
A Proof of Theorem 1

Before we prove the Theorem, we present an auxiliary Lemma, the proof of which can be found in Appendix F.

Lemma 3. Let ✓̂ be the minimizer of f(✓). Then for any t, ⌫ 2 [0,1), ✓(t), ✓(⌫) satisfy

krf(✓(t))k22  e
�2mtkrf(✓0)k22

krf(✓(⌫))k22  1

(m⌫ + 1)2
krf(✓0)k22.

We are now ready to prove our main Theorem. First note that the trajectory of ✓(⌫) is given by the following
ODE

✓̇(⌫) :=
d

d⌫
✓(⌫) = �

⇥
⌫r2

f(✓(⌫)) + I
⇤�1 rf(✓(⌫)).

This follows from the observation that rf(✓(⌫)) + 1
⌫ (✓(⌫)� ✓0) = 0. To simplify the notation in the proof,

we often suppress the dependence of ⌫ on t and just use ⌫ instead of ⌫(t). We first derive an upper bound for
d
dtk✓(t)� ✓(⌫)k2. Let

H(⌫) =
⇥
⌫r2

f(✓(⌫)) + I
⇤�1

, =
m

M
.

We have
d

dt
k✓(t)� ✓(⌫)k2 = 2

⌧
✓̇(t)� 1


e
cMt

✓̇(⌫), ✓(t)� ✓(⌫)

�
(4)

= �2

⌧
rf(✓(t))� 1


e
cMt

H(⌫)rf(✓(⌫)), ✓(t)� ✓(⌫)

�

Let G(⌫) = 1
e

cMt
H(⌫). Note that G(⌫) is PSD whose the minimum and maximum eigenvalues satisfy

�min(G(⌫)) � c

1 + (c� 1)e�cMt
,

�max(G(⌫))  c



1
1 + (c� 1)e�cMt

.

We now obtain an upper bound for the RHS of Equation (4). We rewrite the RHS as

d

dt
k✓(t)� ✓(⌫)k2 = �2 hrf(✓(t))�rf(✓(⌫)), ✓(t)� ✓(⌫)i| {z }

T1

+2 h(G(⌫)� I)rf(✓(⌫)), ✓(t)� ✓(⌫)i| {z }
T2

.

(5)
From strong convexity of f , we have the following lower bound for T1

T1 � mk✓(t)� ✓(⌫)k2

From Lemma 3 we have the following upper bound for T2

T2  kG(⌫)� Ikkrf(✓(⌫))kk✓(t)� ✓(⌫)k 
✓
krf(✓0)k
m⌫(t) + 1

◆
kG(⌫)� Ikk✓(t)� ✓(⌫)k

Note that kG(⌫)� Ik can be upper bounded as

kG(⌫)� Ik  max{|1� �min(G(⌫))|, |1� �max(G(⌫))|}

 max
n���1� c

1+(c�1)e�cMt

���, c


1
1+(c�1)e�cMt � 1

o

= c


1
1+(c�1)e�cMt � 1,

where the last equality follows from our choice of c. Letting the above upper bound be �G, we get the following
bound for T2

T2  �G

✓
krf(✓0)k
m⌫(t) + 1

◆
k✓(t)� ✓(⌫)k

Substituting these bounds in Equation (5) gives us

d

dt
k✓(t)� ✓(⌫)k2  �2mk✓(t)� ✓(⌫)k2 + 2�G

✓
krf(✓0)k
m⌫(t) + 1

◆
k✓(t)� ✓(⌫)k.

We now solve the above ODE. Let g(t) = k✓(t)� ✓(⌫)k. The above equation can be rewritten as

d

dt
g(t)2  �2mg(t)2 +

2�G

m⌫(t) + 1
krf(✓0)kg(t)
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= �2mg(t)2 +
2�G

1
c (e

cMt � 1) + 1
krf(✓0)kg(t)

2�G
1
c (ecMt�1)+1

can be rewritten as

2�G
1
c (e

cMt � 1) + 1
=
⇣
c


� 1 + (1� c)e�cMt

⌘ 2ce�cMt

(1 + (c� 1)e�cMt)2
.

This gives us the following upper bound for the ODE

d

dt
g(t)2  �2mg(t)2 +

⇣
c


� 1 + (1� c)e�cMt

⌘ 2ce�cMt

(1 + (c� 1)e�cMt)2
krf(✓0)kg(t)

Ignoring the trivial solution g(t) = 0, we can rewrite the above ODE as

d

dt
g(t)  �mg(t) +

⇣
c


� 1 + (1� c)e�cMt

⌘
ce

�cMt

(1 + (c� 1)e�cMt)2
krf(✓0)k

Solving the ODE with the initial condition g(0) = 0, gives us the following upper bound for g(t)1

g(t) = k✓(t)� ✓(⌫)k  krf(✓0)k2
m

✓
e
�mt +

c

1� c� ecMt

◆
.

A.1 Other Relations

Theorem 11. Let ✓̂ be the minimizer of f(✓). Let  = m/M and let c be any constant such that
1+
2  c  1.

Moreover, let the regularization penalty ⌫ and time t be related through the relation ⌫(t) = 1
cM

�
e
cMt � 1

�
.

Suppose GD is started at ✓0. Then

k✓(t)� ✓(⌫(t))k2  krf(✓0)k2
m

✓
e
�mt �

c


ecMt + c
 � 1

◆
.

Proof of Theorem 11. The proof follows along similar lines as the proof of Theorem 1. We have
d

dt
k✓(t)� ✓(⌫)k2 = 2

D
✓̇(t)� e

cMt
✓̇(⌫), ✓(t)� ✓(⌫)

E
(6)

= �2
D
rf(✓(t))� e

cMt
H(⌫)rf(✓(⌫)), ✓(t)� ✓(⌫)

E

Let G(⌫) = e
cMt

H(⌫). G(⌫) is a PSD matrix whose the minimum and maximum eigenvalues satisfy

�min(G(⌫)) � c

1 + (c� 1)e�cMt
,

�max(G(⌫))  c



1
1 + ( c

 � 1)e�cMt
.

We now obtain an upper bound for the RHS of Equation (6). We rewrite the RHS as
d

dt
k✓(t)� ✓(⌫)k2 = �2 hrf(✓(t))�rf(✓(⌫)), ✓(t)� ✓(⌫)i| {z }

T1

+2 h(G(⌫)� I)rf(✓(⌫)), ✓(t)� ✓(⌫)i| {z }
T2

.

(7)
From strong convexity of f , we have the following lower bound for T1

T1 � mk✓(t)� ✓(⌫)k2

From Lemma 3 we have the following upper bound for T2

T2  kG(⌫)� Ikkrf(✓(⌫))kk✓(t)� ✓(⌫)k 
✓
krf(✓0)k
m⌫(t) + 1

◆
kG(⌫)� Ikk✓(t)� ✓(⌫)k

kG(⌫)� Ik can be upper bounded as

kG(⌫)� Ik  max{|1� �min(G(⌫))|, |1� �max(G(⌫))|}

 max
n���1� c

1+(c�1)e�cMt

���, c


1
1+( c

�1)e�cMt � 1
o

= c


1
1+( c

�1)e�cMt � 1,

1To very the above bound, one can plugin the bound in the ODE.
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where the last equality follows from our choice of c and some simple algebra. Letting the above upper bound be
�G, we get the following bound for T2

T2  �G

✓
krf(✓0)k
m⌫(t) + 1

◆
k✓(t)� ✓(⌫)k

Substituting these bounds in Equation (5) gives us

d

dt
k✓(t)� ✓(⌫)k2  �2mk✓(t)� ✓(⌫)k2 + 2�G

✓
krf(✓0)k
m⌫(t) + 1

◆
k✓(t)� ✓(⌫)k.

We now solve the above ODE. Let g(t) = k✓(t)� ✓(⌫)k. The above equation can be rewritten as

d

dt
g(t)2  �2mg(t)2 +

2�G

m⌫(t) + 1
krf(✓0)kg(t)

= �2mg(t)2 +
2�G


c (e

cMt � 1) + 1
krf(✓0)kg(t)

�G

c (ecMt�1)+1

can be rewritten as

�G

c (e

cMt � 1) + 1
=
⇣
c


� 1 +

⇣
1� c



⌘
e
�cMt

⌘ c
e

�cMt

�
1 +

�
c
 � 1

�
e�cMt

�2 .

This gives us the following upper bound for the ODE

d

dt
g(t)2  �2mg(t)2 +

⇣
c


� 1 +

⇣
1� c



⌘
e
�cMt

⌘ 2 c
e

�cMt

�
1 +

�
c
 � 1

�
e�cMt

�2 krf(✓0)kg(t)

Ignoring the trivial solution g(t) = 0, we can rewrite the above ODE as

d

dt
g(t)  �mg(t) +

⇣
c


� 1 +

⇣
1� c



⌘
e
�cMt

⌘ c
e

�cMt

�
1 +

�
c
 � 1

�
e�cMt

�2 krf(✓0)k

Solving the ODE with the initial condition g(0) = 0, gives us the following upper bound for g(t)

g(t) = k✓(t)� ✓(⌫)k  krf(✓0)k2
m

✓
e
�mt �

c


ecMt + c
 � 1

◆
.

B Proof of Theorem 2

We first derive upper bounds for k✓(t) � ✓̂k2, k✓(⌫(t)) � ✓̂k2 and use them to obtain an upper bound for
k✓(t)� ✓(⌫(t))k2.

Note that since f is strongly convex, the following holds for any ✓

mk✓ � ✓̂k2  krf(✓)k2.

From Lemma 3 we know that the following inequalities hold for any t, ⌫

krf(✓(t))k2  e
�mtkrf(✓0)k2, krf(✓(⌫))k2  1

(m⌫ + 1)
krf(✓0)k2.

Combining the results from Lemma 3 with the previous inequality, we get

k✓(t)� ✓̂k2  e
�mt

m
krf(✓0)k2, k✓(⌫(t))� ✓̂k2  1

m (m⌫(t) + 1)
krf(✓0)k2

So we have the following upper bound for k✓(t)� ✓(⌫(t))k2

k✓(t)� ✓(⌫(t))k2  1
m

✓
e
�mt +

1
m⌫(t) + 1

◆
krf(✓0)k2

 1
m

✓
e
�mt +

c

1� c+ ecMt

◆
krf(✓0)k2.
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C Proof of Theorem 3

The proof proceeds along the lines of Theorem 1. Before we prove the Theorem, we present an auxiliary Lemma,
the proof of which can be found in Appendix F.

Lemma 4. Let ✓̂ be the minimizer of f(✓). Then for any ⌫ 2 [0,1), ✓(⌫) satisfies

D�(✓(⌫), ✓0)  D�(✓̂, ✓0).

For any t 2 [0,1), ✓(t) satisfies

D�(✓̂, ✓(t))  D�(✓̂, ✓0).

This shows that the entire optimization and regularization paths lie in a region where � is smooth with smoothness

parameter �.

Lemma 5. Let ✓̂ be the minimizer of f(✓). Then for any ⌫ 2 [0,1), ✓(⌫) satisfies

krf(✓(⌫))k2 
✓

�

m⌫ + �

◆2

krf(✓0)k2.

We now prove our main Theorem. To simplify the notation, we often suppress the dependence of ⌫ on t and just
use ⌫ instead of ⌫(t). We first derive an upper bound for d

dtk✓(t)� ✓(⌫)k2. Let

H(⌫) =
⇥
⌫r2

f(✓(⌫)) +r2
�(✓(⌫))

⇤�1
, =

m

M
.

We have
d

dt
k✓(t)� ✓(⌫)k2 = 2

⌧
✓̇(t)� �

↵

1

e
cMt/↵

✓̇(⌫), ✓(t)� ✓(⌫)

�
(8)

= �2

⌧
r2

�(✓(t))�1rf(✓(t))� �

↵

1

e
cMt/↵

H(⌫)rf(✓(⌫)), ✓(t)� ✓(⌫)

�

Let G(⌫) = �
↵

1
e

cMt/↵
H(⌫). We rewrite the RHS of Equation (8) as

d
dtk✓(t)� ✓(⌫)k2 = �2

⌦
r2

�(✓(t))�1 (rf(✓(t))�rf(✓(⌫))) , ✓(t)� ✓(⌫)
↵

| {z }
T1

+2
⌦�
G(⌫)�r2

�(✓(t))�1�rf(✓(⌫)), ✓(t)� ✓(⌫)
↵

| {z }
T2

(9)

From strong convexity of f , we have the following lower bound for T1

T1 � m

�
k✓(t)� ✓(⌫)k2.

From Lemma 5 we have the following upper bound for T2

T2  kG(⌫)�r2
�(✓(t))�1kkrf(✓(⌫))kk✓(t)� ✓(⌫)k

 kG(⌫)r2
�(✓(t))� Ikkr2

�(✓(t))�1kkrf(✓(⌫))kk✓(t)� ✓(⌫)k

 1
↵

⇣
�

m⌫(t)+�

⌘
krf(✓0)kkG(⌫)r2

�(✓(t))� Ikk✓(t)� ✓(⌫)k

Note that G(⌫)r2
�(✓(t)) is a PSD matrix. Its minimum and maximum eigenvalues satisfy

�min(G(⌫)r2
�(✓(t))) � c

1 + (↵� c� 1)e�cMt/↵
,

�max(G(⌫)r2
�(✓(t)))  �

↵

c



1

1 + (c� 1)e�cMt/↵
.

Using this, we can upper bound kG(⌫)r2
�(✓(t))� Ik as

kG(⌫)r2
�(✓(t))� Ik  max{|1� �min(G(⌫)r2

�(✓(t)))|, |1� �max(G(⌫)r2
�(✓(t)))|}

 max

⇢���1� c
1+(↵

� c�1)e�cMt/↵

���, �
↵

c


1
1+(c�1)e�cMt/↵ � 1

�

= �
↵

c


1
1+(c�1)e�cMt/↵ � 1,
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where the last equality follows from our choice of c. Letting the above upper bound be �G, we get the following
bound for T2

T2  �G

↵

✓
�

m⌫(t) + �

◆
krf(✓0)kk✓(t)� ✓(⌫)k

Substituting these bounds in Equation (9) gives us

d

dt
k✓(t)� ✓(⌫)k2  �2

m

�
k✓(t)� ✓(⌫)k2 + 2

�G

↵

✓
�

m⌫(t) + �

◆
krf(✓0)kk✓(t)� ✓(⌫)k.

We now solve the above ODE. Let g(t) = k✓(t)� ✓(⌫)k. The above equation can be rewritten as

d

dt
g(t)2  �2

m

�
g(t)2 + 2

�G

↵

✓
�

m⌫(t) + �

◆
krf(✓0)kg(t)

Let 0 = ↵
� . Then �G

↵

⇣
�

m⌫(t)+�

⌘
can be rewritten as

�G

↵

✓
�

m⌫(t) + �

◆
=

1
↵

⇣
c

0 � 1 + (1� c)e�cMt/↵
⌘

ce
�cMt/↵

(1 + (c� 1)e�cMt/↵)2

This gives us the following upper bound for the ODE

d

dt
g(t)2  �2

m

�
g(t)2 +

1
↵

⇣
c

0 � 1 + (1� c)e�cMt/↵
⌘ 2ce�cMt/↵

(1 + (c� 1)e�cMt/↵)2
krf(✓0)kg(t)

Note that this is the same ODE as the one obtained in the proof of Theorem 1. Solving this gives us the following
upper bound for the distance k✓(t)� ✓(⌫)k

k✓(t)� ✓(⌫)k  �

↵

krf(✓0)k2
m

✓
e
�mt/� +

c

1� c� ecMt/↵

◆
.

D Proof of Theorem 4

Note that the regularized objective is m+ 1
⌫ strongly convex. So we have

✓
m⌫ + 1

2⌫

◆
k✓⇤ � ✓(⌫)k2  Rn(✓

⇤)�Rn(✓(⌫)) +
1
2⌫

�
k✓⇤k2 � k✓(⌫)k2

�
.

Since Rn is convex, we can upper bound Rn(✓
⇤)�Rn(✓(⌫)) as �hrRn(✓

⇤), ✓(⌫)� ✓
⇤i. Using this in the

above equation gives us
✓
m⌫ + 1

2⌫

◆
k✓⇤ � ✓(⌫)k2  �hrRn(✓

⇤), ✓(⌫)� ✓
⇤i+ 1

2⌫

�
k✓⇤k2 � k✓(⌫)k2

�

 krRn(✓
⇤)k (k✓⇤ � ✓(⌫)k) + 1

2⌫
(k✓⇤k+ k✓(⌫)k) (k✓⇤ � ✓(⌫)k).

Simplifying the above expression, we get
✓
m⌫ + 1

2⌫

◆
k✓⇤ � ✓(⌫)k  krRn(✓

⇤)k+ 1
2⌫

(k✓⇤k+ k✓(⌫)k)

 krRn(✓
⇤)k+ 1

2⌫
(2k✓⇤k+ k✓(⌫)� ✓

⇤k) .

For our choice of regularization parameter ⌫: 1/⌫ � 2 krRn(✓⇤)k2
k✓⇤k , we can upper bound the RHS as

✓
m⌫ + 1

2⌫

◆
k✓⇤ � ✓(⌫)k  3

2
k✓⇤k
⌫

+
1
2⌫

k✓⇤ � ✓(⌫)k.

This gives us the required bound

k✓⇤ � ✓(⌫)k  3k✓⇤k
m⌫

.

E Proof of Corollary 7

To prove the corollary we first provide high probability bounds for the smallest and largest singular values of the
sample covariance matrix. To this end we utilize the results of Rudelson and Vershynin [2009] on the properties
of smallest singular value of a random matrix. Suppose Z 2 Ra⇥b

, a > b be a matrix with i.i.d sub-gaussian
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random variables. And let �min(Z), �max(Z) be the smallest and largest singular values of Z. Then Rudelson
and Vershynin [2009] show that

P
⇣
�min(Z)  ⌘(

p
a�

p
b� 1)

⌘
 (C⌘)a�b+1 + e

�ca
. (10)

P
�
�max(Z) � t

p
a
�
 e

�c0t
2a
, 8t � C0, (11)

where c0, C0, c, C depend on sub-gaussian moment. Using these results, we can show that the there exists a
constant c1 > 0 such that the smallest and largest eigenvalues of the sample covariance matrix ⌃̂ satisfy the
following with high probability

m := �min(⌃̂) � 9/10, M := �max(⌃̂)  11/10.

We condition on the above event in the rest of our proof. To bound k✓(t) � ✓
⇤k we use a simple triangle

inequality
k✓(t)� ✓

⇤k  k✓(t)� ✓(⌫(t))k+ k✓⇤ � ✓(⌫(t))k,

where ⌫(t) = 1
cm

�
e
cMt � 1

�
.

First note that for the setting considered in the Corollary, k✓⇤ � ✓(⌫)k can be upper bounded as

k✓⇤ � ✓(⌫)k2  1
(1 + ⌫)2

h
k✓⇤k2 + ⌫

2
�
2 p

n

i
.

This follows from Theorem 6. From Theorem 1 we have

k✓(t)� ✓(⌫(t))k  krRn(0)k
m

✓
e
�mt +

c

1� c� ecMt

◆

Combining these two bounds, we get the following bound for k✓(t)� ✓
⇤k

k✓(t)� ✓
⇤k  krRn(0)k

m

✓
e
�mt +

c

1� c� ecMt

◆
+

1
1 + ⌫(t)

r
k✓⇤k2 + ⌫(t)2�2

p

n
.

For sufficiently large n, krRn(0)k is upper bonded by k✓⇤k + �
p

p
n . Substituting the values of m,M and

krRn(0)k in the above bound gives us the requires bound for k✓(t)� ✓
⇤k.

Note that the upper bound of k✓(t) � ✓
⇤k is dominated by k✓⇤ � ✓(⌫(t))k. So it suffices to find a t which

minimizes this term. And it is minimized at ⌫(t) = k✓⇤k2
�2

n
p . The t corresponding to this ⌫(t) is given by

t =
100
99

log

✓
1 +

81
100

k✓⇤k2

�2

n

p

◆
.

The bound at this value of t can be shown to be

(1 + ✏)

"
k✓⇤k2

k✓⇤k2 + �2p
n

#
�
2
p

n
,

for some small positive constant ✏ less than 0.1.

F Proofs of Auxiliary Lemmas

F.1 Proof of Lemma 3

Part 1. Let h(t) = krf(✓(t))k22. Then

d

dt
h(t) = 2

D
r2

f(✓(t))✓̇(t),rf(✓(t))
E
= �2

⌦
r2

f(✓(t))rf(✓(t)),rf(✓(t))
↵

 �2mkrf(✓(t))k22 = �2mh(t).

Letting g(t) = log h(t) we can rewrite the above equation as

d

dt
g(t)  �2m.

Integrating the LHS and RHS of the above expression gives us krf(✓(t))k22  e
�2mtkrf(✓0)k22.
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Part 2. Let
H(⌫) =

⇥
⌫r2

f(✓(⌫)) + I
⇤�1

, =
m

M
.

Let h(⌫) = krf(✓(⌫))k22. Then

d

d⌫
h(⌫) = 2

D
r2

f(✓(⌫))✓̇(⌫),rf(✓(⌫))
E
= �2

⌦
r2

f(✓(⌫))H(⌫)rf(✓(⌫)),rf(✓(⌫))
↵
.

Since the smallest eigen value of r2
f(✓(⌫))H(⌫) is equal to m

m⌫+1 , we have

d

d⌫
h(⌫)  � 2m

m⌫ + 1
krf(✓(⌫))k22 = � 2m

m⌫ + 1
h(⌫).

Letting g(⌫) = log h(⌫) we can rewrite the above equation as

d

d⌫
g(⌫)  � 2m

m⌫ + 1
.

This gives us the following bound for krf(✓(⌫))k2

krf(✓(⌫))k2  1
(m⌫ + 1)2

krf(✓0)k2

F.2 Proof of Lemma 4

Part 1. The first part of the Lemma follows from the following two inequalities

f(✓̂)  f(✓(⌫)),

f(✓(⌫)) +
1
⌫
D�(✓(⌫), ✓0)  f(✓̂) +

1
⌫
D�(✓̂, ✓0).

Combining these two inequalities shows that D�(✓(⌫), ✓0)  D�(✓̂, ✓0).

Part 2. To prove the second part we show that d
dtD�(✓̂, ✓(t))  0. This will show that for any t 2 [0,1)

D�(✓̂, ✓(t))  D�(✓̂, ✓0).

d
dtD�(✓̂, ✓(t)) can be written as

d

dt
D�(✓̂, ✓(t)) =

d

dt

⇣
�(✓̂)� �(✓(t))�

D
r�(✓(t)), ✓̂ � ✓(t)

E⌘

= �
D
r2

�(✓(t))✓̇(t), ✓̂ � ✓(t)
E

= �
D
rf(✓̂)�rf(✓(t)), ✓̂ � ✓(t)

E
 0.

F.3 Proof of Lemma 5

Let
H(⌫) =

⇥
⌫r2

f(✓(⌫)) +r2
�(✓(⌫))

⇤�1
, =

m

M
.

Let h(⌫) = krf(✓(⌫))k22. Then

d

d⌫
h(⌫) = 2

D
r2

f(✓(⌫))✓̇(⌫),rf(✓(⌫))
E
= �2

⌦
r2

f(✓(⌫))H(⌫)rf(✓(⌫)),rf(✓(⌫))
↵
.

Since the smallest eigen value of r2
f(✓(⌫))H(⌫) is greater than or equal to m

m⌫+� , we have

d

d⌫
h(⌫)  � 2m

m⌫ + �
krf(✓(⌫))k22 = � 2m

m⌫ + �
h(⌫).

Letting g(⌫) = log h(⌫) we can rewrite the above equation as

d

d⌫
g(⌫)  � 2m

m⌫ + �
.

This gives us the following bound for krf(✓(⌫))k2

krf(✓(⌫))k2 
✓

�

m⌫ + �

◆2

krf(✓0)k2.
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G Proof of Theorem 8

Let ✓̂ be the minimizer of f(✓) which is closest to ✓0. Since ✓(⌫) is the minimizer of the regularized objective,
we have

f(✓(⌫)) +
1
2⌫

k✓(⌫)� ✓0k22  f(✓̂) +
1
2⌫

k✓̂ � ✓0k22
Moreover, since ✓̂ is a minimizer of f , we have

f(✓̂)  f(✓(⌫)).

Combining the two equations, we get

8⌫ f(✓̂)  f(✓(⌫))  f(✓̂) +
1
2⌫

k✓̂ � ✓0k22.

This shows that lim⌫!1 f(✓(⌫)) = f(✓̂). We now show that lim⌫!1 ✓(⌫) = ✓̂. We do this in 3 stages.

1. ✓(⌫) converges. We first show that the sequence {✓(⌫)}⌫ converges. Suppose the sequence diverges.
It means that for any ✓̃ 2 Rp, the following is true

9✏, 8⌫0, 9⌫ > ⌫0, such that k✓(⌫)� ✓̃k > ✏.

That is, for any ✓̃ we can find a sequence of ⌫’s going to infinity such that k✓(⌫)� ✓̃k > ✏ for any ⌫

in the sequence. We now choose ✓̃ = ✓̂.

• Case 1. Suppose f(✓(⌫)) = f(✓̂) for some ⌫ in the sequence. Since ✓̂ is the closest minimizer
to ✓0 and since k✓(⌫) � ✓̂k > ✏, ✓(⌫) can’t be the minimizer of the regularized objective. So
this case can never happen.

• Case 2. We have a sequence of ⌫’s going to infinity such that f(✓(⌫)) > f(✓̂). This again
contradicts the fact that ✓(⌫) is the minimizer of the regularized objective.

This shows that the sequence {✓(⌫)}⌫ always converges.
2. ✓(⌫) converges to a minimizer. Suppose ✓(⌫) converges to a point ✓⇤ which is a not a minimizer.

Since ✓(⌫) is the minimizer of the regularized objective, we have

8⌫,
✓
f(✓(⌫)) +

1
2⌫

k✓(⌫)� ✓0k22
◆
�
✓
f(✓̂) +

1
2⌫

k✓̂ � ✓0k22
◆

 0.

This shows that

lim
⌫!1

f(✓(⌫)) +
1
2⌫

k✓(⌫)� ✓0k22 � f(✓̂)� 1
2⌫

k✓̂ � ✓0k22  0.

Computing the limit in the LHS of the above expression we get
f(✓⇤)� f(✓̂)  0.

This contradicts our initial assumption that ✓(⌫) doesn’t converge to a minimizer.
3. ✓(⌫) converges to the minimizer closest to ✓0. Lets suppose ✓(⌫) converges to a minimizer ✓⇤ such

that
k✓⇤ � ✓0k > k✓̂ � ✓0k.

Let c = k✓⇤ � ✓0k � k✓̂ � ✓0k. From the definition of convergence we know that
8✏, 9⌫0 such that 8⌫ > ⌫0, k✓(⌫)� ✓

⇤k  ✏.

Fix any ✏. Let ⌫0 be as defined in the above definitions of convergence. For any ⌫ > ⌫0 we have

f(✓(⌫))+
1
2⌫

k✓(⌫)�✓0k22 � f(✓⇤)+
1
2⌫

�
k✓⇤ � ✓0k22 + k✓(⌫)� ✓

⇤k22 � 2k✓⇤ � ✓0kk✓(⌫)� ✓
⇤k
�
,

where the inequality follows from triangle inequality k✓(⌫)� ✓0k2 � k✓⇤ � ✓0k2 � k✓(⌫)� ✓
⇤k2

and the fact that f(✓⇤)  f(✓(⌫)).
Rearranging the terms in the RHS of the above expression and using the fact that k✓(⌫)� ✓

⇤k2  ✏,
we get

f(✓(⌫)) +
1
2⌫

k✓(⌫)� ✓0k22 � f(✓⇤) +
1
2⌫

k✓⇤ � ✓0k22 �
1
2⌫

�
✏
2 + 2✏k✓⇤ � ✓0k

�
.

Replacing k✓⇤ � ✓0k with c+ k✓̂ � ✓0k, we get
f(✓(⌫)) + 1

2⌫ k✓(⌫)� ✓0k22 � f(✓̂) + 1
2⌫ k✓̂ � ✓0k22

+ 1
2⌫

⇣
c
2 � ✏

2 + 2(c� ✏)k✓̂ � ✓0k � 2c✏
⌘
.

(12)

Choose any ✏ <
c

100 . Then the above equation shows that there exists a ⌫ such that

f(✓(⌫)) +
1
2⌫

k✓(⌫)� ✓0k22 > f(✓̂) +
1
2⌫

k✓̂ � ✓0k22.

However, this can’t happen because ✓(⌫) is the minimizer of the regularized objective. So this
contradicts our initial assumption that ✓(⌫) doesn’t converge to the minimizer that is closest to ✓0.
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H Proof of Theorem 9

H.1 Preliminaries

For clarity of analysis, we follow our continuous time approach of previous sections. From first order optimality
of ✓(⌫), we have that

✓(⌫)
⌫

+rRn(✓(⌫)) = 0 (13)

Using this, firstly, we list the derivatives of Rn(✓(⌫)), ||✓(⌫)||2 and ✓(⌫) w.r.t. ⌫.

• The derivative of ✓(⌫) can be written as:

˙✓(⌫) = �
⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

(rRn(✓(⌫))) (14)

•

Ṙn(✓(⌫)) = �rRn(✓(⌫))
T ⇥Ip + ⌫r2

Rn(✓(⌫))
⇤�1 rRn(✓(⌫)) (15)

•

d ||✓(⌫)||2
d⌫

=
˙✓(⌫)

T
✓(⌫)

||✓(⌫)||2
=

✓(⌫)T
⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

✓(⌫)

⌫ ||✓(⌫)||2
(16)

Next, we list down some properties of Rn(✓). Recall that �(y✓Tx) = exp(�✓
T (yx)). For brevity, let

xiyi = zi. Then we have the following:

•
Claim 1. �max

�
r2

Rn(✓(⌫))
�
 Rn(✓(⌫))

To see this, for any unit vector v, we have that

v
Tr2

Rn(✓(⌫))v =
1
n

nX

i=1

(zTi v)
2 exp(�✓

T
zi) 

⇣
max

i
(zTi v)

2
⌘ 1

n

nX

i=1

exp(�✓
T
zi)

!
 Rn(✓(⌫)),

where we have used that ||xiyi||2  1.

•
Claim 2. �min

�
r2

Rn(✓(⌫))
�
� 1

n exp
�
� ||✓(⌫)||2

�

To see this, for any unit vector v, we have that

v
Tr2

Rn(✓(⌫))v =
1
n

nX

i=1

(zTi v)
2 exp(�✓

T
zi)

where we have used that ||xiyi||2  1.

We also make use of the following duality:

Lemma 6. [Lemma 2 [Nacson et al., 2018]] The following duality holds:

||rRn(✓(⌫))||2
Rn(✓)

� max
||w||2=1

min
i2n

w
T (yixi)

Proof. The proof follows from convex duality arguments and can be found in [Nacson et al., 2018].

Note that by our assumptions of the max-margin being 1, we have that ||rRn(✓(⌫))||2 � Rn(✓).

Lemma 7. [Hoorfar and Hassani, 2008] The product-log or the Lambert-W Function satisfies,

log ⌫ � log log ⌫ +
log log ⌫
2 log ⌫

 W(⌫)  log ⌫ � log log ⌫ +
e

e� 1
log log ⌫
log ⌫
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H.2 Main Proof
• We begin by proving bounds on Rn(✓(⌫)). We can upper bound the Ṙn(✓(⌫)) as:

Ṙn(✓(⌫)) = �rRn(✓(⌫))
T ⇥Ip + ⌫r2

Rn(✓(⌫))
⇤�1 rRn(✓(⌫)) (17)

Moreover, from Claim 1, we have that

rRn(✓(⌫))
T ⇥Ip + ⌫r2

Rn(✓(⌫))
⇤�1 rRn(✓(⌫)) � �min(

⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

) ||rRn(✓(⌫))||22
(18)

� 1
1 + ⌫Rn(✓(⌫))

||rRn(✓(⌫))||22 (19)

Further, using Lemma 6 we have that

rRn(✓(⌫))
T ⇥Ip + ⌫r2

Rn(✓(⌫))
⇤�1 rRn(✓(⌫)) �

�
2
R

2
n(✓(⌫))

1 + ⌫Rn(✓(⌫))
(20)

Combining (15) and (20), we get,

Ṙn(✓(⌫)) 
�R

2
n(✓(⌫))

1 + ⌫Rn(✓(⌫))

Solving the above ODE, we get that

Rn(✓(⌫)) 
W(⌫c1)

⌫
, (21)

where W is the product-log function. This proves the first claim of the Theorem.
• Now, we prove bounds on ||✓(⌫)||2.

d ||✓(⌫)||2
d⌫

=
✓(⌫)T

⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

✓(⌫)

⌫ ||✓(⌫)||2
� �min(

⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

)
||✓(⌫)||2

⌫

(22)

=
1

1 + ⌫�max(r2Rn(✓(⌫)))

||✓(⌫)||2
⌫

(23)

Using the upper bound on the loss and Claim 1, we get that,
d ||✓(⌫)||2

d⌫
� 1

1 + ⌫W(⌫)

||✓(⌫)||2
2

Solving the above ODE, we get that
||✓⌫ ||2 � W(⌫)

This proves the lower bound on ||✓||2. To prove the upper bound, we follow the same procedure as
above along with Claim 2. This gives us:

d ||✓(⌫)||2
d⌫

=
✓(⌫)T

⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

✓(⌫)

⌫ ||✓(⌫)||2
 �max(

⇥
Ip + ⌫r2

Rn(✓(⌫))
⇤�1

)
||✓(⌫)||2

⌫

(24)

=
1

1 + ⌫�min(r2Rn(✓(⌫)))

||✓(⌫)||2
⌫

(25)

=
1

1 + ⌫�min( 1
n exp

�
� ||✓||2

�
)

||✓(⌫)||2
⌫

(26)

Solving the ODE, we get that:

||✓||2  W
⇣
⌫

n
exp(c1⌫/n)

⌘
� c1⌫/n.

Combining the upper and lower bound, we get that for large enough t, ||✓(⌫)||2 ⇡ log ⌫.
• Now, to prove the bound on the margin, observe that

max
i

exp(�✓(⌫)T zi)  nRn(✓(⌫)) 
nW(⌫)

⌫

Taking � log(·) on both sides and using that ||✓(⌫)||2 ⇡ log ⌫, we get that

mini yi✓(⌫)
T
xi

||✓(⌫)||2
� 1� log n+ log(W (⌫))

log(⌫)
⇡ 1� log log(⌫)

log ⌫
� log n

log ⌫

This completes the proof of the theorem.
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H.3 Proof of Lemma 1

Consider the following 2-D function f : R⇥ (�100,1) 7! R,

f(x, y) =
(x+ 1)2

y + 100

First note that this function is convex. In particular, for y > �100, the hessian is given by,

r2
f =

"
2

y+100
�2(x+1)
(y+100)2

�2(x+1)
(y+100)2

2(x+1)2

(y+100)3

#
(27)

Some algebra shows that the eigenvalues for the hessian above are given by (0, 2
(y+100) + 2 (x+1)2

(y+100)3
), which

are non-negative for y > �100.

For this function, we now show that the regularization and optimization paths don’t converge to the same point.
In particular, suppose (x0, y0) = (2, 1). For this, we know that the regularization path converges to the nearest
minimizer (�1, 1), whereas the continuous time gradient descent converges to (�1, 1.0223). The reason why
continuous time GD doesn’t converge to the nearest minimizer is that the gradient at any point has a non zero
component along y-axis.
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