
Appendices

1 Appendix 1: Tiger Problem Example in Details

Due to limited space, we only give general results in the main paper. In this appendix, we try to
illustrate the learning process of our algorithm using the compact tiger problem in more details.
For illustrative purpose, we assume there are two agents in the settings, and the modeling agent i’s
strategy level is 1, which means the other agent j is a level-0 POMDP.

Figure 1: Optimal policies denoted as FSCs of: (a) θj1 =< 0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10 >,
(b) θj2 = 〈 0.5, 1, 0.5, 0.95, 0.5, -1, -10, 10 〉, and (c) θj3 = 〈0.5, 0.66, 0.5, 0.85, 0.5, 10, -100, 10〉.

We run experiments with agent j acting according to three different policies shown in Figure 1. In
each experiment, we compare the performance of three different modeling agents: a level-1 I-POMDP,
a level-2 I-POMDP and a subintentional model (fictitious play). For brevity, we focus on results of
learning models of the level-1 agent whose policy is in Figure 1 (a), but give an comparison for all of
them in Figure 4.

These three particular opponents are chosen to demonstrate the learning ability of our algorithm. The
aim of the first experiment is trying to learn models of agent j who is modeling his opponent i using
a no-information model. As shown in Figure 1(a), agent j’s actual policy, after normalizing over i’s
uniform actions, is equivalent to a POMDP policy that looks for three consecutive growls from the
same direction and then opens the opposite door. The second experiment involves a POMDP agent j
equipped with high listening accuracy of 0.95 and small penalty of -10 for encountering the tiger,
i.e. agent j alternately opens doors and listens as shown in Figure 1(b). And the third experiment
involves a simple POMDP agent j who always listens since the listening penalty now equals the
reward, i.e. 10, as shown in Figure 1(c). One can view the difficulties of learning these three agents’
models (θj1 , θj2 , and θj3 ) as relatively hard, medium, and easy, since the policy difficulties decrease
in these experiments. Meanwhile, more possible values of model parameters can be learned from θj1
to θj2 to θj3 , since there are more possible models which can generate the same policy.

For this particular experiment, we want to learn relatively complicated intentional models of agent j:
θj1 = 〈0.5, 0.67, 0.5, 0.85, 0.5, -1, -100, 10〉, which assumes the other agent’s (i.e. i’s) actions are
drawn from a uniform distribution. Equivalently, agent j’s actual policy, as shown in Figure 1 (a), is
to look for three consecutive growls from the same direction and then open the opposite door. For
this particular experiment, we assume i always listens, and we simulate i’s observation history for
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Figure 2: Histograms of sample values of assigned uniform priors (top row) and learned posterior
distributions (bottom raw) over parameters of model θj1 = 〈0.5, 0.67, 0.5, 0.85, 0.5, -1, -100, 10〉 in
Figure 1 (a). The modes of the posteriors are close to the true model parameters.

the sake of firstly verifying the correctness of our algorithm, excluding the impact of uncertainties
in the transition function and of the hearing ability. The simulated observation history is as follows,
which are exactly three growls from the same direction and then a creak caused by j’s door-opening
action: {GL,S GL,S GL,S GL,CR GL,S GL,S GL,S GR,CR GL,S GL,S GL,S GR,CR GL,S GL,S
GL,S GR,CR GR,S GR,S GR,S GR,CL GR,S GR,S GR,S GR,CL GR,S GR,S GR,S GR,CL GR,S
GR,S GR,S GR,CL GR,S GR,S GR,S GR,CL GR,S GR,S GR,S GL,CL GL,S GL,S GL,S GR,CR
GL,S GL,S GL,S GR,CR GR,S GR,S}

To exclude the potential impacts from informative prior belief distributions, we assign uninformative
uniform priors to each parameter, samples of which are shown in the top row of Figure 1. These
uniform priors are: {b0j ,pT1, pT2, pO1, pO2} ∼ U(0, 1)5, pR1, pR2, pR3 ∼ U(−200, 200)3. After
50 time steps, the samples converge to posterior distributions over agent j’s model parameters, the
results are given in the bottom row of Figure 2. Since the parameter space is 8-dimensional, here we
show the marginal distributions of each parameter in histograms. We can see that most of the samples
are centered around the true parameter values. We give the KL-divergence plot in Figure 3.

Figure 3: Learning quality measured by KL-divergence improves as the number of particles increases.
It measures the difference between the ground truth of the model parameters and the learned parame-
ters, as defined in Equation 1 and 2. The vertical bars are the standard deviations. Fixed number of
bins (50) are used to compute the discrete probabilities.

In Figure 3 we show that the learning quality of these three experiments in terms of the KL-divergence.
It measures the difference between the ground truth of the model parameters and the learned posterior
distributions by giving the relative entropy of the truth with respect to the posteriors. We define the
KL-divergence as the sum of independent KL-divergence of each model parameter dimension, as
shown in Equation 1.
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Dkl[b(θ)||b̃(θ)] =
D∑

d=1

Dkl[b(θd)||b̃(θd)] (1)

where b(θ) denotes the true model parameters and b̃(θ) denotes the sampled posterior distribution, θ
is a model represented by 8D parameters, and d = 1:D is the parameter dimension.

For each parameter dimension d, the KL-divergence Dkl[b(θd)||b̃(θd)] reduces to − log[b̃(θd ∈
Bintruth)] as shown in Equation 2.

Dkl[b(θd)||b̃(θd)] =−
∑
bin

b(θd) log(
b̃(θd)

b(θd)
) (2)

=− log[b̃(θd ∈ Bintruth)]

=− log[
count(θd ∈ Bintruth)

N
]

since

b(θd) =

{
1 ,when θd ∈ Bintruth,

0 , otherwise.
(3)

where Bintruth is the bin containing the ground truth of the model parameter, N is the total number
of samples.

Figure 4: Performance comparisons in terms of prediction error rate vs observation length for
θj1 = 〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉

Because agent i is now able to learn j’s likely models, it should be capable of predicting j’s actions
relatively accurately. Therefore, we tested the performance of our algorithm in terms of prediction
accuracy towards j’s actions. For conciseness, we show the average prediction error rates for all
three experiments in Figure 4. We compared the results with other modeling approaches, such as a
frequency-based (fictitious play) approach, in which agent j is assumed to choose his action according
to a fixed but unknown distribution, and a no-information model which treats j’s actions as uniform
noise. The shown results are averaged plots of 10 random runs, each of which has 50, 30 and 30 time
steps respectively. It shows that the intentional I-POMDP approach has significantly lower error rates
as agent i perceives more observations. The no-information model assumes j’s actions are drawn
from a uniform distribution, therefore has a fixed high error rate. The frequency based approach has
certain learning ability but is not sophisticated enough to be able to model a rational agent, therefore
its performance falls in between the other two.

In Figure 5, we show a brief demonstration of learning the first model of agent j: θj1 . Since the
original parameter space is 8-dimensional, we use the principal component analysis (PCA) to reduce
it to 2D and plot it out as a 3D histogram, as shown in Figure 5. We see that model samples in the
cluster gradually concentrate to the center, which is the true model: θj1 = 〈0.5, 0.67, 0.5, 0.85, 0.5,
-1, -100, 10〉. At the moment, the mean value of this cluster, θ̃j1 = 〈0.49, 0.69, 0.49, 0.82, 0.51, -0.95,
-99.23, 10.09〉, is very close to the actual model.
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Figure 5: Histograms of all model samples at various time steps during learning, after projecting from
8D to 2D, show that samples are gradually concentrating to the center of the cluster which represents
the true model.
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