
solve the formula, it would mean that no training example is generated for state s3 (since we generate
training samples only for non-terminal states that eventually succeeded in solving the formula).

r(s4) =10
r(ss) = TIMEOUT
r(sg) = TIMEOUT
r(s7) =40

Figure 4: Example with all states visited during solving a formula. Terminal states are colored blue if
formula was solved and red otherwise. Runtime for each terminal state is shown on the right.

State

Target tactics

Target parameters

S1 = (§01, 6)

Pr(simplify) =0.8

flat = true

Pr(bit_blast) =0.2 -
S2 = (2, simplify(flat = true)) Pr(solve_ eqs) =1 -
(sa

s3 = (3, bit_blast) Pr(sat) = scc = false

Table 4: Dataset constructed from the example shown in Fig.

Reducing the set of strategies As the set of synthesized strategies can be large we perform
synthesis (described in Section [4.2)) only on a subset set of strategies. Intuitively, these strategies
should be: strong individually (i.e. each strategy should be able to solve large number of formulas
alone) and strong together (i.e. number of formulas solvable by at least one of the strategies should
be large). In order to trade-off these two conditions we use greedy procedure shown in Algorithm 3]

We proceed in an iterative manner, choosing one new strategy at every step. In every iteration, strategy
receives a score for every formula that it can solve. Score is equal to A for every formula which was
previously unsolved, and 1 - A if formula was already solved (by another previously selected strategy).
One can notice that if A = 1 algorithm will try to greedily maximize the number of formulas that
strategies can solve in the union. If A = 1/2 algorithm will simply select & strategies which can solve
the most formulas individually. In our experiments we treat A as a hyperparameter and optimize it on
a validation set of formulas. Concretely, we set A to 0.5, 0.99, 0.75, 0.95, 0.7 for Sage2, AProVE,
leipzig, core and hycomp respectively.

Algorithm 3: Greedy strategies selection

Data: Set of formulas F, Strategies s1, ..., S, weight A € [0, 1]

Result: Set S consisting of & selected strategies

Initialize Spest = 0

Initialize A = F,B =)

for iter =1: k do

fori=1:mdo

if S; ¢ Sbest then

Calculate A; = subset of formulas in A which strategy s; can solve
Calculate B; = subset of formulas in B which strategy s; can solve
Define score; = AA;| + (1 — A)|B;]

Add strategy s; with highest corresponding score; to Spest
A=A\A4;
| B=BUA,;

2 Additional experiments

Evaluation with 10 minute time limit The 10 second time limit in our experiments was selected
for practical purposes - it is large enough to solve 83.3% of the formulas and to learn strategies
in a reasonable time. To check how well our strategies generalize to higher time limits we kept
the 10 seconds time limit for training, but used 10 minutes for evaluation. We show results from
this experiment in Table [6] With the 10 minute time limit, 88.1% of formulas are solved by both
methods. Crucially, our strategies are still able to solve 8.6% more formulas than Z3. In addition, the
speedups over Z3 are comparable (and even slightly higher) to speedups achieved with 10 second
time limit. For comparison, Table [2{ shows the results of evaluating the same strategies on the same
set of formulas using a 10 second time limit. Note since the experiments take significantly longer to
run we evaluated them only on a subset of the dataset.

Evaluation on larger set of formulas For completeness, we also include the results of the best
strategies synthesized by our models on the full set of formulas in our test set using the 10 second
time limit. Results are shown in Table[5] The set of formulas is the same as in Table 3] (as opposed to
Table [2]and Table [l which use a subset of the formulas).

Number of basic operations and runtime As stated in Section] we use the number of basic
operations as a deterministic measure of the amount of work required to solve a formula. In Table[7}
we show a comparison between the number of operations and wall clock time for the experiments in
Table[6] Note that wall clock time is often imprecise. Especially for formulas which can be solved
very fast, wall clock time mostly accounts for initialization of the solver and overhead of the system.

Effect of iterative training In Fig.[5|we show the improvement of our neural network policy as it
is continuously retrained using DAgger. We perform a total of 10 stages of DAgger, retraining the
model after every stage. In every stage, the current model is used to search for the best strategies, as
described in Algorithm 2]

For the purpose of this experiment, we save the models after 2, 4, 6, 8 and 10 stages of DAgger. Then
we load each model again and use it to search for the best strategies on the unseen formulas from the
test set. We run all of the models for 100 iterations without retraining (which means that each model
predicts 100 best strategies for every formula).

One can notice that later models tend to outperform earlier models, thus justifying the increased
number of training stages. The only exception in this case are models trained after 6 and 8 stages
where an earlier model performs better by a small margin. This can be explained by the stochastic
nature of the training procedure.

Tactics For completeness, we also include the set of tactics and parameters used in our experiments.
Tactics used for Sage?2 and core, both in QF_BV logic are shown in Table@ Tactics for hycomp
in QF_NRA logic are in Table[9] Finally, tactics for leipzig and AProVE in logic QF_NIA are in
Table[I0} For every tactic we list the parameters that we used (all parameters not listed here are set to
the default value) as well as their types.

Table 5: Comparison of best strategy found by any of our models (Section against Z3.

Formulas solved Speedup percentile

Both OnlyZ3 Only Learned None 90" 501 10t
leipzig 57 0 3 8 5.8x 60.7x 191.5x
Sage2 2531 0 2402 1511 12x 2.5x 22.0x
core 270 0 0 0 1.2x 1.3x 1.9%x
hycomp 1633 1 210 138 1.0x 2.0x 4.3x
AProVE 1397 3 221 91 4.0x 89.6x 988.7x
Total 56.2% 0.1% 27.0% 16.7% 2.6x 312x 241.7x

Table 6: Comparison of best strategy found by any of our models against Z3 with 10min time limit.

Formulas solved Speedup percentile
Both OnlyZ3 Only Learned None 10" 50™ 90t
leipzig 63 0 1 4 35x 439x 183.2x
Sage?2 630 0 138 32 1.3x 6.5x% 199.6x
core 270 0 0 0 1.2x 1.3x 1.9%
hycomp 298 0 10 17 1.0x 2.0x 40.1x
AProVE 306 0 3 6 39x 89.3x 1301.5x
Total 88.1% 0.00% 8.6% 33% 2.2x 28.6x 345.3x

Table 7: Comparison of speedup in number of operations and wall clock time.

Speedup - number of operations Speedup - Wall clock time
PlO P50 Pgo Mean P10 P50 Pg() Mean

leipzig 3.5x 439x 183.2x 71.6x 03x 2.3x 7.3x% 3.5%
Sage2 1.3x 6.5x% 199.6x 62.7x 12x 48x T725x 37.8x
core 1.2x 1.3x 1.9% 1.4x 0.5x 0.8x 1.3x 0.9x%
hycomp 1.0x 2.0x 40.1x 519x 09x 14x 65.7x 25.0x
AProVE 39x 89.3x 1301.5x 5199x 09x 6.4x 120.8x 45.8x

Total 22x 28.6x 3453x 141.5x 08x 3.1x 535x 22.6X

e} je} e} —
W= D oo e}

Performance

o

0.0
0 20 40 60 80 100

Number of sampled strategies

Figure 5: Performance of neural network after 2, 4, 6, 8 and 10 retraining iterations.

Table 8: Tactics and parameters used for
QF_BV logic (Sage2 and Core benchmarks).

Table 9: Tactics and parameters used for
QF_NRA logic (hycomp benchmark).

Tactics Parameters Type Tactics Parameters Type
elim_and bool elim_and bool
simplify blast_distinct bool simplify blast_distinct bool
push_ite_bv bool som bool
som bool hi_div0 bool
pull_cheap_ite bool hoist_mul bool
hoist_mul bool local_ctx bool
local_ctx bool flat bool
flat bool smt - -
smt - - bit_blast - -
bit_blast - - solve_eqgs - -
bvl_blast - - - -
solve_egs - - gfnra_nlsat inline_vars bool
aig aig_per_assertion bool factor bool
gfnra_nlsat - - seed int
sat - - max_bv_sharing - -
max_bv_sharing - - propagate_values push_ite_bv bool
reduce_bv_size - - elim uncnstr - -
purify_arith - - nla2bv nla2bv_max_bv_size int
propagate_values push_ite_bv bool ctx_simplify - -

elim_uncnstr
ackermannize_bv

Table 10: Tactics and parameters used for QF_NIA logic (1eipzig and AProVE benchmarks).

Tactics Parameters Type

elim_and bool

simplify som bool

blast_distinct bool

flat bool

hi_div0 bool

local_ctx bool

hoist_mul bool

propagate_values push_ite_bv bool
smt - -
bit_blast - -
solve_eqgs - -
qfnra_nlsat - -
max_bv_sharing - -
elim_uncnstr - -
nla2bv nla2bv_max_bv_size int

ctx_simplify

	Additional details on learning and synthesis
	Additional experiments

