
A Proof of optimal transitions

This is the proof of Proposition 1.

Proof. The base case when t = 0 is trivially true by choice of initial distribution. We now look at
the case when t > 0. Taking the functional derivative of the objective defined by Equation 4, along
with a Lagrange multiplier to satisfy the second axiom of probability (both q and r sum to one), with
respect to the conditionals q and r yields:

q⇤t (zt|zt�1) =
ft(zt)r⇤t (zt�1|zt)

Zq
t (zt�1)

; r⇤t (zt�1|zt) =
ft�1(zt�1)q⇤t (zt|zt�1)

Zr
t (zt)

(7)

where we take q(zt�1) = ft�1(zt�1), assuming it’s optimal, and Z(·)’s are normalizing constant
given the argument, and are proper distributions since the numerators above are both proper joint
probabilities. Taking the product of the two equations yields

ft(zt)ft�1(zt�1)

Zr
t (zt)Z

q
t (zt�1)

= 1

Thus Zr
t (zt) = ft(zt) and Zq

t (zt�1) = ft�1(zt�1) by marginalization. By definition and the
induction assumption, the resulting mariginal of the optimal forward transition is:

q⇤t (zt) =

Z

zt�1

ft�1(zt�1)q
⇤
t (zt|zt�1) d zt�1

=

Z

zt�1

r⇤t (zt�1|zt)Zr
t (zt) d zt�1 = ft(zt)

Similarly, the resulting marginal of the optimal forward transition is:

r⇤t�1(zt�1) =

Z

zt

ft(zt)r
⇤
t (zt�1|zt) d zt

=

Z

zt

q⇤t (zt|zt�1)Z
q
t (zt�1) d zt = ft�1(zt�1)

Since both the base case and inductive step are true, by mathematical induction, q⇤t (zt) = r⇤t (zt) =
f(zt) for all t 2 [0, T ].

This is the proof of Corollary 1.

Proof. Due to Equation 7, we can compute the optimal transition ratio as r⇤t (zt�1|zt)
q⇤t (zt|zt�1)

= ft�1(zt�1)
ft(zt)

.
We can expand Equation 3 as follows:

Eq(zT ...z0)


log

p(x, zT )r⇤T (zT�1|zT )...r⇤T�1(z0|z1)
q⇤T (zT |zT�1)q⇤T�1(zT�1|zT�2)...q0(z0)

�

= Eq⇤(zT ...z0)


log p(x, zT ) +

r⇤T (zT�1|zT )
q⇤T (zT |zT�1)

+ ...+
r⇤1(z0|z1)
q⇤1(z1|z0)

� log q0(z0)

�

= Eq⇤(zT ...z0)


log p(x, zT ) +

fT�1(zT�1)

fT (zT )
+ ...+

f0(z0)

f1(z1)
� log q0(z0)

�

= Eq⇤(zT ...z0)


log

p(x, zT )fT�1(zT�1)...f0(z0)

fT (zT )fT�1(zT�1)...q0(z0)

�
= E


log

p(x, zT )

p(zT |x)

�
= log p(x)

since fT (zT ) = p(zT |x) and q0(z0) = f0(z0).
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B Specification of the toy energy functions

Visualization of the toy energy functions, E , are presented in Figure 5. Below are the corresponding
formulas.

Figure 5: From left to right top to bottom, the energy functions (a) to (f)

Table 2: Formulas of toy energy functions
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C Estimating DKL(qT (zT )||fT (zT ))

Similar to Burda et al. (2016) we upper bound the negative KL:

EqT (zT )[log fT (zT )� log qT (zT )]

= EqT (zT )[log fT (zT )� log

Z

z<T

qT (zT |z<T )q(z<T ) d z<T ]

= E[log fT (zT )� log

Z

z<T

r(z<T |zT )
qT (zT |z<T )q(z<T )

rT (z<T |zT )
d z<T ]

 EqT (zT )[log fT (zT )� ErT (z<T |zT )[log
KX

i=1

1

K

qT (zT |z<T,i)qT (z<T,i)

rT (z<T,i|zT )
]]

Moreover, if w = qT (z)
rT (z<T |zT ) is bounded, then by the strong law of large number, 1

K

PK
i=1 wi

converges almost surely to Er[
qT (zT ,z<T )
r(z<T |zT ) ] = qT (zT ). That is, the gap is closed up by using large

number of samples of z<T generated by rT (z<T |z). In our case, T = 5 or 10, so both qT (zT |z<T )
and rT (z<T |ZT ) further factorize as product of conditional transitions. The bound is tight with
around 100 samples in our examples. We use 2000 samples simply to reduce variance to estimate the
KL to evaluate the learned qT (zT ).
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D Visualization of robustness to beta-annealing

Figure 6: Learned marginals qt(zt) at different layers (T = 10) trained with beta-annealing. First
row: HVI-ELBO. Second row: HVI-AVO.

We further simulate the scenario of VAE training in which beta-annealing of the objective is applied
to encourage the approximate posterior to be more deterministic. Since there is no concept of prior
distribution in the case of energy function, we only decrease the weight of all entropy and cross-
entropy terms of the transition operators. The annealing coefficient � is initially set to be 0.01 and
annealed back to 1.0 linearly throughout 80% of the training time (2500 updates). We see in Figure 7
that HVI-ELBO collapses to only one mode, and HVI-AVO remains robust even in the face of an
annealing scheme that discourages exploration.

Figure 7: Learned marginals qt(zt) at different layers (T = 10) trained with beta-annealing. First
row: DSF-ELBO. Second row: DSF-AVO.

The same can be found with deterministic transitions, i.e. normalizing flows. We experimented with
the Deep Sigmoidal Flows, a universal change of variable model proposed by Huang et al. (2018),
and found that problem of lack of exploration was worsened (hypothetically due to lack of noise
injection in the transition operators) and can be remedied by AVO as well.

E Discussion on Table 1

It is important to note that the results in Salimans et al. (2015) are not directly comparable to ours
due to different architectures. The architecture we used was from Tomczak and Welling (2016), who
provide a baseline for using Householder flow, with an estimate of 87.68 on negative log likelihood
(NLL) using 5000 samples for importance weighted lower bound (whereas we use 1000). Tomczak
and Welling (2017) further experimented with inverse autoregressive flow (IAF) with an estimate of
86.70 on NLL, and convex combination of IAFs yield an NLL of 86.10. We showed that our AVO
can improve the performance of HVI from 87.62, similar to 21 Householder flow, to 86.06, which
is better than all the abovementioned flow based methods applied to the same encoder and decoder
architecture.
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