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Abstract

We study the computational tractability of PAC reinforcement learning with rich
observations. We present new provably sample-efficient algorithms for environ-
ments with deterministic hidden state dynamics and stochastic rich observations.
These methods operate in an oracle model of computation—accessing policy and
value function classes exclusively through standard optimization primitives—and
therefore represent computationally efficient alternatives to prior algorithms that
require enumeration. With stochastic hidden state dynamics, we prove that the only
known sample-efficient algorithm, OLIVE [1], cannot be implemented in the oracle
model. We also present several examples that illustrate fundamental challenges of
tractable PAC reinforcement learning in such general settings.

1 Introduction

We study episodic reinforcement learning (RL) in environments with realistically rich observations
such as images or text, which we refer to broadly as contextual decision processes. We aim for
methods that use function approximation in a provably effective manner to find the best possible
policy through strategic exploration.

While such problems are central to empirical RL research [2], most theoretical results on strategic
exploration focus on tabular MDPs with small state spaces [3–10]. Comparatively little work exists
on provably effective exploration with large observation spaces that require generalization through
function approximation. The few algorithms that do exist either have poor sample complexity
guarantees [e.g., 11–14] or require fully deterministic environments [15, 16] and are therefore
inapplicable to most real-world applications and modern empirical RL benchmarks. This scarcity of
positive results on efficient exploration with function approximation can likely be attributed to the
challenging nature of this problem rather than a lack of interest by the research community.

On the statistical side, recent important progress was made by showing that contextual decision
processes (CDPs) with rich stochastic observations and deterministic dynamics over M hidden
states can be learned with a sample complexity polynomial in M [17]. This was followed by an
algorithm called OLIVE [1] that enjoys a polynomial sample complexity guarantee for a broader
range of CDPs, including ones with stochastic hidden state transitions. While encouraging, these
efforts focused exclusively on statistical issues, ignoring computation altogether. Specifically, the
proposed algorithms exhaustively enumerate candidate value functions to eliminate the ones that
violate Bellman equations, an approach that is computationally intractable for any function class of
∗The work was done while NJ was a postdoc researcher at MSR NYC.
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practical interest. Thus, while showing that RL with rich observations can be statistically tractable,
these results leave open the question of computational feasibility.

In this paper, we focus on this difficult computational challenge. We work in an oracle model of
computation, meaning that we aim to design sample-efficient algorithms whose computation can be
reduced to common optimization primitives over function spaces, such as linear programming and
cost-sensitive classification. The oracle-based approach has produced practically effective algorithms
for active learning [18], contextual bandits [19], structured prediction [20, 21], and multi-class
classification [22], and here, we consider oracle-based algorithms for challenging RL settings.

We begin by studying the setting of Krishnamurthy et al. [17] with deterministic dynamics over
M hidden states and stochastic rich observations. In Section 4, we use cost-sensitive classification
and linear programming oracles to develop VALOR, the first algorithm that is both computationally
and statistically efficient for this setting. While deterministic hidden-state dynamics are somewhat
restrictive, the model is considerably more general than fully deterministic MDPs assumed by prior
work [15, 16], and it accurately captures modern empirical benchmarks such as visual grid-worlds in
Minecraft [23]. As such, this method represents a considerable advance toward provably efficient RL
in practically relevant scenarios.

Nevertheless, we ultimately seek efficient algorithms for more general settings, such as those with
stochastic hidden-state transitions. Working toward this goal, we study the computational aspects of
the OLIVE algorithm [1], which applies to a wide range of environments. Unfortunately, in Section 5.1,
we show that OLIVE cannot be implemented efficiently in the oracle model of computation. As
OLIVE is the only known statistically efficient approach for this general setting, our result establishes a
significant barrier to computational efficiency. In the appendix, we also describe several other barriers,
and two other oracle-based algorithms for the deterministic-dynamics setting that are considerably
different from VALOR. The negative results identify where the hardness lies while the positive results
provide a suite of new algorithmic tools. Together, these results advance our understanding of efficient
reinforcement learning with rich observations.

2 Related Work

There is abundant work on strategic exploration in the tabular setting [3–10]. The computation
in these algorithms often involves planning in optimistic models and can be solved efficiently via
dynamic programming. To extend the theory to the more practical settings of large state spaces,
typical approaches include (1) distance-based state identity test under smoothness assumptions [e.g.,
11–14], or (2) working with factored MDPs [e.g., 24]. The former approach is similar to the use of
state abstractions [25], and typically incurs exponential sample complexity in state dimension. The
latter approach does have sample-efficient results, but the factored representation assumes relatively
disentangled state variables which cannot model rich sensory inputs (such as images).

Azizzadenesheli et al. [26] have studied regret minimization in rich observation MDPs, a special case
of contextual decision processes with a small number of hidden states and reactive policies. They do
not utilize function approximation, and hence incur polynomial dependence on the number of unique
observations in both sample and computational complexity. Therefore, this approach, along with
related works [27, 28], does not scale to the rich observation settings that we focus on here.

Wen and Van Roy [15, 16] have studied exploration with function approximation in fully deterministic
MDPs, which is considerably more restrictive than our setting of deterministic hidden state dynamics
with stochastic observations and rewards. Moreover, their analysis measures representation com-
plexity using eluder dimension [29, 30], which is only known to be small for some simple function
classes. In comparison, our bounds scale with more standard complexity measures and can easily
extend to VC-type quantities, which allows our theory to apply to practical and popular function
approximators including neural networks [31].

3 Setting and Background

We consider reinforcement learning (RL) in a common special case of contextual decision pro-
cesses [17, 1], sometimes referred to as rich observation MDPs [26]. We assume an H-step process
where in each episode, a random trajectory s1, x1, a1, r1, s2, x2, . . . , sH , xH , aH , rH is generated.
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Figure 1: Graphical representation of the problem class considered by our algorithm, VALOR: The
main assumptions that enable sample-efficient learning are (1) that the small hidden state sh is
identifiable from the rich observation xh and (2) that the next state is a deterministic function of
the previous state and action. State and observation examples are from https://github.com/
Microsoft/malmo-challenge.

For each time step (or level) h ∈ [H], sh ∈ S where S is a finite hidden state space, xh ∈ X where X
is the rich observation (context) space, ah ∈ A whereA is a finite action space of sizeK, and rh ∈ R.
Each hidden state s ∈ S is associated with an emission process Os ∈ ∆(X ), and we use x ∼ s as a
shorthand for x ∼ Os. We assume that each rich observation contains enough information so that s
can in principle be identified just from x ∼ Os—hence x is a Markov state and the process is in fact
an MDP over X—but the mapping x 7→ s is unavailable to the agent and s is never observed. The
hidden states S introduce structure into the problem, which is essential since we allow the observation
space X to be infinitely large.2 The issue of partial observability is not the focus of the paper.

Let Γ : S × A → ∆(S) define transition dynamics over the hidden states, and let Γ1 ∈ ∆(S)
denote an initial distribution over hidden states. R : X × A → ∆(R) is the reward function;
this differs from partially observable MDPs where reward depends only on s, making the problem
more challenging. With this notation, a trajectory is generated as follows: s1 ∼ Γ1, x1 ∼ s1,
r1 ∼ R(x1, a1), s2 ∼ Γ(s1, a1), x2 ∼ s2, . . . , sH ∼ Γ(sH−1, aH−1), xH ∼ sH , rH ∼ R(xH , aH),
with actions a1:H chosen by the agent. We emphasize that s1:H are unobservable to the agent.

To simplify notation, we assume that each observation and hidden state can only appear at a particular
level. This implies that S is partitioned into {Sh}Hh=1 with size M := maxh∈[H] |Sh|. For regularity,
assume rh ≥ 0 and

∑H
h=1 rh ≤ 1 almost surely.

In this setting, the learning goal is to find a policy π : X → A that maximizes the expected return
V π := E[

∑H
h=1 rh | a1:H ∼ π]. Let π? denote the optimal policy, which maximizes V π, with

optimal value function g? defined as g?(x) := E[
∑H
h′=h rh′ |xh = x, ah:H ∼ π?]. As is standard, g?

satisfies the Bellman equation: ∀x at level h,

g?(x) = max
a∈A

E[rh + g?(xh+1)|xh = x, ah = a],

with the understanding that g?(xH+1) ≡ 0. A similar equation holds for the optimal Q-value function
Q?(x, a) := E[

∑H
h′=h rh′ |xh = x, ah = a, ah+1:H ∼ π?], and π? = argmaxa∈AQ

?(x, a).3

Below are two special cases of the setting described above that will be important for later discussions.
Tabular MDPs: An MDP with a finite and small state space is a special case of this model, where
X = S and Os is the identity map for each s. This setting is relevant in our discussion of oracle-
efficiency of the existing OLIVE algorithm in Section 5.1.
Deterministic dynamics over hidden states: Our algorithm, VALOR, works in this special case,
which requires Γ1 and Γ(s, a) to be point masses. Originally proposed by Krishnamurthy et al. [17],

2Indeed, the lower bound in Proposition 6 in Jiang et al. [1] show that ignoring underlying structure precludes
provably-efficient RL, even with function approximation.

3Note that the optimal policy and value functions depend on x and not just s even if s was known, since
reward is a function of x.
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this setting can model some challenging benchmark environments in modern reinforcement learning,
including visual grid-worlds common to the deep RL literature [e.g., 23]. In such tasks, the state
records the position of each game element in a grid but the agent observes a rendered 3D view.
Figure 1 shows a visual summary of this setting. We describe VALOR in detail in Section 4.

Throughout the paper, we use ÊD[·] to denote empirical expectation over samples from a data set D.

3.1 Function Classes and Optimization Oracles

As X can be rich, the agent must use function approximation to generalize across observations. To
that end, we assume a given value function class G ⊂ (X → [0, 1]) and policy class Π ⊂ (X → A).
Our algorithm is agnostic to the specific function classes used, but for the guarantees to hold, they
must be expressive enough to represent the optimal value function and policy, that is, π? ∈ Π and
g? ∈ G. Prior works often use F ⊂ (X ×A → [0, 1]) to approximate Q? instead, but for example
Jiang et al. [1] point out that their OLIVE algorithm can equivalently work with G and Π. This (G,Π)
representation is useful in resolving the computational difficulty in the deterministic setting, and has
also been used in practice [32].

When working with large and abstract function classes as we do here, it is natural to consider an
oracle model of computation and assume that these classes support various optimization primitives.
We adopt this oracle-based approach here, and specifically use the following oracles:

Cost-Sensitive Classification (CSC) on Policies. A cost-sensitive classification (CSC) oracle
receives as inputs a parameter εsub and a sequence {(x(i), c(i))}i∈[n] of observations x(i) ∈ X and cost
vectors c(i) ∈ RK , where c(i)(a) is the cost of predicting action a ∈ A for x(i). The oracle returns a
policy whose average cost is within εsub of the minimum average cost, minπ∈Π

1
n

∑n
i=1 c

(i)(π(x(i))).
While CSC is NP-hard in the worst case, CSC can be further reduced to binary classification [33, 34]
for which many practical algorithms exist and actually form the core of empirical machine learning.
As further motivation, the CSC oracle has been used in practically effective algorithms for contextual
bandits [35, 19], imitation learning [20], and structured prediction [21].

Linear Programs (LP) on Value Functions. A linear program (LP) oracle considers an optimiza-
tion problem where the objective o : G → R and the constraints h1, . . . hm are linear functionals of G
generated by finitely many function evaluations. That is, o and each hj have the form

∑n
i=1 αig(xi)

with coefficients {αi}i∈[n] and contexts {xi}i∈[n]. Formally, for a program of the form

maxg∈G o(g), subject to hj(g) ≤ cj , ∀j ∈ [m],

with constants {cj}j∈[m], an LP oracle with approximation parameters εsub, εfeas returns a function ĝ
that is at most εsub-suboptimal and that violates each constraint by at most εfeas. For intuition, if the
value functions G are linear with parameter vector θ ∈ Rd, i.e., g(x) = 〈θ, x〉, then this reduces to a
linear program in Rd for which a plethora of provably efficient solvers exist. Beyond the linear case,
such problems can be practically solved using standard continuous optimization methods. LP oracles
are also employed in prior work focusing on deterministic MDPs [15, 16].

Least-Squares (LS) Regression on Value Functions. We also consider a least-squares regression
(LS) oracle that returns the value function which minimizes a square-loss objective. Since VALOR
does not use this oracle, we defer details to the appendix.

We define the following notion of oracle-efficiency based on the optimization primitives above.

Definition 1 (Oracle-Efficient). An algorithm is oracle-efficient if it can be implemented with polyno-
mially many basic operations and calls to CSC, LP, and LS oracles.

Note that our algorithmic results continue to hold if we include additional oracles in the definition,
while our hardness results easily extend, provided that the new oracles can be efficiently implemented
in the tabular setting (i.e., they satisfy Proposition 6; see Section 5).

4 VALOR: An Oracle-Efficient Algorithm

In this section we propose and analyze a new algorithm, VALOR (Values stored Locally for RL)
shown in Algorithm 1 (with 2 & 3 as subroutines). As we will show, this algorithm is oracle-efficient
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and enjoys a polynomial sample-complexity guarantee in the deterministic hidden-state dynamics
setting described earlier, which was originally introduced by Krishnamurthy et al. [17].

Algorithm 1: Main Algorithm VALOR

1 Global: D1, . . .DH initialized as ∅;
2 Function MetaAlg
3 dfslearn (∅) ; // Alg.3

4 for k = 1, . . . ,MH do
5 π̂(k), V̂ (k) ← polvalfun() ; // Alg.2

6 T ← sample neval trajectories with π̂(k);
7 V̂ π̂

(k) ← average return of T ;
8 if V̂ (k) ≤ V̂ π̂(k)

+ ε
2 then return π̂(k) ;

9 for h = 1 . . . H − 1 do
10 for all a1:h of nexpl traj. ∈ T do
11 dfslearn (a1:h) ; // Alg.3

12 return failure;

Algorithm 2: Subroutine: Policy optimization
with local values
1 Function polvalfun()

2 V̂ ? ← V of the only dataset in D1;
3 for h = 1 : H do

// CSC-oracle

4 π̂h ← argmax
π∈Πh

∑
(D,V,{Va})∈Dh

VD(π; {Va});

5 return π̂1:H , V̂
?;

Notation:
VD(π; {Va}) := ÊD[K1{π(x) = a}(r + Va)]

Algorithm 3: Subroutine: DFS Learning of local values

1 εfeas = εsub = εstat = Õ(ε2/MH3) ; // see exact values in Table 1 in the appendix

2 φh = (H + 1− h)(6εstat + 2εsub + εfeas) ; // accuracy of learned values at level h

3 Function dfslearn(path p with length h− 1)
4 for a ∈ A do
5 D′ ← Sample ntest trajectories with actions p ◦ a ;

// compute optimistic / pessimistic values using LP-oracle

6 Vopt ← maxg∈Gh+1
ÊD′ [g(xh+1)] (and Vpes ← ming∈Gh+1

ÊD′ [g(xh+1)])
s.t. ∀(D,V, ) ∈ Dh+1 : |V − ÊD[g(xh+1)]| ≤ φh+1 ;

7 if |Vopt − Vpes| ≤ 2φh+1 + 4εstat + 2εfeas then
8 Va ← (Vopt + Vpes)/2 ; // consensus among remaining functions

9 else
10 Va ← dfslearn(p ◦ a) ; // no consensus, descend

11 D̃ ← Sample ntrain traj. with p and ah ∼ Unif(K);
12 Ṽ ← maxπ∈Πh

VD̃(π; {Va}); // CSC-oracle

13 Add (D̃, Ṽ , {Va}a∈A) to Dh;
14 return Ṽ ;

Since hidden states can be deterministically reached by sequences of actions (or paths), from an
algorithmic perspective, the process can be thought of as an exponentially large tree where each
node is associated with a hidden state (such association is unknown to the agent). Similar to LSVEE
[17], VALOR first explores this tree (Line 3) with a form of depth first search (Algorithm 3). To
avoid visiting all of the exponentially many paths, VALOR performs a state identity test (Algorithm 3,
Lines 5–8): the data collected so far is used to (virtually) eliminate functions in G (Algorithm 3,
Line 6), and we do not descend to a child if the remaining functions agree on the value of the child
node (Algorithm 3, Line 7).

The state identity test prevents exploring the same hidden state twice but might also incorrectly
prune unvisited states if all functions happen to agree on the value. Unfortunately, with no data
from such pruned states, we are unable to learn the optimal policy on them. To address this issue,
after dfslearn returns, we first use the stored data and values (Line 5) to compute a policy (see
Algorithm 2) that is near optimal on all explored states. Then, VALOR deploys the computed policy
(Line 6) and only terminates if the estimated optimal value is achieved (Line 8). If not, the policy
has good probability of visiting those accidentally pruned states (see Appendix B.5), so we invoke
dfslearn on the generated paths to complement the data sets (Line 11).
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In the rest of this section we describe VALOR in more detail, and then state its statistical and
computational guarantees. VALOR follows a dynamic programming style and learns in a bottom-up
fashion. As a result, even given stationary function classes (G,Π) as inputs, the algorithm can return
a non-stationary policy π̂1:H := (π̂1, . . . , π̂H) ∈ ΠH that may use different policies at different time
steps.4 To avoid ambiguity, we define Πh := Π and Gh := G for h ∈ [H], to emphasize the time
point h under consideration. For convenience, we also define GH+1 to be the singleton {x 7→ 0}.
This notation also allows our algorithms to handle more general non-stationary function classes.

Details of depth-first search exploration. VALOR maintains many data sets collected at paths
visited by dfslearn. Each data set D is collected from some path p, which leads to some hidden
state s. (Due to determinism, we will refer to p and s interchangeably throughout this section.) D
consists of tuples (x, a, r) where x ∼ p (i.e., x ∼ Os), a ∼ Unif(K), and r is the instantaneous
reward. Associated with D, we also store a scalar V which approximates V ?(s), and {Va}a∈A
which approximate {V ?(s ◦ a)}a∈A, where s ◦ a denotes the state reached when taking a in s. The
estimates {Va}a∈A of the future optimal values associated with the current path p ∈ Ah−1 are
either determined through a recursive call (Line 10), or through a state-identity test (Lines 5–8 in
dfslearn). To check if we already know V ?(p ◦ a), we solve constrained optimization problems to
compute optimistic and pessimistic estimates, using a small amount of data from p◦a. The constraints
eliminate all g ∈ Gh+1 that make incorrect predictions for V ?(s′) for any previously visited s′ at
level h + 1. As such, if we have learned the value of s ◦ a on a different path, the optimistic and
pessimistic values must agree (“consensus”), so we need not descend. Once we have the future values
Va, the value estimate Ṽ (which approximates V ?(s)) is computed (in Line 12) by maximizing the
sum of immediate reward and future values, re-weighted using importance sampling to reflect the
policy under consideration π:

VD(π; {Va}) := ÊD[K1{π(x) = a}(r + Va)]. (1)

Details of policy optimization and exploration-on-demand. polvalfun performs a sequence of
policy optimization steps using all the data sets collected so far to find a non-stationary policy that is
near-optimal at all explored states simultaneously. Note that this policy differs from that computed in
(Alg. 3, Line 12) as it is common for all datasets at a level h. And finally using this non-stationary
policy, MetaAlg estimates its suboptimality and either terminates successfully, or issues several other
calls to dfslearn to gather more data sets. This so-called exploration-on-demand scheme is due
to Krishnamurthy et al. [17], who describe the subroutine in more detail.

4.1 What is new compared to LSVEE?

The overall structure of VALOR is similar to LSVEE [17]. The main differences are in the pruning
mechanism, where we use a novel state-identity test, and the policy optimization step in Algorithm 2.

LSVEE uses a Q-value function class F ⊂ (X × A → [0, 1]) and a state identity test based on
Bellman errors on data sets D consisting of (x, a, r, x′) tuples:

ÊD

[(
f(x, a)− r − Êx′∼a maxa′∈A f(x′, a′)

)2
]
.

This enables a conceptually simpler statistical analysis, but the coupling between value function and
the policy yield challenging optimization problems that do not obviously admit efficient solutions.

In contrast, VALOR uses dynamic programming to propagate optimal value estimates from future
to earlier time points. From an optimization perspective, we fix the future value and only optimize
the current policy, which can be implemented by standard oracles, as we will see. However, from a
statistical perspective, the inaccuracy of the future value estimates leads to bias that accumulates over
levels. By a careful design of the algorithm and through an intricate and novel analysis, we show
that this bias only accumulates linearly (as opposed to exponentially; see e.g., Appendix E.1), which
leads to a polynomial sample complexity guarantee.

4This is not rare in RL; see e.g., Chapter 3.4 of Ross [36].
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4.2 Computational and Sample Complexity of VALOR

VALOR requires two types of nontrivial computations over the function classes. We show that they
can be reduced to CSC on Π and LP on G (recall Section 3.1), respectively, and hence VALOR is
oracle-efficient.

First, Lines 4 in polvalfun and 12 in dfslearn involve optimizing VD(π; {Va}) (Eq. (1)) over Π,
which can be reduced to CSC as follows: We first form tuples (x(i), a(i), y(i)) from D and {Va}
on which VD(π; {Va}) depends, where we bind xh to x(i), ah to a(i), and rh + Vah to y(i). From
the tuples, we construct a CSC data set (x(i),−[K1{a = a(i)}y(i)]a∈A). On this data set, the
cost-sensitive error of any policy (interpreted as a classifier) is exactly −VD(π; {Va}), so minimizing
error (which the oracle does) maximizes the original objective.

Second, the state identity test requires solving the following problem over the function class G:

Vopt = max
g∈G

ÊD′ [g(xh)] (and min for Vpes) (2)

s.t. V − φh ≤ ÊD[g(xh)] ≤ V + φh,∀(D,V ) ∈ Dh.

The objective and the constraints are linear functionals of G, all empirical expectations involve
polynomially many samples, and the number of constraints is |Dh| which remains polynomial
throughout the execution of the algorithm, as we will show in the sample complexity analysis.
Therefore, the LP oracle can directly handle this optimization problem.

We now formally state the main computational and statistical guarantees for VALOR.
Theorem 2 (Oracle efficiency of VALOR). Consider a contextual decision process with deterministic
dynamics over M hidden states as described in Section 3. Assume π? ∈ Π and g? ∈ G. Then for any
ε, δ ∈ (0, 1), with probability at least 1− δ, VALOR makes O

(
MH2

ε log MH
δ

)
CSC oracle calls and

at most O
(
MKH2

ε log MH
δ

)
LP oracle calls with required accuracy εfeas = εsub = Õ(ε2/MH3).

Theorem 3 (PAC bound of VALOR). Under the same setting and assumptions as in Theorem 2,
VALOR returns a policy π̂ such that V ? − V π̂ ≤ ε with probability at least 1− δ, after collecting at
most Õ

(
M3H8K

ε5 log(|G||Π|/δ) log3(1/δ)
)

trajectories.5

Note that this bound assumes finite value function and policy classes for simplicity, but can be
extended to infinite function classes with bounded statistical complexity using standard tools, as in
Section 5.3 of Jiang et al. [1]. The resulting bound scales linearly with the Natarajan and Pseudo-
dimension of the function classes, which are generalizations of VC-dimension. We further expect that
one can generalize the theorems above to an approximate version of realizability as in Section 5.4
of Jiang et al. [1].

Compared to the guarantee for LSVEE [17], Theorem 3 is worse in the dependence on M , H , and ε.
Yet, in Appendix B.7 we show that a version of VALOR with alternative oracle assumptions enjoys a
better PAC bound than LSVEE. Nevertheless, we emphasize that our main goal is to understand the
interplay between statistical and computational efficiency to discover new algorithmic ideas that may
lead to practical methods, rather than improve sample complexity bounds.

5 Toward Oracle-Efficient PAC-RL with Stochastic Hidden State Dynamics

VALOR demonstrates that provably sample- and oracle-efficient RL with rich stochastic observations
is possible and, as such, makes progress toward reliable and practical RL in many applications. In
this section, we discuss the natural next step of allowing stochastic hidden-state transitions.

5.1 OLIVE is not Oracle-Efficient

For this more general setting with stochastic hidden state dynamics, OLIVE [1] is the only known
algorithm with polynomial sample complexity, but its computational properties remain underexplored.

5 Õ(·) suppresses logarithmic dependencies on M , K, H , 1/ε and doubly-logarithmic dependencies on 1/δ,
|G|, and |Π|.
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We show here that OLIVE is in fact not oracle-efficient. A brief description of the algorithm is
provided below, and in the theorem statement, we refer to a parameter φ, which the algorithm uses as
a tolerance on deviations of empirical expectations.
Theorem 4. Assuming P 6= NP , even with algorithm parameter φ = 0 and perfect evaluation of
expectations, OLIVE is not oracle-efficient, that is, it cannot be implemented with polynomially many
basic arithmetic operations and calls to CSC, LP, and LS oracles.

The assumptions of perfect evaluation of expectations and φ = 0 are merely to unclutter the
constructions in the proofs. We show this result by proving that even in tabular MDPs, OLIVE solves
an NP-hard problem to determine its next exploration policy, while all oracles we consider have
polynomial runtime in the tabular setting. While we only show this for CSC, LP, and LS oracles
explicitly, we expect other practically relevant oracles to also be efficient in the tabular setting, and
therefore they could not help to implement OLIVE efficiently.

This theorem shows that there are no known oracle-efficient PAC-RL methods for this general setting
and that simply applying clever optimization tricks to implement OLIVE is not enough to achieve a
practical algorithm. Yet, this result does not preclude tractable PAC RL altogether, and we discuss
plausible directions in the subsequent section. Below we highlight the main arguments of the proof.

Proof Sketch of Theorem 4. OLIVE is round-based and follows the optimism in the face of
uncertainty principle. At round k it selects a value function and a policy to execute (ĝk, π̂k) that
promise the highest return while satisfying all average Bellman error constraints:

ĝk, π̂k = argmax
g∈G,π∈Π

ÊD0
[g(x)] (3)

s.t. |ÊDi
[K1{a = π(x)}(g(x)− r − g(x′))]| ≤ φ, ∀ Di∈D.

Here D0 is a data set of initial contexts x, D consists of data sets of (x, a, r, x′) tuples collected in
the previous rounds, and φ is a statistical tolerance parameter. If this optimistic policy π̂k is close to
optimal, OLIVE returns it and terminates. Otherwise we add a constraint to (3) by (i) choosing a time
point h, (ii) collecting trajectories with π̂k but choosing the h-th action uniformly, and (iii) storing the
tuples (xh, ah, rh, xh+1) in the new data set Dk which is added to the constraints for the next round.

The following theorem shows that OLIVE’s optimization is NP-hard even in tabular MDPs.
Theorem 5. LetPOLIVE denote the family of problems of the form (3), parameterized by (X ,A,Env, t),
which describes the optimization problem induced by running OLIVE in the MDP Env (with states
X , actions A, and perfect evaluation of expectations) for t rounds. OLIVE is given tabular function
classes G = (X → [0, 1]) and Π = (X → A) and uses φ = 0. Then POLIVE is NP-hard.

At the same time, oracles are implementable in polynomial time:
Proposition 6. For tabular value functions G = (X → [0, 1]) and policies Π = (X → A), the CSC,
LP, and LS oracles can be implemented in time polynomial in |X |, K = |A| and the input size.

Both proofs are in Appendix D. Proposition 6 implies that if OLIVE could be implemented with
polynomially many CSC/LP/LS oracle calls, its total runtime would be polynomial for tabular MDPs.
Assuming P 6= NP, this contradicts Theorem 5 which states that determining the exploration policy of
OLIVE in tabular MDPs is NP-hard. Combining both statements therefore proves Theorem 4.

We now give brief intuition for Proposition 6. To implement the CSC oracle, for each of the
polynomially many observations x ∈ X , we simply add the cost vectors for that observation
together and pick the action that minimizes the total cost, that is, compute the action π̂(x) as
mina∈A

∑
i∈[n]: x(i)=x c

(i)(a). Similarly, the square-loss objective of the LS-oracle decomposes
and we can compute the tabular solution one entry at a time. In both cases, the oracle runtime
is O(nK|X |). Finally, using one-hot encoding, G can be written as a linear function in R|X | for
which the LP oracle problem reduces to an LP in R|X |. The ellipsoid method [37] solves these
approximately in polynomial time.

5.2 Computational Barriers with Decoupled Learning Rules.

One factor contributing to the computational intractability of OLIVE is that (3) involves optimizing
over policies and values jointly. It is therefore promising to look for algorithms that separate
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optimizations over policies and values, as in VALOR. In Appendix E, we provide a series of examples
that illustrate some limitations of such algorithms. First, we show that methods that compute optimal
values iteratively in the style of fitted value iteration [38] need additional assumptions on G and Π
besides realizability (Theorem 45). (Storing value estimates of states explicitly allows VALOR to only
require realizability.) Second, we show that with stochastic state dynamics, average value constraints,
as in Line 6 of Algorithm 3, can cause the algorithm to miss a high-value state (Proposition 46).
Finally, we show that square-loss constraints suffer from similar problems (Proposition 47).

5.3 Alternative Algorithms.

An important element of VALOR is that it explicitly stores value estimates of the hidden states,
which we call “local values.” Local values lead to statistical and computational efficiency under weak
realizability conditions, but this approach is unlikely to generalize to the stochastic setting where
the agent may not be able to consistently visit a particular hidden state. In Appendices B.7-C.2, we
therefore derive alternative algorithms which do not store local values to approximate the future
value g?(xh+1). Inspired by classical RL algorithms, these algorithms approximate g?(xh+1) by
either bootstrap targets ĝh+1(xh+1) (as in TD methods) or Monte-Carlo estimates of the return
using a near-optimal roll-out policy π̂h+1:H (as in PSDP [39]). Using such targets can introduce
additional errors, and stronger realizability-type assumptions on Π,G are necessary for polynomial
sample-complexity (see Appendix C and E). Nevertheless, these algorithms are also oracle-efficient
and while we only establish statistical efficiency with deterministic hidden state dynamics, we believe
that they considerably expand the space of plausible algorithms for the general setting.

6 Conclusion

This paper describes new RL algorithms for environments with rich stochastic observations and
deterministic hidden state dynamics. Unlike other existing approaches, these algorithms are com-
putationally efficient in an oracle model, and we emphasize that the oracle-based approach has led
to practical algorithms for many other settings. We believe this work represents an important step
toward computationally and statistically efficient RL with rich observations.

While challenging benchmark environments in modern RL (e.g. visual grid-worlds [23]) often have
the assumed deterministic hidden state dynamics, the natural goal is to develop efficient algorithms
that handle stochastic hidden-state dynamics. We show that the only known approach for this setting
is not implementable with standard oracles, and we also provide several constructions demonstrating
other concrete challenges of RL with stochastic state dynamics. This provides insights into the key
open question of whether we can design an efficient algorithm for the general setting. We hope to
resolve this question in future work.
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A Additional Notation and Definitions

In the next few sections we analyze the new algorithms for the deterministic setting. We will adopt
the following conventions:

• In the deterministic setting (which we focus on here), a path p always deterministically leads
to some state s, so we use them interchangeably, e.g., V ?(p) ≡ V ?(s), x ∼ p⇔ x ∼ s.

• It will be convenient to define V π(s) := E[
∑H
h′=h rh′ | sh = s, ah:H ∼ π] for s at level h,

which is the analogy of V ?(s) for π. Recall that V π ≡ V π(∅) and V ? ≡ V ?(∅). Also
define Q?(s, π) := Ex∼s[Q

?(x, π(x))].

• We use ÊD[·] to denote empirical expectation over samples drawn from data set D, and
we use Ep[·] to denote population averages where data is drawn from path p. Often for
this latter expectation, we will draw (x, a, r, x′) where x ∼ p, a ∼ Unif(A) and r, x′ are
sampled according to the appropriate conditional distributions. In the notation Ep we default
to the uniform action distribution unless otherwise specified.

A.1 Additional Oracles

Least-Squares (LS) Oracle The least-squares oracle takes as inputs a parameter εsub and a se-
quence {(x(i), v(i))}i∈[n] of observations x(i) ∈ X and values v(i) ∈ R. It outputs a value function
ĝ ∈ G whose squared error is εsub close to the least-squares fit

min
g∈G

1

n

n∑
i=1

(v(i) − g(x(i)))2. (4)

Multi Data Set Classification Oracle The multi data set classification oracle receives as inputs a
parameter εfeas, m scalars that are upper bounds on the allowed cost {Uj}j∈[m] ∈ Rm, and m cost-
sensitive classification data sets D1, . . . Dm, each of which consists of a sequence of observations
{x(i)

j }i∈[n] ∈ Xn and a sequence of cost vectors {c(i)j }i∈[n] ∈ RK×n, where c(i)j (a) is the cost of

predicting action a ∈ A for x(i)
j . The oracle returns a policy that achieves on each data set Dj at most

an average cost of Uj + εfeas, if a policy exists in Π that achieves costs at most Uj on each dataset.
Formally, the oracle returns a policy in{

π ∈ Π

∣∣∣∣ ∀j ∈ [m] :
1

n

n∑
i=1

c
(i)
j (π(x

(i)
j )) ≤ Uj + εfeas

}
. (5)

This oracle generalizes the CSC oracle by requiring the same policy to achieve low cost on multiple
CSC data sets simultaneously. Nonetheless, it can be implemented with a CSC oracle as follows:
We associate a Lagrange parameter with each constraint, and optimize the Lagrange parameters
using multiplicative weights. In each iteration, we use the multiplicative weights to combine the
m constraints into a single one, and then solve the resulting cost-sensitive problem with the CSC
oracle. The slack in the constraint as witnessed by the resulting policy is used as the loss to update
the multiplicative weights parameters. See [40] for more details.

A.2 Assumptions on the Function Classes

While VALOR only requires realizability of the policy and the value function classes, our other
algorithms require stronger assumptions which we introduce below.
Assumption 7 (Policy realizability). π? ∈ Π.
Assumption 8 (Value realizability). g? ∈ G.
Assumption 9 (Policy-value completeness). At each level h, ∀g′ ∈ Gh+1, there exists π?g′ ∈ Πh such
that ∀x ∈ X ,

π?g′(x) = argmax
a∈A

E[r + g′(xh+1)|xh = x, ah = a].

In addition, ∀g′ ∈ Gh+1, ∃g?,g′ ∈ Gh s.t. ∀x ∈ X ,

g?,g′(x) = E[r + g′(x′)|xh = x, ah = π?g′(x)].
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εstat = εsub = εfeas =
ε

267H2Tmax

φh = (H − h+ 1)(6εstat + 2εsub + εfeas)

Tmax = MHnexp +M

ntest =
log (12KHTmax|G|/δ)

2ε2stat
,

ntrain =
16K log(12HTmax|G||Π|/δ)

ε2stat
,

nexp =
8 log(4MH/δ)

ε
,

neval =
32 log(8MH/δ)

ε2

Table 1: Exact values of parameters of VALOR run with inputs ε, δ ∈ (0, 1) and M,K ∈ N.

Assumption 10 (Policy completeness). For every h, and every non-stationary policy πh+1:H , there
exists a policy π ∈ Πh such that, for all x ∈ Xh, we have

π(x) = argmaxaE[
∑H
h′=h rh′ |x, a, ah+1:H ∼ πh+1:H ].

Fact 11 (Relationship between the assumptions).
Assum.9⇒ Assum.10⇒ Assum.7. Assum.9⇒ Assum.8.

In words, these assumptions ask that for any possible approximation of the future value that we might
use, the induced square loss or cost-sensitive problems are realizable using G,Π, which is a much
stronger notion of realizability than Assumptions 7 and 8. Such assumptions are closely related to the
conditions needed to analyze Fitted Value/Policy Iteration methods [see e.g., 41, 42], and are further
justified by Theorem 45 in Appendix E.

B Analysis of VALOR

Definition 12. A state s ∈ Sh is called learned if there is a data set inDh that is sampled from a path
leading to that state. The set of all learned states at level h is S learned

h and S learned :=
⋃
h∈[H] S learned

h .

B.1 Concentration Results

We now define an event E that holds with high probability and will be the main concentration
argument in the proof. This event uses a parameter εstat whose value we will set later.

Definition 13 (Deviation Bounds). Let E denote the event that for all h ∈ [H] the total number of
calls to dfslearn(p) at level h is at most Tmax = MHnexp +M during the execution of MetaAlg
and that for all these calls to dfslearn(p) the following deviation bounds hold for all g ∈ Gh and
π ∈ Πh (where D′a is a data set of ntest observations sampled from p ◦ a in Line 5, and D̃ is the data
set of ntrain samples from Line 11 with stored values {Va}a∈A):∣∣∣ÊD′a [g(xh+1)]−Ep◦a[g(xh+1)]

∣∣∣ ≤ εstat, ∀a ∈ A (6)∣∣∣ÊD̃[g(xh)]−Ep[g(xh)]
∣∣∣ ≤ εstat (7)∣∣∣ÊD̃[K1{π(xh) = ah}(rh + Va)]−Ep[K1{π(xh) = ah}(rh + Va)]

∣∣∣ ≤ εstat. (8)
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In the next Lemma, we bound P[E ], which is the main concentration argument in the proof. The
bound involves a new quantity Tmax which is the maximum number of calls to dfslearn. We will
control this quantity later.
Lemma 14. Set

ntest ≥
1

2ε2stat
ln

(
12KHTmax|G|

δ

)
, ntrain ≥

16K

ε2stat
ln

(
12HTmax|G||Π|

δ

)
.

Then P[E ] ≥ 1− δ/2.

Proof. Let us denote the total number of calls to dfslearn before the algorithm stops byNdfs (which
is random) and first focus on the j-th call to dfslearn. Let Bj be the sigma-field of all samples
collected before the jth call to dfslearn (if it exists, or otherwise the last call to dfslearn) and all
intrinsic randomness of the algorithm. The current path is denoted by pj at level hj and data sets D′a,
D̃ collected are denoted by D′j,a and D̃j respectively. Consider a fix a ∈ A and g ∈ G and define

Yi,j =

{
0 if j > Ndfs

g(x
(i,j)
h+1)−Epj◦a[g(xh+1)] otherwise

(9)

which is well-defined even if j > Ndfs and where x(i,j)
h+1 is the i-th sample of xh+1 in D′j,a. Since

|Yi,j | ≤ 1 and since contexts xh+1 are sampled i.i.d. from pj ◦ a conditioned on pj which is mea-
surable in Bj , we get by Hoeffding’s lemma that E[exp(λYi,j)|Y1:i−1,j ,Bj ] = E[exp(λYi,j)|Bj ] ≤
exp(λ2/2) for λ ∈ R. As a result, we have E[exp(λ

∑ntest
i=1 Yi,j)] = E[E[exp(λ

∑ntest
i=1 Yi,j)|Bj ]] ≤

exp(ntestλ
2/2) and by Chernoff’s bound the following concentration result holds∣∣∣ÊD′j,a [g(xh+1)]−Epj◦a[g(xh+1)]

∣∣∣ ≤
√

log(2K|G|/δ′)
2ntest

with probability at least 1− δ′

K|G| for a fixed a and g and j as long as j ≤ Ndfs. With a union bound
over A and G, the following statement holds: Given a fix j ∈ N, with probability at least 1− δ′, if
j ≤ Ndfs then for all g ∈ Gh+1 and a ∈ A∣∣∣ÊD′j,a [g(xh+1)]−Epj◦a[g(xh+1)]

∣∣∣ ≤
√

log(2K|G|/δ′)
2ntest

.

Choosing ntest ≥ 1
2ε2stat

ln
(

12KHTmax|G|
δ

)
and δ′ = δ

6HTmax
allows us to bound the LHS by εstat. In

exactly the same way since the data set D̃j consists of ntrain samples that, given Bj , are sampled i.i.d.
from pj , we have for all g ∈ Gh∣∣∣ÊD̃j

[g(xh)]−Epj [g(xh)]
∣∣∣ ≤

√
log(2|G|/δ′)

2ntrain
,

with probability 1− δ′ as long as j ≤ Ndfs. As above, our choice of ntrain ensures that this deviation
is bound by εstat.

Finally, for the third inequality we must use Bernstein’s inequality. For the random variable
K1{π(xh) = ah}(rh + Vah), since ah is chosen uniformly at random, it is not hard to see that both
the variance and the range are at most 2K (see for example Lemma 14 by Jiang et al. [1]). As such,
Bernstein’s inequality with a union bound over π ∈ Π gives that with probability 1− δ′,∣∣∣(ÊD̃j

−Epj )[K1{π(xh) = ah}(rh + Vah)]
∣∣∣ ≤

√
4K log(2|Π|/δ′)

ntrain
+

4K

3ntrain
log(2|Π|/δ′) ≤ εstat,

since {Va} and pj can essentially be considered fixed at the time when D̃j is collected (a more formal
treatment is analogous to the proof of the first two inequalities). Using a union bound, the deviation
bounds (6)–(8) hold for a single call to dfslearn with probability 1− 3δ′.

Consider now the event E ′ that these bounds hold for the first Tmax calls at each level h. Applying a
union bound let us bound P(E ′) ≥ 1− 3HTmaxδ

′ = 1− δ
2 . It remains to show that E ′ ⊆ E .
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First note that in event E ′ in the first Tmax calls to dfslearn, the algorithm does not call itself
recursively if p ◦ a leads to a learned state. To see this assume p ◦ a leads to a state s ∈ S learned. Let
D′a be the data set collected in Line 5 for this action a. Since the subsequent state s ∈ S learned, then
there is a data set (D,V, {Vb}) ∈ Dh+1 sampled from this state (we will only use the first two items
in the tuple). This means that D′a and D are two data sets sampled from the same distribution, and as
such, we have

Vopt − Vpes = ÊD′a [gopt(xh+1)− gpes(xh+1)] ≤ Es[gopt(xh+1)− gpes(xh+1)] + 2εstat

≤ ÊD[gopt(xh+1)− gpes(xh+1)] + 4εstat

≤ V + φh+1 + εfeas − V + φh+1 + εfeas + 4εstat = 2φh+1 + 4εstat + 2εfeas.

The last line holds because the constraints for gopt and gpes include the one based on (D,V ) (Line 6),
so the expectation of gopt and gpes on D can only differ by the amount of the allowed slackness
2φh+1 and the violations of feasibility 2εfeas. Therefore the condition in the if clause is satisfied and
the algorithm does not call itself recursively. We here assumed that the constrained optimization
problem has an approximately feasible solution but if that is not the case, the if condition is trivially
satisfied.

Since the number of learned states per level is bounded by M , this means that within the first Tmax

calls to dfslearn, the algorithm can make recursive calls to the level below at mostM times. Further
note that for any fixed level h the total number of non-recursive calls to dfslearn is bounded by
MHnexp since MetaAlg has at most MH iterations and in each dfslearn is called nexp times at
each level (but the first). Therefore, in event E ′, the total number of calls to dfslearn at any level h
is bounded by MHnexp +M ≤ Tmax and the statement follows.

B.2 Bound on Oracle Calls

Proof of Theorem 2. Consider event E from Definition 13 which by Lemma 14 has probability at
least 1− δ/2. VALOR requires two types of nontrivial computations over the function classes. We
show that they can be reduced to CSC on Π and LP on G (recall Sec. 3.1), respectively, and hence
VALOR is oracle-efficient.

First, Line 12 in dfslearn involves optimizing VD(π; {Va}) (Eq. (1)) over Π, which can be reduced
to CSC as follows: We first form tuples (x(i), a(i), y(i)) from D and {Va} on which VD(π; {Va})
depends, where we bind xh to x(i), ah to a(i), and rh + Vah to y(i). From the tuples, we construct
a CSC data set (x(i),−[K1{a = a(i)}y(i)]a∈A), where the second argument is a K-dimensional
vector with one non-zero. On this data set, the cost-sensitive risk of any policy (interpreted as
a classifier) is exactly −VD(π; {Va}), so minimizing risk (which the oracle does) maximizes the
original objective.6

Second, the optimization in Line 4 in polvalfun can be reduced to CSC with the very same
argument, except that we now accumulate all CSC inputs for each data set in Dh. Since |Dh| ≤ Tmax

is polynomial, the total input size is still polynomial.

Third, the state identity test in Line 6 in dfslearn requires solving the following problem over the
function class G:

Vopt = max
g∈G

ÊD′ [g(xh)] (and min for Vpes) (10)

s.t. V − φh ≤ ÊD[g(xh)] ≤ V + φh,∀(D,V ) ∈ Dh. (11)

The objective and the constraints are linear functionals of G, all empirical expectations involve
polynomially many samples, and the number of constraints is |Dh| ≤ Tmax which remains polyno-
mial throughout the execution of the algorithm. Therefore, the LP oracle can directly handle this
optimization problem.

Altogether, we showed that all non-trivial computations can be reduced to oracle calls with inputs
with polynomial description length. It remains to show that the number of calls is bounded. Since
there are at most Tmax calls to dfslearn at each level h ∈ [H], the total number of calls to the LP

6Note that the inputs to the oracle have polynomial length: D consists of polynomially many (x, a, r, x′)
tuples, each of which should be assumed to have polynomial description length, and {Va} similarly.
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oracle is TmaxHK. Similarly, the number of CSC oracle calls from dfslearn is at most TmaxH . In
addition, there at at most MH calls to the CSC oracle in polvalfun. The statement follows with
realizing that Tmax = MHnexp +M = O

(
MH
ε ln

(
MH
δ

))
.

B.3 Depth First Search and Estimated Values

In this section, we show that in the high-probability event E (Definition 13), dfslearn produces
good estimates of optimal values on learned states. The next lemma first quantifies the error in the
value estimate at level h in terms of the estimation error of the values of the next time step {Va}a.
Lemma 15 (Error propagation when learning a state). Consider a call to dfslearn with input path
p of depth h. Assume that all values {Va}a∈A in Algorithm 3 satisfy |Va − V ?(p ◦ a)| ≤ β for some
β > 0. Then in event E , Ṽ returned in Line 14 satisfies |Ṽ − V ?(p)| ≤ εstat + β + εsub.

Proof. The proof follows a standard analysis of empirical risk minimization (here we are maximizing).
Let π̃ denote the empirical risk maximizer in Line 12 and let π? denote the globally optimal policy
(which is in our class due to realizability). Then

Ṽ ≤ ÊD̃[K1{π̃(xh) = ah}(rh + Vah)] ≤ Ep[K1{π̃(xh) = ah}(rh + Vah)] + εstat

≤ Ep[K1{π̃(xh) = ah}(rh + g?(xh+1))] + β + εstat

≤ Ep[K1{π?(xh) = ah}(rh + g?(xh+1))] + β + εstat = V ?(s) + β + εstat.

The first inequality is the deviation bound, which holds in event E . The second inequality is based on
the precondition on {Va}a∈A, linearity of expectation, and the realizability property of g?h+1. The
third inequality uses that π? is the global and point-wise maximizer of the long-term expected reward,
which is precisely rh + g?.

Similarly, we can lower bound Ṽ by

Ṽ = ÊD̃[K1{π̃(xh) = ah}(rh + Vah)]− εsub ≥ ÊD̃[K1{π?(xh) = ah}(rh + Vah)]− εsub

≥ Ep[K1{π?(xh) = ah}(rh + Vah)]− εstat − εsub

≥ Ep[K1{π?(xh) = ah}(rh + g?(xh+1))]− εstat − β − εsub = V ?(s)− εstat − β − εsub.

Here we first use Ṽ is optimal up to εsub and then that π̃ is the empirical maximizer. Subsequently,
we leveraged the deviation bounds of event E and finally used the assumption about the estimation
accuracy from the level below. This proves the claim.

The goal of the proof is to apply the above lemma inductively so that we can learn all of the values
to reasonable accuracy. Before doing so, we need to quantify the estimation error when Va is set in
Line 8 of the algorithm without a recursive call.
Lemma 16 (Error when not recursing). Consider a call to dfslearn with input path p of depth h.
If g? is feasible for Line 6 of dfslearn and Va is set in Line 8 of Algorithm 3, then in event E , the
value Va =

Vopt+Vpes

2 satisfies |Va − V ?(p ◦ a)| ≤ φh+1 + 3εstat + εfeas + εsub.

Proof. Recall that D′a is the data set sampled in Line 5 for the particular action a in consideration.
Since g?h+1 is feasible for both Vopt and Vpes, we have

Vpes − εsub =ÊD′a [gpes(xh+1)]− εsub ≤ ÊD′a [g?(xh+1)] ≤ ÊD′a [gopt(xh+1)] + εsub = Vopt + εsub.

Without loss of generality, we can assume that Vpes ≤ Vopt, otherwise we can just exchange them.
This implies that 0 ≤ Vopt − Va = Va − Vpes =

Vopt−Vpes

2 ≤ φh+1 + 2εstat + εfeas. Therefore,

ÊD′ [g
?(xh+1)]− Va ≤ Vopt − Va + εsub =

Vopt − Vpes
2

+ εsub ≤ φh+1 + 2εstat + εfeas + εsub.

Va − ÊD′ [g
?(xh+1)] ≤ Va − Vpes + εsub =

Vopt − Vpes
2

+ εsub ≤ φh+1 + 2εstat + εfeas + εsub.

By the triangle inequality

|Va − V ?(p ◦ a)| ≤|ÊD′a [g?(xh+1)]− Va|+ |ÊD′a [g?(xh+1)]− V ?(p ◦ a)|
≤φh+1 + 3εstat + εfeas + εsub.

The last inequality is the concentration statement, which holds in event E .
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We now are able to apply Lemma 15 inductively in combination with Lemma 16 to obtain the main
result of dfslearn in this section.
Proposition 17 (Accuracy of learned values). Assume the realizability condition g? ∈ Gh. Set
φh = (H + 1− h)(6εstat + 2εsub + εfeas) for all h ∈ [H]. Then under event E , for any level h ∈ [H]
and any state s ∈ Sh all triplets (D,V, {Va}) ∈ Dh associated with state s (formally with paths p
that lead to s) satisfy

|V − V ?(s)| ≤ φh − 2εstat, |Va − V ?(s ◦ a)| ≤ φh+1 + 3εstat + εfeas + εsub.

Moreover, under event E , we have g? is feasible for Line 6 of dfslearn for all h, at all times.

Proof. We prove this statement by induction over h. For h = H+1 the statement holds trivially since
GH+1 = {g?h+1} the constant 0 function is the only function in GH+1 and therefore the algorithm
always returns on Line 8 and never calls level H + 1 recursively.

Consider now some data set (D̃, Ṽ , {Va}) ∈ Dh at level h associated with state s ∈ Sh. This data
set was obtained by calling dfslearn at some path p (pointing to state s). Since when we added
this data set, we have not yet exhausted the budget of Tmax calls to dfslearn (by the preconditions
of the lemma), we have that the once we reach Line 11 the inductive hypothesis applies for all data
sets at level h+ 1 (which may have been added by recursive calls of this execution). Each of the Va
values can be set in one of two ways.

1. The algorithm did not make a recursive call. Since by the inductive assumption g? is feasible
for Line 6 of dfslearn, we can apply Lemma 16 and get that

|Va − V ?(s ◦ a)| ≤ φh+1 + 3εstat + εfeas + εsub.

2. The algorithm made a recursive call. Since the value returned was added as a data set at
level h+ 1, it satisfies the inductive assumption

|Va − V ?(s ◦ a)| ≤ φh+1 − 2εstat.

This demonstrates the second inequality in the inductive step. For the first, applying Lemma 15 with
β = φh+1 + 3εstat + εfeas + εsub, we get that |Ṽ −V ?(s)| ≤ φh+1 + 4εstat + εfeas + 2εsub = φh−2εstat,
by definition of φh. Finally, this also implies that |Ṽ −ÊD̃[g?h(xh)]| ≤ |Ṽ −V ?(s)|+ |ÊD̃[g?h(xh)]−
V ?(s)| ≤ φh which means that g? is still feasible.

B.4 Policy Performance

In this section, we bound the quality of the policy returned by polvalfun in the good event E by
using the fact that dfslearn produces accurate estimates of the optimal values (previous section).
Before we state the main result of this section in Proposition 19, we prove the following helpful
lemma. This Lemma is essentially Lemma 4.3 in Ross and Bagnell [20].
Lemma 18. The suboptimality of a policy π can be written as

V ? − V π = E

[
H∑
h=1

(V ?(sh)−Q?(sh, πh)) | ah ∼ πh

]
.

Proof. The difference of values of a policy π compared to the optimal policy in a certain state s ∈ Sh
can be expressed as

V ?(s)− V π(s) = V ?(s)−Es[K1{πh(xh) = ah}(rh + V π(xh+1)]

= V ?(s)−Es[K1{πh(xh) = ah}(rh + V ?(xh+1)− V ?(xh+1) + V π(xh+1))]

= V ?(s)−Q?(s, πh) + Es[K1{πh(xh) = ah}(V ?(xh+1)− V π(xh+1))]

= V ?(s)−Q?(s, πh) + Es[V
?(xh+1)− V π(xh+1) | ah ∼ πh].

Therefore, by applying this equality recursively, the suboptimality of π can be written as

V ?(s)− V π = E

[
H∑
h=1

(V ?(sh)−Q?(sh, πh)) | ah ∼ π̂h

]
.
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Now we may bound the policy suboptimality.
Proposition 19. Assume g?h ∈ Gh and the we are in event E . Recall the definition φh = (H + 1−
h)(6εstat + 2εsub + εfeas) for all h ∈ [H]. Then the policy π̂ = π̂1:H returned by polvalfun satisfies

V π̂ ≥ V ? − pπ̂ul − 2H2Tmax(7εstat + 3εsub + 2εfeas)

where pπ̂ul = P(∃h ∈ [H] : sh /∈ S learned | a1:H ∼ π̂) is the probability of hitting an unlearned state
when following π̂.

Proof. To bound the suboptimality of the learned policy, we bound the difference of how much
following π̂h for one time step can hurt per state using Proposition 17. For a state s ∈ S learned at level
h, we have

V ?(s)−Q?(s, π̂h)

= Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + g?h+1(xh+1)]

≤
∑

s∈S learned
h

Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + g?h+1(xh+1)]

≤
∑

(s, ,{Va})∈Dh

(
Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)]

+ 2φh+1 + 6εstat + 2εfeas + 2εsub

)
≤

∑
(D̃, ,{Va})∈Dh

(
ED̃[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)]

+ 2φh+1 + 8εstat + 2εfeas + 2εsub

)
≤ 2|Dh|(φh+1 + 4εstat + εfeas + 2εsub).

Here the first identity is based on expanding definitions. For the first inequality, we use that s ∈ S learned

and also that π? simultaneously maximizes the long term reward from all states, so the terms we
added in are all non-negative. In the second inequality, we introduce the notation (s, , {Va}) ∈ Dh
to denote a data set in Dh associated with state s with successor values {Va}. For this inequality
we use Proposition 17 to control the deviation of the successor values. The third inequality uses the
deviation bound that holds in event E .

Since per dfslearn call, only one data set can be added to Dh, the magnitude |Dh| ≤ Tmax is
bounded by the total number of calls to dfslearn at each level. Using Lemma 18, the suboptimality
of π̂ is therefore at most

V ? − V π̂ ≤ pπ̂ul + (1− pπ̂ul)
H∑
h=1

2|Dh|(φh+1 + 4εstat + 2εsub + εfeas)

≤ pπ̂ul + 2HTmax(4εstat + 2εsub + εfeas) + 2Tmax

H∑
h=1

φh+1

≤ pπ̂ul + 2HTmax(4εstat + 2εsub + εfeas) + 2Tmax(6εstat + 2εsub + εfeas)

H∑
h=1

(H − h)

≤ pπ̂ul + 2HTmax(4εstat + 2εsub + εfeas) +H2Tmax(6εstat + 2εsub + εfeas)

≤ pπ̂ul + 14H2Tmaxεstat + 6H2Tmaxεsub + 3H2Tmaxεfeas.

This argument is similar to the proof of Lemma 8 in Krishnamurthy et al. [17]. Note that we introduce
the dependency on Tmax since we perform joint policy optimization, which will degrade the sample
complexity.

B.5 Meta-Algorithm Analysis

Now that we have the main guarantees for dfslearn and polvalfun, we may turn to the analysis
of MetaAlg.
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Lemma 20. Consider running MetaAlg with dfslearn and polvalfun (Algorithm 1 + 2 + 3) with
parameters

nexp ≥
8

ε
ln

(
4MH

δ

)
, neval ≥

32

ε2
ln

(
8MH

δ

)
, εstat = εsub = εfeas =

ε

267H2Tmax

Then with probability at least 1− δ, MetaAlg returns a policy that is at least ε-optimal after at most
MK iterations.

Proof. First apply Lemma 14 so that the good event E holds, except with probability δ/2.

In the event E , since before the first execution of polvalfun, we called dfslearn(∅), by Propo-
sition 17, we know that |V̂ ? − V ?| ≤ φ1 − 2εstat where V̂ ? is the value stored in the only dataset
associated with the root. This value does not change for the remainder of the algorithm, and the
choice of εstat, φ ensure that

|V̂ ? − V ?| ≤ φ1 − 2εstat = 6Hεstat + 2Hεsub +Hεfeas − 2εstat ≤ ε/8.

This is true for all executions of polvalfun (formally all V̂ (k) values). Next, since we perform
at most MH iterations of the loop in MetaAlg, we consider at most MH policies. Via a standard
application of Hoeffding’s inequality, with probability 1− δ/4, we have that for all k ∈ [MH]

|V̂ π̂k − V π̂k | ≤

√
log(8MH/δ)

2neval
.

The choice of neval ensure that this is at most ε/8. With these two bounds, if MetaAlg terminates, the
termination condition implies that

V ? − V π̂
(k)

≤ V̂ (k) − V̂ π̂
(k)

+
ε

4
≤ 3

4
ε ≤ ε

and hence the returned policy is ε-optimal.

On the other hand, if the algorithm does not terminate in iteration k, we have that V̂ (k) − V̂ π̂(k)

> ε
2

and therefore

V ? − V π̂
(k)

≥ V̂ (k) − V̂ π̂
(k)

− ε

4
≥ ε

4
.

We now use this fact with Proposition 19 to argue that the policy π̂(k) must visit an unlearned state
with sufficient probability. Under the conditions here, applying Proposition 19, we get that

ε

4
≤ V ? − V π̂

(k)

≤ pπ̂
(k)

ul + 2TmaxH
2(7εstat + 3εsub + 2εfeas).

With the choice of εstat, rearranging this inequality reveals that pπ̂
(k)

ul ≥ ε/8 > 0. Hence, if the
algorithm does not terminate there must be at least one unlearned state, i.e., S \ S learned 6= ∅.

For the last step of the proof, we argue that since pπ̂
(k)

ul is large, the probability of reaching an unlearned
state is high, and therefore the additional calls to dfslearn in Line 11 with high probability will
visit a new state, which we will then learn. Specifically, we will prove that on every non-terminal
iteration of MetaAlg, we learn at least one previously unlearned state. With this fact, since there are
at most MH states, the algorithm must terminate and return a near-optimal policy after at most MH
iterations.

In a non-terminal iteration k, the probability that we do not hit an unlearned state in Line 11 is

(1− pπ̂
(k)

ul )nexp ≤ (1− ε/8)nexp ≤ exp(−εnexp/8).

This follows from independence of the nexp trajectories sampled from π̂(k). nexp ≥ 8
ε ln

(
4MH
δ

)
ensures that the probability of not hitting unlearned states in any of the MH iterations is at most δ/4.

In total, except with probability δ/2 + δ/4 + δ/4 (for the three events we considered above), on
every iteration, either the algorithm finds a near optimal policy and returns it, or it visits a previously
unlearned state, which subsequently becomes learned. Since there are at most MH states, this proves
that with probability at least 1− δ, the algorithm returns a policy that is at most ε-suboptimal.
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B.6 Proof of Sample Complexity: Theorem 3

We now have all parts to complete the proof of Theorem 3. For the calculation, we instantiate all the
parameters as

εstat = εsub = εfeas =
ε

267H2Tmax
,

φh = (H − h+ 1)(6εstat + 2εsub + εfeas), Tmax = MHnexp +M,

ntest =
log (12KHTmax|G|/δ)

2ε2stat
, ntrain =

16K log(12HTmax|G||Π|/δ)
ε2stat

,

nexp =
8 log(4MH/δ)

ε
, neval =

32 log(8MH/δ)

ε2
.

These settings suffice to apply all of the above lemmas and therefore with these settings the algorithm
outputs a policy that is at most ε-suboptimal, except with probability δ. For the sample complexity,
since Tmax is an upper bound on the number of data sets we collect (because Tmax is an upper bound
on the number of execution of dfslearn at any level), and we also neval trajectories for each of the
MH iterations of MetaAlg, the total sample complexity is

HTmaxntrain +KHTmaxntest +MHneval

= O

(
T 3

maxKH
5

ε2
log

(
MKH

εδ
|G||Π| log(MH/δ)

)
+
MH

ε2
log(MH/δ)

)
= O

(
M3KH8

ε5
log3(MH/δ) log

(
MKH

εδ
|G||Π| log(MH/δ)

))
.

This proves the theorem.

B.7 Extension: VALOR with Constrained Policy Optimization

We note that Theorem 3 suffers relatively high sample complexity compared to the original LSVEE.
The issue is that VALOR pools all the data sets together for policy optimization (Algorithm 2).
This implicitly weights all data sets uniformly, and allows some undesired trade-off: the policy
that maximizes the objective could sacrifice significant amount of value on one data set (for some
hidden state) to gain slightly more value on many others, only to find out later that the sacrificed
state is visited very often during execution. This is the well-known distribution mismatch issue of
reinforcement learning.

To address this issue and attain better sample complexity results, Algorithm 4 shows an alternative
to the policy optimization component of VALOR in Algorithm 2. Instead of using an unconstrained
optimization problem, it finds the policy through a feasibility problem, and hence avoid the undesired
trade-off mentioned above. The computation can be implemented by the multi data set classification
oracle defined in Section A.

Algorithm 4: Constrained policy optimization with local values
1 Function polvalfun()

2 V̂ ? ← V associated with only dataset in D1;
3 for h = 1 : H do
4 Pick π̂h such that the following constraints are violated at most εfeas for all

(D,V, {Va}a) ∈ Dh : ÊD[K1{π(xh) = ah}(rh +Vah)] ≥ V − 2φh + 4εstat + εsub ;

5 return π̂1:H , V̂
?;

Below, we prove a stronger version of Proposition 19 (which is for Algorithm 2) for this approach
based on feasibility. First, we show that π? is always a feasible choice in Line 4 in event E .

Lemma 21. Assume g? ∈ Gh, π? ∈ Πh and φh = (H + 1−h)(6εstat + 2εsub + εfeas) for all h ∈ [H].
Then π? is a valid choice in Line 4 of polvalfun in Algorithm 4 in event E .
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Proof. Consider a single data set (D,V, {Va}a) ∈ Dh that is associated with state s ∈ Sh. Using
Proposition 17, we can bound the deviation of the optimal policy for each constraint as

V − ÊD[K1{π?(xh) = ah}(rh + Vah)]

≤ V ?(s) + φh − 2εstat − ÊD[K1{π?(xh) = ah}(rh + Vah)]

≤ V ?(s) + φh − 2εstat −Es[K1{π?(xh) = ah}(rh + Vah)] + εstat

≤ V ?(s) + φh + 2εstat −Es[K1{π?(xh) = ah}(rh + V ?(s ◦ ah))] + φh+1 + εsub + εfeas

= φh + 2εstat + φh+1 + εsub + εfeas = 2φh − 4εstat − εsub.

Here we first used that V is close to the optimal value V ?(s), the deviation bounds next and finally
leveraged that Va is a good estimate. Since that inequality holds for all constraints, π? is feasible.

We now show that Algorithm 4 produces policies with a better guarantees than its unconstrained
counterpart. The difference is that we eliminate the Tmax term in the error bound.
Proposition 22 (Improvement over Proposition 19). Assume g? ∈ Gh and that we are in event E .
Recall the definition φh = (H + 1 − h)(6εstat + 2εsub + εfeas) for all h ∈ [H]. Then the policy
π̂ = π̂1:H returned by polvalfun in Algorithm 4 satisfies

V π̂ ≥ V ? − pπ̂ul − 32H2(εstat + εfeas + εsub)

where pπ̂ul = P(∃h ∈ [H] : sh /∈ S learned | a1:H ∼ π̂) is the probability of hitting an unlearned state
when following π̂.

Proof. We bound the difference of how much following π̂h for one time step can hurt per state using
Proposition 17. First note that by Lemma 21, the optimization problem always has a feasible solution
in event E , so π̂h is well defined. For a state s ∈ S learned

h , we have

V ?(s)−Q?(s, π̂h)

= Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + g?h+1(xh+1)]

≤ Es[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)] + 2φh+1 + 6εstat + 2εsub + 2εfeas

≤ ÊD[K(1{π?h(xh) = ah} − 1{π̂h(xh) = ah})(rh + Vah)] + 2φh+1 + 8εstat + 2εsub + 2εfeas

≤ V + εsub − V + 2φh − 4εstat − εsub + εfeas + 2φh+1 + 8εstat + 2εsub + 2εfeas

= 4φh+1 + 16εstat + 5εfeas + 6εsub = 4φh − 8εstat − 2εsub + εfeas.

Here (D,V, {Va}) is one of the data sets in Dh that is associated with s, which has optimal policy
value V by construction. We first applied definitions and then used that Va are good value estimates.
Subsequently we applied the deviation bounds and finally leveraged the definition of V and the
approximate feasibility of π̂h. Using Lemma 18, the suboptimality of π̂ is therefore at most

V ? − V π̂ ≤ pπ̂ul + (1− pπ̂ul)
H∑
h=1

(4φh+1 + 16εstat + 5εfeas + 6εsub)

≤ pπ̂ul + 16Hεstat + 6Hεsub + 5Hεfeas + 4

H∑
h=1

φh+1

≤ pπ̂ul + 16Hεstat + 6Hεsub + 5Hεfeas + 4(6εstat + 2εsub + εfeas)

H∑
h=1

(H − h)

≤ pπ̂ul + 16Hεstat + 6Hεsub + 5Hεfeas + 2H2(6εstat + 2εsub + εfeas)

≤ pπ̂ul + 32H2(εstat + εfeas + εsub).

Using this improved policy guarantee, we obtain a tighter analysis of MetaAlg that does not have a
dependency on Tmax in εstat.
Lemma 23. Consider running MetaAlg with dfslearn and polvalfun (Algorithm 1 + 4 + 3) with
parameters

nexp ≥
8

ε
ln

(
4MH

δ

)
, neval ≥

32

ε2
ln

(
8MH

δ

)
, εstat = εfeas = εsub =

ε

210H2
.
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Then with probability at least 1− δ, MetaAlg returns a policy that is at least ε-optimal after at most
MK iterations.

Proof. The proof is identical to the proof of Lemma 20 except using Proposition 22 in place of
Proposition 19, and using Lemma 21 to guarantee that the optimization problem in Line 4 is always
feasible, in event E .

Finally, we are ready to assemble all statements to the following sample-complexity bound:

Theorem 24. Consider a Markovian CDP with deterministic dynamics over M hidden states,
as described in Section 3. When π? ∈ Π and g? ∈ G (Assumptions 7 and 8 hold), for any
ε, δ ∈ (0, 1), the local value algorithm with constrained policy optimization (Algorithm 1 + 4 + 3)
returns a policy π such that V ? − V π ≤ ε with probability at least 1 − δ, after collecting at most
Õ
(
MKH6

ε3 log(|G||Π|/δ) log(1/δ)
)

trajectories.

Proof. We now have all parts to complete the proof of Theorem 3. For the calculation, we instantiate
all the parameters as

εstat = εfeas = εsub =
ε

210H2
, φh = (H − h+ 1)(6εstat + 2εsub + εfeas),

Tmax = MHnexp +M,

ntest =
log (12KHTmax|G|/δ)

2ε2stat
, ntrain =

16K log(12HTmax|G||Π|/δ)
ε2stat

,

nexp =
8 log(4MH/δ)

ε
, neval =

32 log(8MH/δ)

ε2
.

These settings suffice to apply all of the above lemmas for these algorithms and therefore with these
settings the algorithm outputs a policy that is at most ε-suboptimal, except with probability δ. For
the sample complexity, since Tmax is an upper bound on the number of data sets we collect (because
Tmax is an upper bound on the number of execution of dfslearn at any level), and we also neval
trajectories for each of the MH iterations of MetaAlg, the total sample complexity is

HTmaxntrain +KHTmaxntest +MHneval

= O

(
TmaxKH

5

ε2
log

(
MKH

εδ
|G||Π| log(MH/δ)

)
+
MH

ε2
log(MH/δ)

)
= O

(
MKH6

ε3
log(MH/δ) log

(
MKH

εδ
|G||Π| log(MH/δ)

))
.

C Alternative Algorithms

Theorem 25 (Informal statement). Under Assumption 9 or Assumptions 8+10, there exist oracle-
efficient algorithms with polynomial sample complexity in CDPs (contextual decision processes) with
deterministic dynamics over small hidden states. These algorithms do not store or use local values.

C.1 Algorithm with Two-Sample State-Identity Test

See Algorithm 1 + 5. The algorithm uses a novel state identity test which compares two distributions
using a two-sample test [43] in Line 10 (recall that Gh = G for h ∈ [H] and GH+1 = {x 7→ 0}). Such
an identity test mechanism is very different from the one used in the VALOR algorithm, and the two
mechanisms have very different behavior. For example, if G = {g?}, the local value algorithm will
claim every state s as “not new” because it knows the optimal value V ?(s), whereas the two-sample
test may still declare a state s to be new if Es[g?(x)] 6= Es′ [g

?(x)] for any previously visited s′.
On the other hand, the two-sample test algorithm may not have learned V ?(s) at all when it claims
that a state s is not new. Given the novelty of the mechanism, we believe analyzing the two-sample
test algorithm and understanding its computational and statistical properties enriches our toolkit for
dealing with the challenges addressed in this paper.
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Algorithm 5: Algorithm with Two-Sample State-Identity Test
1 Function polvalfun()
2 ĝH+1 ← 0 ;
3 for h = H : 1 do
4 π̂h ← argmaxπ∈Πh

∑
D∈Dlearned

h
ÊD[K1{π(xh) = ah}(rh + ĝh+1(xh+1))] ;

5 ĝh ← argming∈Gh
∑
D∈Dval

h
ÊD[K1{π̂h(xh) = ah}(g(xh)− rh − ĝh+1(xh+1))2] ;

6 V̂ ? ← ÊD[ĝ1(x1)] where D is the only distribution in Dval
1 ;

7 return π̂1:H , V̂
?;

8 Function dfslearn(a1:h−1)

9 D̃ ← sample xh ∼ a1:h−1, ah ∼ Unif(A), rh, xh+1 ;

10 dMMD ← minD∈Dval
h

supg∈Gh

∣∣∣ÊD[g(xh)]− ÊD̃[g(xh)]
∣∣∣ ;

11 if dMMD ≤ 2τ and IS RECURSIVE CALL then
12 return
13 if dMMD > 2τ then
14 Add D̃ to Dval

h

15 Add D̃ to Dlearned
h ;

16 for a ∈ A do
17 dfslearn(a1:h−1 ◦ a) ;

C.1.1 Computational considerations

The two-sample test algorithm requires three types nontrivial computation. Line 4 requires importance
weighted policy optimization, which is simply a call to the CSC oracles. Line 5 performs squared-loss
regression on Gh, which is a call to a LS oracle.

The slightly unusual computation occurs on Line 10: we compute the (empirical) Maximum Mean
Discrepancy (MMD) between D and D̃ against the function class Gh, and take the minimum over
D ∈ Dval. First, since |Dval

h | remains small over the execution of the algorithm, the minimization
over D ∈ Dval

h can be done by enumeration. Then, for a fixed D, computing the MMD is a linear
optimization problem over Gh. In the special case where Gh is the unit ball in a Reproducing Kernel
Hilbert Space (RKHS) [44], MMD can be computed in closed form by O(n2) kernel evaluations,
where n is the number of data points involved [43].

To unclutter the sample-complexity analysis, we assume that perfect oracles, i.e., εfeas = εsub = 0.

C.1.2 Sample complexity

Theorem 26. Consider the same Markovian CDP setting as in Theorem 3 but we explicitly require
here that the process is an MDP over X . Under Assumption 9, for any ε, δ ∈ (0, 1), the two-
sample state-identity test algorithm (Algorithm 1+5) returns a policy π such that V ? − V π ≤ ε with
probability at least 1−δ, after collecting at most Õ

(
M2K2H6

ε4 log(|G||Π|/δ) log2(1/δ)
)

trajectories.

For this algorithm, we use the following notion of learned state:

Definition 27 (Learned states). Denote the sequence of states whose data sets are added to Dlearned
h

as S learned
h . States that are in S learned =

⋃
h∈[H] S learned

h are called learned. The sequence of states
whose data sets are added to Dval

h are denoted by Sval
h . Let Scheck

h denote the set of all states that have
been reached by any previous dfslearn call at level h.

Fact 28. We have Sval
h ⊆ S learned

h ⊆ Scheck
h . Furthermore, ∀s ∈ S learned

h and a ∈ A, s ◦ a ∈ Scheck
h+1 .
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Define the following short-hand notations for the objective functions used in Algorithm 5:

VD(π; g′) :=ÊD[K1{π(x) = a}(r + g′(x′))].

VDlearned
h

(π; g′) :=
∑

D∈Dlearned
h

VD(π; g′).

LD(g;π, g′) :=ÊD[K1{π(x) = a}(g(x)− r − g′(x′))2].

LDval
h

(g;π, g′) :=
∑

D∈Dval
h

LD(g;π, g′).

Also define Vs, VS learned
h

, Ls, LSval
h

as the population version of VD, VDlearned
h

, LD, LDval
h

, respectively.

Concentration Results. For our analysis we rely on the following concentration bounds that define
the good event E . This definition involves parameters τ, τL, τV whose values we will set later.

Definition 29. Let E denote the event that for all h ∈ [H] the total number of calls to dfslearn(p)
at level h is at most Tmax = M(K + 1)(1 +Hnexp) during the execution of MetaAlg and that for
all these calls to dfslearn(p) the following deviation bounds hold for all g ∈ Gh, g′ ∈ Gh+1 and
π ∈ Πh (where D̃ is the data set of ntrain samples from Line 9 and s is the state reached by p):

|ÊD̃[g(x)]−Es[g(x)]| ≤τ (12)

|VD̃(π; g′)− Vs(π; g′)| ≤τV (13)

|LD̃(g;π, g′)− Ls(g;π, g′)| ≤τL. (14)

We now show that this event has high probability.

Lemma 30. Set ntrain so that

ntrain ≥ max
{ 1

2τ2
ln

(
12HTmax|G|

δ

)
,

16K

τ2
V

ln

(
12HTmax|G||Π|

δ

)
,

32K

τ2
L

ln

(
12HTmax|G|2|Π|

δ

)}
.

Then P[E ] ≥ 1− δ/2 where E is defined in Definition 29. In addition, in event E , during all calls the
sequences are bounded as |Sval

h | ≤M and |S learned
h | ≤ Tmax.

Proof. Let us first focus on one call to dfslearn, say at path p at level h. First, observe that the data
set D̃ is a set of ntrain transitions sampled i.i.d. from the state s that is reached by p. By Hoeffding’s
inequality and a union bound, with probability 1− δ′, for all g ∈ Gh∣∣∣ÊD̃[g(xh)]−Es[g(xh)]

∣∣∣ ≤
√

log(2|G|/δ′)
2ntrain

.

With δ′ = δ
6HTmax

the choice for ntrain let us bound the LHS by τ .

For the random variable K1{π(xh) = ah}(rh + g′(xh+1)), since ah is chosen uniformly at random,
it is not hard to see that both the variance and the range are at most 2K (see for example Lemma 14
by Jiang et al. [1]). Applying Bernstein’s inequality and a union bound, for all π ∈ Πh and g ∈ Gh+1,
we have

|VD̃(π; g′)− Vs(π; g′)| ≤

√
4K log(2|G||Π|/δ′)

ntrain
+

4K

3ntrain
log(2|G||Π|/δ′)

with probability 1− δ′. As above, with δ′ = δ
6HTmax

our choice of ntrain ensures that this deviation is
bound by τV .
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Similarly, we apply Bernstein’s inequality to the random variable K1{π(xh) = ah}(g(xh)− rh −
g′(xh+1))2 which has range and variance at most 4K. Combined with a union bound over all
g ∈ Gh, g′ ∈ Gh+1, π ∈ Πh we have that with probability 1− δ′,

|LD̃(g;π, g′)− Ls(g;π, g′)| ≤

√
8K log(2|G|2|Π|/δ′)

ntrain
+

2K

ntrain
log(2|G|2|Π|/δ′) ≤ τL.

This last inequality is based on the choice for ntrain and δ′ = δ
6HTmax

. For details on this concentration
bound see for example Lemma 14 by Jiang et al. [1]. Using a union bound, the deviation bounds
(12)–(14) hold for a single call to dfslearn with probability 1− 3δ′.

Consider now the event E ′ that these bounds hold for the first Tmax calls at each level h. Applying a
union bound let us bound P(E ′) ≥ 1− 3HTmaxδ

′ = 1− δ
2 . It remains to show that E ′ ⊆ E .

First note that in event E ′ in the first Tmax calls to dfslearn at level h, the algorithm does not call
itself recursively during a recursive call if p leads to a state s ∈ Sval

h . To see this assume p leads to a
state s ∈ Sval

h and let D ∈ Dval
h be a data set sampled from this state. This means that D̃ and D are

sampled from the same distribution, and as such, we have for every g ∈ Gh

|ÊD̃[g(x)]− ÊD[g(x)]| ≤ |ÊD̃[g(x)]−Es[g(x)]|+ |Es[g(x)]− ÊD[g(x)]| ≤ 2τ. (15)

Therefore dMMD ≤ 2τ , the condition in the first clause is satisfied, and the algorithm does not
recurse. If this condition is not satisfied, the algorithm adds D̃ to Dval

h . Therefore, the initial call to
dfslearn at the root can result in at most MK recursive calls per level, since the identity tests must
return true on identical states.

Further, for any fixed level, we issue at most MHnexp additional calls to dfslearn, since MetaAlg
has at most MH iterations and in each one, dfslearn is called nexp times per level. Any new state
that we visit in this process was already counted by the MK calls per level in the initial execution of
dfslearn. On the other hand, these calls always descend to the children, so the number of calls to
old states is at most M(1 +K)Hnexp per level. In total the number of calls to dfslearn per level is
at most M(1 +K)Hnexp +MK ≤ Tmax, and P(E) ≤ δ/2 follows.

Further, the bound |S learned
h | ≤ Tmax follows from the fact that per call only one state can be added to

S learned
h and there are at most Tmax calls. The bound |Sval

h | ≤ M follows from the fact that in E no
state can be added twice to Sval

h since as soon as it is in Sval
h once, dMMD ≤ 2τ holds (see Eq.(15))

and the current data set is not added to Dval
h .

Depth-first search and learning optimal values. We now prove that polvalfun and dfslearn
produce good value function estimates.

Proposition 31. In event E , consider an execution of polvalfun and let {ĝh, π̂h}h∈[H] denote the
learned value functions and policies. Then every state s in Scheck

h satisfies

|Es[ĝh(xh)]−Es[g
?(xh)]| ≤ (H + 1− h)(2MτV +

√
4M2τV + 2TmaxτL + 8τ), (16)

and every learned state s ∈ S learned
h satisfies

V ?(s)−Q?(s, π̂h) ≤ 2MτV + 2(H − h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ). (17)

Proof. We prove both inequalities simultaneously by induction over h. For convenience, we use
the following short hand notations: εV = MτV and εL = TmaxτL. Using this notation, in event
E , |VDval

h
(π; g′)− VSval

h
(π; g′)| ≤ εV and |LDlearned

h
(g;π, g′)− LS learned

h
(g;π, g′)| ≤ εL hold for all g, g′

and π.

Base case: Both statement holds trivially for h = H + 1 since the LHS is 0 and the RHS is
non-negative. In particular there are no actions, so Eq. (17) is trivial.
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Inductive case: Assume that Eq. (16) holds on level h+ 1. For any learned s ∈ S learned
h , we first

show that π̂h achieves high value compared to π?ĝh+1
(recall its definition from Assumption 9) under

Vs(·; ĝh+1):

Vs(π
?
ĝh+1

; ĝh+1)− Vs(π̂h; ĝh+1) ≤
∑

s∈S learned
h

Vs(π
?
ĝh+1

; ĝh+1)− Vs(π̂h; ĝh+1)

(π?ĝh+1
is optimal w.r.t. ĝh+1 in all s)

= VS learned
h

(π?ĝh+1
; ĝh+1)− VS learned

h
(π̂h; ĝh+1)

≤ VDlearned
h

(π?ĝh+1
; ĝh+1)− VDlearned

h
(π̂h; ĝh+1) + 2εV ≤ 2εV .

(18)

Eq. (17) follows as a corollary:

V ?(s)−Q?(s, π̂h)

= Vs(π
?; g?)− Vs(π̂h; g?) (definition of Vs)

≤ Vs(π?; ĝh+1)− Vs(π̂h; ĝh+1) + 2 sup
s′ being child of s

|Ex′∼s′ [ĝh+1(xh+1)− g?(xh+1)]|

≤ Vs(π?ĝh+1
; ĝh+1)− Vs(π̂h; ĝh+1) + 2(H − h)(2εV +

√
4MεV + 2εL + 8τ)

(s ∈ Sval
h ⇒ s′ ∈ Scheck

h+1 and induction)

≤ 2εV + 2(H − h)(2εV +
√

4MεV + 2εL + 8τ). (using Eq.(18))

This proves Eq. (17) at level h. The rest of the proof proves Eq.(16). First we introduce and recall the
definitions:

gπ̂h,ĝh+1
(x) = E[r + ĝh+1(xh+1) | xh = x, ah = π̂h(x)],

g?,ĝh+1
(x) = E[r + ĝh+1(xh+1) | xh = x, ah = π?ĝh+1

(x)].

Note that gπ̂h,ĝh+1
/∈ Gh in general, but it is the Bayes optimal predictor for the squared losses

Ls(·; π̂h, ĝh+1) for all s simultaneously. On the other hand, Assumption 9 guarantees that g?,ĝh+1
∈

Gh, for any ĝh+1.

The LHS of Eq.(16) can be bounded as

|Es[g?(xh)]−Es[ĝh(xh)]| ≤
∣∣Es[g?(xh)]−Es[gπ̂h,ĝh+1

(xh)]
∣∣+
∣∣Es[gπ̂h,ĝh+1

(xh)]−Es[ĝh(xh)]
∣∣ .

(19)

To bound the first term in Eq.(19),∣∣Es[g?(xh)]−Es[gπ̂h,ĝh+1
(xh)]

∣∣ ≤ ∣∣Es[g?(xh)]−Es[g?,ĝh+1
(xh)]

∣∣+
∣∣Es[g?,ĝh+1

(xh)]−Es[gπ̂h,ĝh+1
(xh)]

∣∣
=
∣∣Es [g?(xh)− g?,ĝh+1

(xh)
]∣∣+

∣∣∣Vs(π?ĝh+1
; ĝh+1)− Vs(π̂h; ĝh+1)

∣∣∣
≤
∣∣Es [g?(xh)− g?,ĝh+1

(xh)
]∣∣+ 2εV . (using Eq.(18))

Now consider each individual context xh emitted in s ∈ Sh:

g?(xh)− g?,ĝh+1
(xh)

= Erh∼R(xh,π?(xh))[rh] + Es◦π?(xh)[g
?(xh+1)]−max

a∈A

(
Erh∼R(xh,a)[rh] + Es◦a[ĝh+1(xh+1)]

)
≤ Erh∼R(xh,π?(xh))[rh] + Es◦π?(xh)[ĝh+1(xh)]

−max
a∈A

(
Erh∼R(xh,a)[r] + Es◦a[ĝh+1(xh)]

)
+ |Es◦π?(xh)[ĝh+1(xh+1)− g?(xh+1)]|

≤ |Es◦π?(xh)[ĝh+1(xh+1)− g?(xh+1)]|

≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ).

The second inequality is true since the second term optimizes over a ∈ A and the first term is the
special case of a = π?(xh). The last inequality follows from the fact that if s ∈ S learned

h ⇒ s ◦ a ∈
Scheck
h+1 and we can therefore apply the induction hypothesis. We can use the same argument to lower

bound the above quantity. This gives∣∣Es[g?(xh)]−Es[gπ̂h,ĝh+1
(xh)]

∣∣ ≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV .
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Next, we work with the second term in Equation (19):∣∣Es[ĝh(xh)]−Es[gπ̂h,ĝh+1
(xh)]

∣∣
≤
√

Es[
(
ĝh(xh)− gπ̂h,ĝh+1

(xh)
)2

] (Jensen’s inequality)

=
√
Ls(ĝh; π̂h, ĝh+1)− Ls(gπ̂h,ĝh+1

; π̂h, ĝh+1) (gπ̂h,ĝh+1
is Bayes-optimal for Ls(·; π̂h, ĝh+1))

≤
√
LSval

h
(ĝh; π̂h, ĝh+1)− LSval

h
(gπ̂h,ĝh+1

; π̂h, ĝh+1) (. . . for all s)

≤
√
LDval

h
(ĝh; π̂h, ĝh+1)− LSval

h
(gπ̂h,ĝh+1

; π̂h, ĝh+1) + εL

≤
√
LDval

h
(g?,ĝh+1

; π̂h, ĝh+1)− LSval
h

(gπ̂h,ĝh+1
; π̂h, ĝh+1) + εL

(ĝh minimizes the first term over Gh, and g?,ĝh+1
∈ Gh from Assumption 9)

≤
√
LSval

h
(g?,ĝh+1

; π̂h, ĝh+1)− LSval
h

(gπ̂h,ĝh+1
; π̂h, ĝh+1) + 2εL

=

√∑
s∈Sval

h

Ex∼s[(g?,ĝh+1
(x)− gπ̂h,ĝh+1

(x))2] + 2εL

≤
√∑
s∈Sval

h

Ex∼s[2|g?,ĝh+1
(x)− gπ̂h,ĝh+1

(x)|] + 2εL (range of variables)

=

√∑
s∈Sval

h

2Ex∼s[g?,ĝh+1
(x)− gπ̂h,ĝh+1

(x)] + 2εL (g?,ĝh+1
(x) ≥ gπ̂h,ĝh+1

(x) ∀x)

=

√∑
s∈Sval

h

2(Vs(π?ĝh+1
; ĝh+1)− Vs(π̂h; ĝh+1)) + 2εL

≤
√

4MεV + 2εL. (|Sval
h | ≤M and Eq.(18))

Put together, we get the desired result for states s ∈ Sval
h :

|Es[g?(xh)]−Es[ĝh(xh)]| ≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV +
√

4MεV + 2εL.
(20)

It remains to deal with states s ∈ Scheck
h \ Sval

h . According to the algorithm, this only happens when
the MMD test suggests that the data set D̃ drawn from s looks very similar to a previous data set
D ∈ Dval

h , which corresponds to some s′ ∈ Sval
h . So,

|Es[ĝh(xh)]−Es[g
?(xh)]|

≤ |Es′ [ĝh(xh)]−Es′ [g
?(xh)]|+ |Es′ [ĝh(xh)]−Es[ĝh(xh)]|+ |Es[g?(xh)]−Es′ [g

?(xh)]|

≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV +
√

4MεV + 2εL (s′ ∈ Sval
h & Eq.(20))

+ |ÊD[ĝh(xh)]− ÊD̃[ĝh(xh)]|+ |ÊD[g?(xh)]−ED̃[g?(xh)]|+ 4τ

≤ (H − h)(2εV +
√

4MεV + 2εL + 8τ) + 2εV +
√

4MεV + 2εL + 2τ + 2τ + 4τ
(MMD test fires)

= (H + 1− h)(2εV +
√

4MεV + 2εL + 8τ).

Quality of Learned Policies and Meta-Algorithm Analysis. After quantifying the estimation
error of the value function returned by polvalfun, it remains to translate that into a bound on the
suboptimality of the returned policy:
Proposition 32. Assume we are in event E . Then the policy π̂ = π̂1:H returned by polvalfun in
Algorithm 5 satisfies

V π̂ ≥ V ? − pπ̂ul − 2HMτV −H2(2MτV +
√

4M2τV + 2TmaxτL + 8τ)

where pπ̂ul = P(∃h ∈ [H] : sh /∈ S learned | a1:H ∼ π̂) is the probability of hitting an unlearned state
when following π̂.
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Proof. Proposition 31 states that for every learned state s ∈ S learned
h

V ?(s)−Q?(s, π̂h) ≤ 2MτV + 2(H − h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ). (21)

Using Lemma 18, we can show that π̂ yields expected return that is optimal up to

V ? − V π̂ ≤pπ̂ul + (1− pπ̂ul)
H∑
h=1

(2MτV + 2(H − h)(2MτV +
√

4M2τV + 2TmaxτL + 8τ))

≤pπ̂ul + 2HMτV + 2(2MτV +
√

4M2τV + 2TmaxτL + 8τ)

H∑
h=1

(H − h)

≤pπ̂ul + 2HMτV +H2(2MτV +
√

4M2τV + 2TmaxτL + 8τ).

Lemma 33. Consider running MetaAlg with dfslearn and polvalfun (Algorithm 1 + 5) with
parameters

nexp ≥
8

ε
ln

(
4MH

δ

)
, neval ≥

32

ε2
ln

(
8MH

δ

)
,

τ =
ε

263H2
, τV =

ε2

2834M2H4
, τL =

ε2

2732H4Tmax

Then with probability at least 1− δ, MetaAlg returns a policy that is at least ε-optimal after at most
MK iterations.

Proof. The proof is completely analogous to the proof of Lemma 20 except with using Proposition 32
instead of Proposition 19. We set the parameters τ , τL and τV so that the policy guarantee of
Proposition 32 is V π̂ ≥ V ? − pπ̂ul − ε/8. More specifically, we bound the guaranteed gap as

2HMτV +H2(2MτV +
√

4M2τV + 2TmaxτL + 8τ)

≤2MHτV + 2MH2τV + 2MH2√τV +H2
√

2TmaxτL + 8H2τ

≤6MH2√τV +H2
√

2TmaxτL + 8H2τ

and then set τ , τL and τV so that each terms evaluates to ε/24.

Proof of Theorem 26. We now have all parts to complete the proof of Theorem 26.

Proof. For the calculation, we instantiate all the parameters as

nexp =
8

ε
ln

(
4MH

δ

)
, neval =

32

ε2
ln

(
8MH

δ

)
, ntrain = 16K

(
2

τ2
L

+
1

τ2
V

)
ln

(
12HTmax|G|2|Π|

δ

)
.

τ =
ε

263H2
, τV =

ε2

2834M2H4
, τL =

ε2

2732H4Tmax
Tmax = M(K + 1)(1 +Hnexp).

These settings suffice to apply all of the above lemmas for these algorithms and therefore with these
settings the algorithm outputs a policy that is at most ε-suboptimal, except with probability δ. For
the sample complexity, since Tmax is an upper bound on the number of datasets we collect (because
Tmax is an upper bound on the number of execution of dfslearn at any level), and we also neval
trajectories for each of the MH iterations of MetaAlg, the total sample complexity is

HTmaxntrain +MHneval = Õ

(
M5H12K4

ε7
log(|G||Π|/δ) log3(1/δ)

)
.

C.2 Global Policy Algorithm

See Algorithm 6. As the other algorithms, this method learns states using depth-first search. The
state identity test is similar to that of VALOR at a high level: for any new path p, we derive an upper
bound and a lower bound on V ?(p), and prune the path if the gap is small. Unlike in VALOR where
both bounds are derived using the value function class G, here only the upper bound is from a value
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function (see Line 11), and the lower bound comes from Monte-Carlo roll-out with a near-optimal
policy, which avoids the need for on-demand exploration.

More specifically, the global policy algorithm does not store data sets but maintains a global policy,
a set of learned paths, and a set of pruned paths, all of which are updated over time. We always
guarantee that π̂h:H is near-optimal for any learned state at level h, and leverage this property to
conduct state-identity test: if a new path p leads to the same state as a learned path q, then Eq.(22)
yields a tight upper bound on V ?(p), which can be achieved by π̂h:H up to some small error and
we check by Monte-Carlo roll-outs. If the test succeeds, the path p is added to the set PRUNED(h).
Otherwise, all successor states are learned (or pruned) in a recursive manner, after which the state
itself becomes learned (i.e., p added to LEARNED(h)). Then, the policy at level h is updated to be
near-optimal for the newly learned state in addition to the previous ones (Line 25). Once we change
the global policy, however, all the pruned states need to be re-checked (Line 26), as their optimal
values are only guaranteed to be realized by the previous global policy and not necessarily by the new
policy.

C.2.1 Computational efficiency

The algorithm contains three non-trivial computational components. In Eq.(22), a linear program
is solved to determine the optimal value estimate of the current path given the value of one learned
state (LP oracle). In Line 24, computing the value of each learned path can be reduced to multi-class
cost-sensitive classification as in the other two algorithms (CSC oracle). Finally, fitting the global
policy in Line (25) requires the same problem as the policy fitting procedure discussed in Section B.7
(multi data set classification oracle).

As with the previous algorithm, we assume no error in the oracles (εfeas = εsub = 0) in the following
to simplify the analysis.

C.2.2 Sample complexity

Theorem 34. Consider a Markovian contextual decision process with deterministic dynamics over
M hidden states, as described in Section 3. When Assumption 10 and 8 hold, for any ε, δ ∈ (0, 1),
the global policy algorithm (Algorithm 6) returns a policy π such that V ? − V π ≤ ε with probability
at least 1− δ, after collecting at most Õ

(
M3H3K

ε2 log (|Π||G|/δ)
)

trajectories.

In the following, we prove this statement but first introduce helpful notation:
Definition 35 (Deviation Bounds). We say the deviation bound holds for a data set of ntrain observa-
tions sampled from q in Line 23 during a call to dfslearn if for all π ∈ Πh

|ÊDq
[K1{a = π(x)}r̄]−Eq,π̂h+1:H [K1{ah = π(xh)}r̄]| ≤ τpol,

where we use Eq,π̂h+1:H
[·] as shorthand for E[·|sh = s, ah ∼ Uniform(K), ah+1:H ∼ π̂h+1:H ] with

s being the state reached by p and π̂h+1:H being the current policy when the data set was collected.
We say the deviation bound holds for a data set of ntest observations sampled in Line 8 during a call
to TestLearned if for all g ∈ Gh:

|ÊD[g(xh)]−Ep[g(xh)]| ≤ τval, |ÊD[r̄]− V π̂h+1:H (p)| ≤ τval.
We say the deviation bound holds for a data set of ntest observations sampled in Line 10 during a call
to TestLearned if for all g ∈ Gh:

|ÊD′q [g(xh)]−Eq[g(xh)]| ≤ τval, |ÊD′q [r̄]− V π̂h+1:H (q)| ≤ τval.

Learning Values using Depth First Search. We first show that if the current policy is close to
optimal for all learned states, then the policy is also good on all states for which TestLearned
returns true.
Lemma 36 (Policy on Tested States). Consider a call of TestLearned at path p and level h and
assume the deviation bounds of Definition 35 hold for all data sets collected during this and all prior
calls. Assume further that π̂h:H satisfies V π̂h:H (q) ≥ V ?(q)− φh for all q ∈ LEARNED(h). Then
g? is always feasible for the program in Equation (22) and if TestLearned returns true, then the
current policy π̂h:H is near optimal for p, that is V π̂h:H (p) ≥ V ?(p)− φh − 8τval.
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Algorithm 6: Global Policy
1 Function main
2 Global LEARNED(h), h ∈ [H];
3 Global PRUNED(h), h ∈ [H];
4 Global {π̂h}h∈[H];
5 dfslearn (◦);
6 return {π̂h}h∈[H];

7 Function TestLearned (p, h)
8 Collect dataset D = {(xh, r̄)} of size ntest where xh ∼ p, ah:H ∼ π̂h:H , r̄ =

∑H
h′=h rh′ ;

9 for q ∈ LEARNED(h) do
10 Collect dataset D′q = {(xh, r̄)} of size ntest where xh ∼ q, ah:H ∼ π̂h:H ,

r̄ =
∑H
h′=h rh′ ;

11 Solve

Vopt = max
g∈G

ED[g(xh)] s.t. ED′q [g(xh)− r̄] ≤ φh + 2τval (22)

if Vopt ≤ ED′q [r̄] + φh + 4τval and ED[r̄] ≥ ED′q [r̄]− 2τval then
12 return true;

13 return false;
14 Function dfslearn (p)
15 Let h = |p| − 1 the current level;
16 if not called from Line 28 and TestLearned (p, h) then
17 Add p to PRUNED(h);
18 return ;
19 for a ∈ A do
20 dfslearn (p ◦ a) ;
21 Add p to LEARNED(h);
22 for q ∈ LEARNED(h) do
23 Collect dataset Dq = {(xh, ah, r̄)} of size ntrain where xh ∼ q, ah ∼ Unif,

ah+1:H ∼ π̂h+1:H , r̄ =
∑H
h′=h rh′ ;

24 V̂ (q)← maxπ∈Π EDq
[K1{ah = π(xh)}r̄] ;

25 Update π̂h to be any policy satisfying

∀q ∈ LEARNED(h) ÊDq
[K1{ah = π(xh)}r̄] ≥ V̂ (q)− 2τpol

for q ∈ PRUNED(h) do
26 if TestLearned(q, h) = false then
27 remove q from PRUNED(h);
28 dfslearn (q) ;

29 return ;
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Proof. The optimal value function g? is always feasible since

ÊD′ [g
?(x)− r̄] ≤ V ?(q)− V π̂h:H (q) + 2τval ≤ φh + 2τval.

Here, we first used the deviation bounds and then the assumption about the performance of the
current policy on learned states. Therefore, Vopt ≥ ÊD[g?(x)] ≥ V ?(p)− τval cannot underestimate
the optimal value of p by much. Consider finally the performance of the current policy on p if
TestLearned returns true:

V π̂h:H (p) ≥ ÊD[r̄]− τval ≥ ÊD′ [r̄]− 3τval
≥ Vopt − 3τval − 4τval − φh ≥ V ?(p)− 8τval − φh.

Here, the first inequality follows from the deviation bounds, the second from the second condition of
the if-clause in TestLearned, the third from the first condition of the if-clause and finally the fact
that Vopt is an accurate estimate of the optimal value of p.

Thus, the TestLearned routine can identify paths where the current policy is close to optimal if this
policy’s performance on all learned states is good. Next, we prove that the policy has near-optimal
performance on all the learned states.
Lemma 37 (Global policy fitting). Consider a call of dfslearn (p) at level h and assume the
deviation bounds hold for all data sets collected during this and all prior calls. Then the program in
Line 25 is always feasible and after executing that line, we have ∀q ∈ LEARNED(h),

Qπ̂h+1:H (q, π̂h) ≥ Qπ̂h+1:H (q, ?)− 3τpol, (23)

where ? is a shorthand for π?π̂h+1:H
, the policy defined in Assumption 10 w.r.t. the current policy

π̂h+1:H . This implies that if all children nodes q′ of q satisfy V π̂h+1:H (q′) ≥ V ?(q′)− β for some β,
then V π̂h:H (q) ≥ V ?(q)− β − 3τpol.

Proof. We prove feasibility by showing that π?π̂h+1:H
is always feasible. For each q ∈ LEARNED(h),

let π̂qh denote the policy that achieves the maximum in computing V̂ (q). Then

ÊDq
[K1{ah = π?π̂h+1:H

(xh)}r̄] ≥ Qπ̂h+1:H (q, ?)− τpol ≥ Qπ̂h+1:H (q, π̂qh)− τpol ≥ V̂ (q)− 2τpol.

The first and last inequality are due to the deviation bounds and the second inequality follows
from definition of π?π̂h+1:H

. This proves the feasibility. Now, using this inequality along with

V̂ (q) = maxπ∈Π EDq
[K1{ah = π(xh)}r̄], we can relate V̂ (q) and Qπ̂h+1:H (q, ?):

V̂ (q) ≥ ÊDq [K1{ah = π?π̂h+1:H
(xh)}r̄] ≥ Qπ̂h+1:H (q, ?)− τpol.

Finally, since π̂h is feasible in Line 25,

V π̂h:H (q) = Qπ̂h+1:H (q, π̂h) ≥ V̂ (q)− 2τpol ≥ Qπ̂h+1:H (q, ?)− 3τpol.

To prove the implication, consider the case where for a ∈ A, all paths q′ = q◦a satisfy V π̂h+1:H (q′) ≥
V ?(q′)− β. Then

V ?(q)− V π̂h:H (q) ≤ V ?(q)−Qπ̂h+1:H (q, ?) + 3τpol ≤ V ?(q)−Qπ̂h+1:H (q, π?) + 3τpol

= Eq′∼q◦π? [V ?(q′)− V π̂h+1:H (q′)] + 3τpol ≤ β + 3τpol,

where we first used the inequality from above and then the fact that π?π̂h+1:H
is optimal given the

fixed policy π̂h+1:H . The equality holds since both V ?(q)−Qπ̂h+1:H (q, π?) both are with respect to
ah ∼ π?h and finally we apply the assumption.

We are now ready to apply both lemmas above recursively to control the performance of the current
policy on all learned and pruned paths:
Lemma 38. Set φh = (H − h+ 1)(8τval + 3τpol) and consider a call to dfslearn(p) at level h.
Assume the deviation bounds hold for all data sets collected until this call terminates. Then for all
p ∈ LEARNED(h), the current policy satisfies

V π̂h:H (p) ≥ V ?(p)− φh
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at all times except between adding a new path and updating the policy. Further, for all p ∈
PRUNED(h) the currently policy satisfies

V π̂h:H (p) ≥ V ?(p)− φh − 8τval

whenever dfslearn returns from level h to h− 1.

Proof. We prove the claim inductively. For h = H + 1 the statement is trivially true since there are
no actions left to take and therefore the value of all policies is identical 0 by definition.

Assume now the statement holds for h+ 1. We first study the learned states. To that end, consider
a call to dfslearn(p) at level h that does not terminate in Line 18 and performs a policy update.
Since dfslearn is called recursively for all p ◦ a with a ∈ A before p is added to LEARNED(h)
and every path that dfslearn is called with either makes that path learned or pruned, all successor
states of p are in PRUNED(h) or LEARNED(h) when p is added. Since the statement holds for
h + 1, for all successor paths p′ we have V π̂h+1:H (p′) ≥ V ?(p′) − φh+1 − 8τval. We can apply
Lemma 37 and obtain that after changing π̂h, it holds that for all q ∈ LEARNED(h) V π̂h:H (q) ≥
V ?(q)− φh+1 − 8τval − 3τpol = V ?(q)− φh. Since that is the only place where the policy changes
or a state is added to LEARNED(h), this proves the first part of the statement for level h.

For the second part, we can apply Lemma 36 which claims that for all paths q for which
TestLearned(q, h) returns true, it holds that V π̂h:H (q) ≥ V ?(q)− φh − 8τval. It remains to show
that whenever dfslearn returns to a higher level, for all paths q ∈ PRUNED(h), TestLearned(q, h)
evaluates to true. This condition can only be violated when we add a new state to PRUNED(h) or
change the policy π̂h:H .

For the later case, we explicitly check the condition in Lines 26-28 after we change the policy
before returning. Therefore dfslearn can only return after Line 28 without further recursive calls
to dfslearn if TestLearned evaluated to true for all q ∈ PRUNED(h). The statement is therefore
true if the algorithm returns after Line 28. Further, a path can only be added to PRUNED(h) after we
explicitly checked that TestLearned evaluates true for it before we return in Line 18. Hence, the
second part of the statement also holds for h which completes the proof.

Lemma 39 (Termination). Assume the deviation bounds hold for all Data sets collected during the
first Tmax = 3M2HK calls of dfslearn and TestLearned. The algorithm terminates during
these calls and at all times for all h ∈ [H] it holds |LEARNED(h)| ≤M . Moreover, the number of
paths that have ever been added to PRUNED(h) (that is, counting those removed in Line 26) is at
most KM .

Proof. Consider a call to TestLearned(p, h) where p leads to the same state as a q ∈ LEARNED(h).
Assume the deviation bounds hold for all data sets collected during this call and before, and we can
show that TestLearned must evaluate to true: Using Lemma 38 we get that on all learned paths
p it holds that V π̂h:H (p) ≥ V ?(p) − φh. Therefore, g? is feasible in (22) since ÊD′ [g

?(x) − r̄] ≤
V ?(q)− V π̂h:H (q) + 2τval ≤ φh + 2τval. This allows us to relate Vopt to the optimal value as

Vopt ≥ ÊD[g?(x)] ≥ V ?(p)− τval.

It further holds that

ÊD[r̄] ≥ V π̂h:H (p)− τval = V π̂h:H (q)− τval ≥ ÊD′ [r̄]− 2τval.

and so the second condition in the if-clause holds. For the first condition, let ĝ be the function that
achieves the maximum in the computation of Vopt. Then

Vopt = ÊD[ĝ(xh)] ≤ Es[ĝ(xh)] + τval ≤ ÊD′q [ĝ(xh)] + 2τval

≤ ÊD′q [r̄] + φh + 2τval + 2τval = ÊD′q [r̄] + φh + 4τval.

Then the first condition is also true and TestLearned returns true. Therefore, TestLearned
evaluates to true for all paths that reach the same state as a learned path. As a consequence, if
dfslearn is called with such a path it returns in Line 18. Furthermore, as long as all deviation
bounds hold, the number of learned paths per level is bounded by |LEARNED(h)| ≤M .
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We next show that the number of paths that have ever appeared in PRUNED(h) is at most KM . This
is true since there are at most KM recursive calls to dfslearn at level h from level h− 1 and only
during those calls a path can be added to PRUNED(h) that has not been in PRUNED(h) before.

Assume the deviation bounds hold for all data sets collected during the first Tmax calls of dfslearn.
There can be at most MH calls of dfslearn in which a path is learned. Since the recursive call
in Line 28 always learns a new state at the next level, the only way to grow PRUNED(h) is via the
recursive call on Line 20, which occurs at most MKH times. Therefore the algorithm terminates
after at most MH + MHK calls to dfslearn. Each of these calls can make at most 1 call to
TestLearned unless it learns a new state and calls TestLearned up to |PRUNED(h)|+1 ≤MK+1
times. Therefore, the total number of calls to TestLearned is bounded by MH(MK+ 1) +MHK.
The lemma follows by noticing that both numbers of calls are bounded by Tmax.

Lemma 40. Let E be the event that the deviation bounds in Definition 35 hold for all data sets
collected during Algorithm 6. Set ntrain and ntest such that

ntrain ≥
16K

τ2
pol

log

(
16TmaxM |Π||G|

δ

)
ntest ≥

1

2τ2
val

log

(
16TmaxM |Π||G|

δ

)
Then P(Ē) ≤ δ.

Proof. Consider a single data set Dq collected in dfslearn(p) at level h where p is learned for
q ∈ LEARNED(h). For the random variable K1{π(xh) = ah}r̄, since ah is chosen uniformly at
random, it is not hard to see that both the variance and the range are upper-bounded by 2K (see for
example Lemma 14 by Jiang et al. [1]). As such, Bernstein’s inequality and a union bound over all
π ∈ Πh gives that with probability 1− δ′,

|ÊDq
[K1{a = π(x)}r̄]−Eq,π̂h+1:H [K1{ah = π(xh)}r̄]| ≤

√
4K log(2|Π|/δ′)

ntrain
+

4K

3ntrain
log(2|Π|/δ′).

Consider a single data set D collected in TestLearned(p, h). By Hoeffding’s inequality and a union
bound, with probability 1− δ′, for all g ∈ Gh

|ÊD[g(xh)]−Ep[g(xh)]| ≤

√
log(2|G|/δ′)

2ntest

Analogously, for a data set D′q collected during TestLearned(p, h) with q ∈ LEARNED(q), we have
with probability at least 1− δ′ that

|ÊD′q [g(xh)]−Eq[g(xh)]| ≤

√
log(2|G|/δ′)

2ntest

Further, again by Hoeffding’s inequality and a union bound we get that for a single data set D
collected in TestLearned(p, h) and a single data set D′q collected during TestLearned(p, h) with
q ∈ LEARNED(q) with probability at least 1− δ′ it holds

|ÊD′q [r̄]− V π̂h+1:H (q)| ≤

√
log(4/δ′)

2ntest
and

|ÊD[r̄]− V π̂h+1:H (p)| ≤

√
log(4/δ′)

2ntest
.

Combining all these bounds with a union bound and using δ′ = δ
4MTmax

, we get that the deviation
bounds hold for the first MTmax data sets of the form D′q and Dq and D with probability at least
1− δ. Using Lemma 39, this is sufficient to show that P(Ē) ≤ δ.
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Proof of Theorem 34. We now have all parts to complete the proof of Theorem 3.

Proof. For the calculation, we instantiate all the parameters as

τpol =
ε

6H
, τval =

ε

6H
, φh = (H − h+ 1)(8τval + 3τpol), Tmax = 3M2HK,

ntest =
log(16TmaxM |Π||G|/δ)

2τ2
val

, ntrain =
16K log(16TmaxM |Π||G|/δ)

τ2
pol

.

These settings suffice to apply all of the above lemmas for these algorithms and therefore with these
settings the algorithm outputs a policy that is at most ε-suboptimal, except with probability δ. For
the sample complexity, since Tmax is an upper bound on the number of calls to TestLearned and at
most M states are learned per level h ∈ [H], we collect a total of at most the following number of
episodes:

(1 +M)Tmaxntest +M2Hntrain

= Õ

(
TmaxMH2

ε2
log(|Π||G|/δ) +

M2H3K

ε2
log(|Π||G|/δ)

)
= Õ

(
M3KH3

ε2
log(|Π||G|/δ)

)
.

D Oracle-Inefficiency of OLIVE

As explained in Section 5 Theorem 4 follows directly from Theorem 5 and Proposition 6 by proof by
contradiction with P 6= NP . In the following two sections, we first prove Proposition 6 and then
Theorem 5.

D.1 Proof for Polynomial Time of Oracles

Proof of Proposition 6. We prove the claim for each oracle separately

1. CSC-Oracle: For tabular functions, the objective can be decomposed as

n−1
n∑
i=1

c(i)(π(x(i))) =
∑
x∈X

n−1
n∑
i=1

1{x = x(i)}c(i)(π(x)). (24)

Each of the |X | terms only depend on π(x) but not on any action chosen for dif-
ferent observations. Hence, since Π = (X → A) , A|X |, the action chosen
by π̂ = n−1 argminπ∈Π

∑n
i=1 c

(i)(π(x(i))) for x ∈ X is argmina∈A
∑n
i=1 1{x =

x(i)}c(i)(π(x)). To compute π̂, we first compute for each x the total cost vector∑n
i=1 1{x = x(i)}c(i)(π(x)) and then pick the smallest entry as the action for π̂(x). Per x,

this takes O(Kn) operations and therefore, the total runtime for this oracle is O(nK|X |).

2. LS-Oracle: Similarly to the CSC objective, the least-squares objective can be decomposed
as

n∑
i=1

(v(i) − g(x(i)))2 =
∑
x∈X

n∑
i=1

1{x = x(i)}(v(i) − g(x))2 (25)

and therefore ĝ = argmin g ∈ G
∑n
i=1(v(i) − g(x(i)))2 can be computed for each obser-

vation separately. A minimizer per observation x of
∑n
i=1 1{x = x(i)}(v(i) − g(x))2 is

ĝ(x) =
∑n

i=1 1{x=x(i)}v(i)∑n
i=1 1{x=x(i)} , where we set ĝ(x) arbitrarily if

∑n
i=1 1{x = x(i)} = 0. This

can be computed with O(n) operations and therefore the total runtime of the LS-oracle is
O(|X |n).

3. LP-Oracle: We parameterize g ∈ G by vectors θ ∈ R|X | where each the value of g for
each x ∈ X is associated with a particular entry θx of θ. Then the LP problem reduces to a
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Figure 2: Family of MDPs that are determined up to terminal rewards r1, . . . , rn ∈ [0, 1]. Finding
the optimal value of the most optimistic MDP in this family solves the encoded 3-SAT instance. Solid
arrows represent actions and dashed arrows represent random transitions.

standard linear program in R|X |. Khachiyan [37], Grötschel et al. [45] have shown using the
ellipsoid method, these problems can be solved approximately in polynomial time. Note that
the initial ellipsoid can be set to any ellipsoid containing [0, 1]|X | due to the normalization of
rewards. Further, the volume of the smallest ellipsoid can be upper bounded by a polynomial
in εfeas using the fact that we only require a solution that is feasible up to εfeas and applying
the ellipsoid method to the extended polytope with all constraints relaxed by εfeas.

D.2 OLIVE is NP-hard in tabular MDPs

Instead of showing Theorem 5 directly, we first show the following simpler version:
Theorem 41. Let P denote the family of problems of the form (3), parameterized by (X ,A, D0,D)
with implicit G = (X → [0, 1]) and Π = (X → A) (i.e., the tabular value-function and policy
classes) and with φ = 0. P is NP-hard.

Some remarks are in order about this statement

1. Our proof actually shows that it is NP-hard to find an ε-approximate solution to these
optimization problems, for polynomially small ε.

2. The two theorems differ in whether the data sets (Di ∈ D) are chosen adversarially
(Theorem 41), or induced naturally from an actual run of OLIVE (Theorem 5). Therefore,
Theorem 5 is strictly stronger.

3. At a high level, these results imply that OLIVE in general must solve NP-hard optimization
problems, presenting a barrier for computational tractability.

4. These results also hold with imperfect expectations and polynomially small φ.
5. We use the (G,Π) representation here but similar results hold with F representation (i.e.,

approximating the Q-function; see Theorems 42 and 43).

For intuition we first sketch the proof of Theorem 41. The complete proof follows below.

Proof Sketch of Theorem 41. We reduce from 3-SAT. Let ψ be a 3-SAT formula on n variables
x1, . . . , xn with m clauses c1, . . . , cm. We construct a family of MDPs as shown in Figure 2
that encodes the 3-SAT problem for this formula as follows: For each variable xi there are two
terminal states x1

i and x0
i corresponding to the Boolean assignment to the variable. For each variable,

the reward in either x1
i or x0

i is 1 and 0 in the other. The family of MDPs contains all possible
combinations of such terminal rewards. There is also one state per clause cj and one start state s0.
From each clause, there are 7 actions, one for each binary string of length 3 except “000.” These
actions all receive zero instantaneous reward. For clause c` = xi ∨ x̄j ∨ x̄k, the action ”b1b2b3”
transitions to states xb1i , x

1−b2
j , or x1−b3

k , each with probability 1/3. The intuition is that the action
describes which literals evaluate to true for this clause. From the start state, there are n + m + 1
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actions. For each variable xi, there is a [try xi] action that transitions uniformly to x0
i , x

1
i and receives

0 instantaneous reward. For each clause cj there is a [try cj] action that transitions deterministically to
the state for clause cj , but receives reward −1/n. And finally there is a [solve] action that transitions
to a clause state uniformly at random.

For each xi, we introduce a constraint into Problem (3) corresponding to the [try xi] action. These
constraints impose that the optimal ĝ ∈ G satisfies ∀i ∈ [m] : ĝ(x0

i ) + ĝ(x1
i ) = 1. We also introduce

constraints for the [try cj] actions and from s0. Recall that values must be in [0, 1].

With these constraints, if the 3-SAT formula has a satisfying assignment, then the optimal value from
the start state is 1, and it is not hard to see that there exists function ĝ ∈ G that achieves this optimal
value, while satisfying all constraints with a π̂ ∈ Π. Conversely, if the value of the start date is 1, we
claim that the 3-SAT formula is satisfiable. In more detail, the policy must choose the [solve] action,
and the value function must predict that each clause state has value 1, then the literal constraints
enforce that exactly one of x0

i , x
1
i has value 1 for each i. Thus the optimistic value function encodes

a satisfying assignment, completing the reduction.

D.2.1 Proof of Theorem 41

In this section, we prove that the optimization problem solved by OLIVE is NP-hard. The proofs rely
on the fact that OLIVE only adds a constraint for a single time step h that has high average Bellman
error. However, using an extended construction, one can show similar statements for a version of
OLIVE that adds constraints for all time steps if there is high average Bellman error in any time step.

For notational simplicity, we do not prove Theorem 41 and Theorem 5 directly, but versions of these
statements below with a tabular Q-function representation F instead of the (G,Π) version presented
in the paper. For this formulation, OLIVE picks the policy for the next round as the greedy policy πf̂k
of the Q-function that maximizes

f̂k = argmax
f∈F

ÊD0 [f(x, πf (x))] (26)

s.t. ∀ Di ∈ D :

|ÊDi
[1{a = πf (x)}(f(x, a)− r − f(x′, πf (x′)))]| ≤ φ.

This proof naturally extends to the (G,Π) representation: note that OLIVE runs in a completely
equivalent way if it takes a set of (g, π) pairs induced by F as inputs, i.e., {(x 7→ f(x, πf (x)), x 7→
πf (x)) : f ∈ F} [1, see Appendix A.2,]. When F is the tabular Q-function class, it is easy to verify
that the induced set is the same as G × Π where G and Π are the tabular value-function / policy
classes respectively. Therefore, the proof for Theorem 41 just requires a simple substitution where
f(x, πf (x)) is replaced by g(x) and πf (x) is replaced by π.

We first prove the simpler NP-hardness claim.

Theorem 42 (F-Version of Theorem 41). Let P denote the family of problems of the form (26),
parameterized by (X ,A, D0,D) with implicit F = (X ×A → [0, 1]) (i.e., the tabular Q-function
class) and with φ = 0. P is NP-hard.

Proof. For the ease of presentation, we show the statement for F = (X × A → [−1, 1]) and all
values scaled to be in [−1, 1]. By linearly transforming all rewards accordingly, one obtains a proof
for the statement with all values in [0, 1].

We demonstrate a reduction from 3-SAT. Recall that an instance of 3-SAT is a Boolean formula ψ on
n variables can be described by a list of clauses C1, . . . Cm each containing at 3 literals (a variable
xi or its negation x̄i), e.g. C1 = (x̄2 ∨ x3 ∨ x̄5). As notation let o1

j,i for i ∈ {1, 2, 3} denote the ith

literal in the jth clause and o0
j,i its negation (e.g. o1

1,3 = x̄5 and o0
1,3 = x5). Given a 3-SAT instance

with m clauses C1:m and n variables x1:n, we define a class of finite episodic MDPsM. This class
contains (among others) 2n MDPs that correspond each to an assignment of Boolean values to x1:n.

The proof proceeds as follows: First we describe the construction of this class of MDPs. Then
we will demonstrate a set of constraints for the OLIVE program. Importantly, these constraints
do not distinguish between the 2n MDPs in the classM corresponding to the binary assignments
to the variables x1:n, so the optimistic planning step in OLIVE needs to reason about all possible
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Figure 3: Family of MDPsM for a specific instance of a 3-SAT problem.

assignments. Finally, we show that with the function class F = (X ×A)→ [−1, 1], the solution to
the optimization problem (26) determines whether ψ is satisfiable or not.

For simplicity, the MDPs inM have different actions available in different states and rewards are
in [−1, 1] instead of the usual [0, 1]. We can however find equivalent MDPs that satisfy the formal
requirements of OLIVE.

MDP structure. Let ψ be the 3-SAT instance with variables x1:n and clauses C1:m. The state
space for MDPs inM consists of m+ 2n+ 1 states, two for each variable, one for each clause, and
one additional starting state. For each variable xi, there are two states x0

i , x
1
i corresponding to the

variable and its negation. Each clause Cj has a state Cj , and the starting state is denoted s0.

The transitions are as follows: The states x0
i , x

1
i corresponding to the literals are terminal, with

just a single action. The class M differs only in how it assigns rewards to these terminal states.
Specifically let y ∈ {0, 1}n be a binary vector, then there is an MDP My ∈M where for all i ∈ [n]

the reward for literal xyii = 1 and x1−yi
i = 0. Specifically, all MDPs inM have values that satisfy

V (x1
i ) + V (x0

i ) = 1 for all i ∈ [n].

Each clause state Cj has 7 actions, indexed by b ∈ {0, 1}3 \ {“000”}, each corresponding to an
assignment of the variables that would satisfy the clause. Taking an action b transitions the agent to
three literal states with equal probability 1/3 and the agent receives no immediate reward. Which
literals is determined by the clause. Assume the clause consists of Ct = (x̄i ∨ xj ∨ x̄k). Then

P(x1
i |ct, b) =

1

3
1{b1 = 0}, P(x0

i |ct, b) =
1

3
1{b1 = 1}

P(x1
j |ct, b) =

1

3
1{b2 = 1}, P(x0

j |ct, b) =
1

3
1{b2 = 0}

P(x1
k|ct, b) =

1

3
1{b3 = 0}, P(x0

k|ct, b) =
1

3
1{b3 = 1}.

For example, taking action 011 in clause state C1 = (x̄2 ∨ x3 ∨ x̄5) transitions with equal probability
to x1

2 (since the first component of the action is 0), x1
3 (second component is 1) and x0

5 (last component
is 1).

The initial state has n + m + 1 actions. The first set of actions are labeled [try xi], for i ∈ [n].
They receive zero instantaneous reward and transition uniform to x1

i , x
0
i . The second set of actions

are labeled [try Cj] (for j ∈ [m]), which receives 1/m instantaneous reward and transitions
deterministically to cj . Finally there is a [solve] action that transitions uniformly to the {Cj}mj=1
states and receives zero instantaneous reward.

OLIVE Constraints. We introduce constraints at the start state s0, all of the constraint states Cj ,
and the distributions induced when taking the [try xi] action. Since the literal states x1

i , x
0
i have

no actions, we omit the second argument from the Q-functions f . We list these constraints in the
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following writing out the constraints for each optimal action that are implied by the indicator of the
original constraints in Problem (26): From initial state:

f(s0, [try cj]) = max
b
f(c1, b)− 1/m if πf (s0) =[try cj] (27)

f(s0, [solve]) =
1

m

m∑
i=1

max
b
f(Cj , b) if πf (s0) =[solve] (28)

f(s0, [try xi]) =
f(x0

i ) + f(x1
i )

2
if πf (s0) =[try xi] (29)

From clause j after [try Cj]:

f(Cj , b) =
f(o

b(1)
j,1 ) + f(o

b(2)
j,2 ) + f(o

b(3)
j,3 )

3
if πf (Cj) =b (30)

From variable i after [try xi]:

f(x1
i ) + f(x0

i )

2
=

1

2
(31)

Note that all appearances of f on the LHS could be replaced by f(·, πf (·)). There are other types of
constraints involving literal states that could be imposed, specifically constraints of the form

m∑
i=1

w2i−1f(x1
i ) + w2if(x0

i ) = V (32)

for some V and w ∈ ∆([2m]), which appears by first applying [solve] or [try Cj] and then
various actions at the clause states to arrive at a distribution over the literal states. It is important
here that constraints of this type are not included in the optimization problem, since it distinguishes
elements of the familyM.

The Optimal Value. Consider the OLIVE optimization problem (26) on the family of MDPsM
with constraints described above. Note that all MDPs in the family generate identical constraints,
so formulating the optimization problem does not require determining whether ψ has a satisfying
assignment or not.

Now, if ψ has a satisfying assignment, say y? ∈ {0, 1}n, then the MDP My? ∈M has optimal value
1. Moreover since the function class F is entirely unconstrained, this function class can achieve
this value, which is the solution to Problem (26). To see why My? has optimal value 1, consider the
policy that chooses the [solve] action and from each clause chooses the 3-bit string that transitions
to the literal states that have value 1. Importantly, since ψ has a satisfying assignment, this must be
true for one of the 7 actions.

Conversely, suppose that Problem (26), with all the constraints described above, has value 1. We argue
that this implies ψ has a satisfying assignment. Let f̂ , π̂ correspond to the Q-value and policy that
achieve the optimal value in the program. First, due to the constraints on the [try xi] distributions
and the immediate negative rewards for taking [try Cj] actions, we must have π̂(s0) = [solve]

and f̂(s0, [solve]) = 1. The constraints on f̂ now imply that for each clause Cj there exists a
action bj ∈ {0, 1}3 \ {000} such that f̂(Cj , bj) = 1. Proceeding one level further, if bj satisfies
f̂(Cj , bj) = 1 then we must have that f̂(o

bj(k)
j,k ) = 1 for all k ∈ {1, 2, 3}. And due to the boundedness

conditions on f̂ along with the constraint that f̂(x0
i ) + f̂(x0

i ) = 1, one of these values must be 1,
while the other is zero. Therefore, for any variable that appears in some clause the corresponding
literal states must have predicted value that is binary. Since the constraints corresponding to the
clauses are all satisfied (or else we could not have value 1 at s0), the predicted values at the literal
states encodes a satisfying assignment to ψ.

D.2.2 Proof of Theorem 5

After showing that Problem (26) is NP-hard when constraints are chosen adversarially, we extend
this result to the class of problems encountered by running OLIVE. Again, we prove a version of the
statement with F representation but the proof for Theorem 5 is completely analogous.
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Theorem 43 (F Version of Theorem 5). Let POLIVE denote the family of problems of the form (26),
parameterized by (X ,A,Env, t), which describes the optimization problem induced by running
OLIVE in the MDP environment Env (with states X , actionsA and perfect evaluation of expectations)
for t iterations with F = (X ×A → [0, 1]) and with φ = 0. POLIVE is NP-hard.

Proof. The proof uses the same family of MDPsM and set of constraints as the proof of Theorem 42
above. As mentioned there, it is crucial that constraints in Equations (27)-(31) are added for all
clauses and literals but none of the possible constraints of the form in Equation (32) that arise from
distributions over literal states after taking actions [try Cj] or [Solve]. To prove that OLIVE can
encounter NP-hard problems, it therefore remains to show that running OLIVE on any MDP inM
can generate the exact set of constraints in Equations (27)-(31).

The specification of OLIVE by Jiang et al. [1] only prescribes that a constraint for one time step h
among all that have sufficiently large average Bellman error is added. It however leaves open how
exactly h is chosen and which f ∈ F is chosen among all that maximize Problem (26). Since this
component of the algorithm is under-specified, we choose h and f ∈ F in an adversarial manner
within the specification, which amounts to adversarial tie breaking in the optimization.

We now provide a run of OLIVE on an arbitrary MDP inM that generates exactly the set of constraints
in Equations (27)-(31):

• For the first t ∈ [m] iterations, OLIVE picks any Q-function ft ∈ F with ft(s0, b) = 1{b =
[try Ct]} and ft(Ct, b) = 1 and ft(x0

i , πft(x
0
i )) = ft(x

1
i , πft(x

1
i )) = 0 for all actions b

and i ∈ [n] and chooses to add constraints for h = 2. Since the context distributions is a
different Ct for every iteration t, this is a valid choice and generates constraints

f(Ct, b) =
f(o

b(1)
t,1 ) + f(o

b(2)
t,2 ) + f(o

b(3)
t,3 )

3
if πf (Ct) =b

for all b.

• For the next n iterations t = m + 1,m + 2, . . .m + n, OLIVE picks any Q-
function ft ∈ F with ft(s0, b) = 1{b = [try xt−m]} and ft(x0

t−m, πft(x
0
t−m)) =

ft(x
1
t−m, πft(x

1
t−m)) = 1 for all b. The only positive average Bellman error occurs in the

mixture over literal states at h = 2 and therefore constraints
f(x1

t−m, πf (x1
t−m)) + f(x0

t−m, πf (x0
t−m))

2
=

1

2
are added.

• Finally, in iteration t = m + n + 1, OLIVE picks any ft ∈ F with ft(s0, b) = 1{b =
[try x1]} and ft(x0

1, πft(x
0
1)) = ft(x

1
1, πft(x

1
1)) = 1/2 for all actions b. Now there

is positive average Bellman error in the initial state s0 and with ht = 1 the following
constraints are added

f(s0, [try cj]) = max
b
f(C1, b)− 1/m if πf (s0) =[try cj]

f(s0, [solve]) =
1

m

m∑
i=1

max
b
f(Cj , b) if πf (s0) =[solve]

f(s0, [try xi]) =
f(x0

i ) + f(x1
i )

2
if πf (s0) =[try xi]

for all i ∈ [n] and j ∈ [m].

Since at iteration t = m + n + 2, the set of constraints matches exactly the one in the proof of
Theorem 42, OLIVE solves exactly the problem instance described there which solves the given
3-SAT instance.

E Additional Barriers

In this section, we describe several further barriers that we must resolve in order to obtain tractable
algorithms in the stochastic setting.
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Figure 4: Further barriers to tractable algorithms. Circles denote states, while rectangles denote
observations. Solid lines denote deterministic transitions. Dashed lines denote stochastic transitions
(middle) or context emissions (right). Left: construction for Theorem 45, where ∆ := gbad − g?
reflects the amount that gbad over-predicts in each state. On the upper chain, statistical fluctuations can
favor gbad over g?, which leads to a policy choosing the wrong action at the start. Center: construction
for Proposition 46, where most policies induce a uniform distribution over states at level two and
an average constraint cannot drive the agent to the top state. Right: construction for Proposition 47
where an ε loss in roll-out policy converts into a

√
ε prediction error in value function.

E.1 Challenges with Credit Assignment

We start with the learning step, ignoring the challenges with exploration, and focus on a family of
algorithms that we call Bellman backup algorithms.
Definition 44. A Bellman backup algorithm collects n samples from every state and iterates the
policy/value updates

π̂h = argmax
π∈Πh

∑
s∈Sh

Es[r + ĝh+1(x′)|a = π(x)]

ĝh = argmin
g∈Gh

∑
s∈Sh

Es[(g(x)− r − ĝh+1(x′))2|a = π̂h(x)].

This algorithm family differs only in the exploration component, which we are ignoring for now,
but otherwise is quite natural. In fact, these algorithms can be viewed as a variants of Fitted Value
Iteration (FVI)7 [41, 47] adapted to the (g, π) representation. Unfortunately, such algorithms cannot
avoid exponential sample complexity, even ignoring exploration challenges.
Theorem 45. For any H ≥ 1, ε ∈ (0, 1), there exists a layered tabular MDP with H levels, 2 states
per level, and constant-sized G and Π satisfying Assumptions 7 and 8, such that when n < 4H/(32ε2),
with probability at least 1/4, the bellman backup algorithm outputs a policy π̂ such that V π̂ ≤ V ?−ε.

A sketch of the construction is displayed in the left panel of Figure 4. The intuition is that statistical
fluctuations at the final state can cause bad predictions, which can exponentiate as we perform the
backup. Ultimately this can lead to choosing a exponentially bad action at the starting state. The full
proof follows:

Proof. Consider an MDP with H + 1 levels with deterministic transitions and with one start state x0

and two states per level {xh,a, xh,b}1≤h≤H . From the start state there are two actions a, b where a
transitions to x1,a and b transitions to x1,b. From then on, there is just one action which transitions
from xh,z to xh+1,z z ∈ {a, b}. The reward from xH,a is Ber(1/2 + ε) and the reward from xH,b
is Ber(1/2). Both value functions in the class have g(xh,a) = 1/2 + ε. g? is in the class and it has
g?(x0) = 1/2 + ε, g?(xh,b) = 1/2. There is also a bad function gbad(x0) = 1/2 + ε, gbad(xh,b) =
1/2 + ε/2h−1.

Since in our construction there are only two policies, and they only differ at x0, for the majority of
the proof we can focus on policy evaluation. The first step is to show that with non-trivial probability,
we will select gbad in the first square loss problem. Since all functions make the same predictions on

7This family algorithms are prevalent in empirical RL research today: the popular Q-learning algorithm with
function approximation can be viewed as a stochastic variant of its batch version known as Fitted Q-iteration
[46], which fits into the FVI framework.
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xH,a we focus on xH,b. Our goal is to show that gbad will be chosen by the algorithm with substantial
probability.

A lower bound on the binomial tail. The rewards from xH,b are drawn from Ber(1/2). Call this
values r1, . . . , rn with average r̄. We select gbad if r̄ ≥ 1/2+ε/2H . By Slud’s lemma, the probability
is

P[r̄ ≥ 1/2 + ε/2H ] ≥ 1− Φ

(
nε/2H√
n/4

)
where Φ is the standard Gaussian CDF, which can be upper bounded by

Φ(x) =
1√
2π

∫ x

−∞
exp(−u2/2)du =

1

2
+

1√
2π

∫ x

0

exp(−u2/2)du ≤ 1

2
+

x√
2π
.

Thus the probability is at least

≥ 1

2
− 1√

2π

nε/2H√
n/4

≥ 1

2
−
√

8

2π
ε/2H

√
n ≥ 1/4

where the final inequality holds since n ≤ 4H

32ε2 <
π4H

64ε2 .

Thus with probability at least 1/4 the average reward from state xH,b is at least 1/2 + ε/2H , in which
case gbad is the square loss minimizer. From this point on, at every subsequent level 1 < h < H ,
both g and gbad have the same square loss and tie-breaking can cause gbad to always be chosen. Thus
the final policy optimization step uses gbad to approximate the future but gbad(x1,a) = gbad(x1,b) =
1/2 + ε. Thus the final policy can select action b, which leads to a loss of ε.

Actually, the policy optimization step is inconsequential in the construction. As such, the theorem
shows that FVI style learning rules cannot avoid bias that propagates exponentially without further
assumptions, leading to an exponential sample complexity requirement. We emphasize that the result
focuses exclusively on the learning rule and applies even with small observation spaces and regardless
of exploration component of the algorithm, with similar conclusions holding for variations including
Q-representations and different loss functions. Theorem 45 provides concrete motivation for stronger
realizability conditions such as Assumption 9, variants of which are also used in prior analysis of
FVI-type methods [41].

E.2 Challenges with Exploration

We now turn to challenges with exploration that arise when factoring the Q-function class into the
(g, π) pairs, which works well in the deterministic setting, as in Section 4. However, the stochastic
setting presents further challenges. Our first construction shows that a decoupled approach using
OLIVE’s average Bellman error in the learning rule can completely fail to learn in the stochastic
setting.

Consider an algorithm that uses an optimistic estimate for ĝh+1 to find a policy π̂h that drives further
exploration. Specifically, suppose that we find an estimate ĝh+1 such that for all previously visited
distributions D ∈ Dh+1 at level h+ 1

ÊD[ĝh+1(x)] = ÊD[g?(x)], (33)

where we assume that all expectations are exact. We may further encourage ĝh+1 to be optimistic
over some distribution that provides good coverage over the states at the next level. Then, we use
π̂h = argmaxπ ÊDh

[r + ĝh+1(x′)|a = π(x)] as the next exploration policy. Intuitively, optimism
in ĝh+1 should encourage π̂h to visit a new distribution, which will drive the learning process.
Unfortunately, the next proposition shows that this policy π̂ may be highly suboptimal and also fail to
visit a new distribution.

Proposition 46. There exists a problem, in which the algorithm above stops exploring new distribu-
tions when the best policy it finds is worse than the optimal policy by constant value.
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We sketch the construction in the center panel of Figure 4. We create a two level problem where most
policies lead to a uniform mixture over two subsequent states, one good and one bad. Constraint (33)
on this distribution favors a value function that predicts 1/2 on both states, and with this function, the
optimistic policy leads us back to the uniform distribution. Thus no further exploration occurs!

Proof of Proposition 46. Consider a two-layer process with one initial state s0 with optimal value
V (s0) = 1 and two future states s1, s2 where V (s1) = 1, V (s2) = 0. From s0 action a determin-
istically transitions to s1 and action b deterministically transitions to s2, from s1 and s2 all actions
deterministically receive the corresponding reward. No rewards are received upon making the first
transition. There are m contexts that are equally likely from s0 and the policy class consists of one
policy, π? that always chooses action a, and Ω(2m) bad policies that choose action a, b with equal
probability. These policies each have value 1/2.

If we perform a roll-in with a bad policy, we generate a constraint of the form |g(s1)/2 + g(s2)/2−
1/2| ≤ ε at level two. Hence, with this constraint we might pick ĝh+1 such that ĝh+1(s1) =
ĝh+1(s2) = 1/2, since it satisfies all the constraints and also has maximal average value on any
existing roll-in. However, using this future-value function in the optimization

Exh∼s0 [rh + ĝh+1(s′)|ah = π(xh)], (34)

we see that all policies, including π? have the same objective value. When we choose any one of
them but π?, the “optimistic” value computed by maximizing Eq.(34) will be achieved by the chosen
policy and the algorithm stops exploration with a suboptimal policy.

The main point is that by using the average value constraints (33), we lose information about
the “shape” of g?, which can be useful for exploration. In fact, the proposition does not rule out
approaches that learn the shape of the state-value function, for example with square loss constraints
that capture higher order information. However square loss constraints are less natural for value based
reinforcement learning, as we show in the next proposition. We specifically focus on measuring a
value function by its square loss to a near optimal roll-out.
Proposition 47. In the environment in the right panel of Figure 4, an ε-suboptimal policy π̂ achieves
reward 0, and the square loss of g? w.r.t. the roll-out reward is Ex∼s[(g?(x)− r)2 | a ∼ π̂] = ε. This
square loss is also achieved by a bad value function gbad such that Ex∼s[gbad(x)− g?(x)] = O(

√
ε).

The claim here is weaker than the previous two barriers, but it does demonstrate some difficulty
with using square loss in an approach that decouples value function and policy optimization. The
essence is that a roll-out policy π̂ that is slightly suboptimal on average may have significantly lower
variance than π?. Since the square loss captures variance information, this means that g? may have
significantly larger square loss to π̂’s rewards, which either forces elimination of g? or prevents us
from eliminating other bad functions, like gbad in the example.

Proof of Proposition 47. Consider a process with H = 1 and just one state with two observations: x1

and x2, both with two actions. For x1, both actions receive 0 reward, while for x2 action a receives
reward 1 while action b receives reward 0. However, observation x2 appears only with probability ε.
As such, an ε-optimal policy from this state may choose action b on both contexts, receiving zero
reward. Let π̂ denote this near-optimal policy.

The value function class G provided to the algorithm has many functions, but three important ones
are (1) g0 which always predicts zero and is the correct value function for π̂ above, (2) g? which is
the optimal value function, and (3) gbad, which we now define. These latter two function have

g?(x1) , 0, g?(x2) , 1

gbad(x1) ,
√
ε, gbad(x2) ,

√
ε

Now, let us calculate the square loss of these three value functions to the roll-out achieved by π̂.

sqloss(g0, bH , π̂) = (1− ε)(0− 0)2 + ε(0− 0)2 = 0

sqloss(g?, bH , π̂) = (1− ε)(0− 0)2 + ε(1− 0)2 = ε

sqloss(gbad, bH , π̂) = (1− ε)(
√
ε− 0)2 + ε(

√
ε− 0)2 = ε
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We see that gbad and g? have identical square loss on this single state, which proves the claim.

Intuitively, this is bad because if we use constraints defined in terms of square loss, we risk eliminating
g? from the feasible set, or we need the constraint threshold to be so high that bad functions like gbad
remain. These bad function can cause exploration to stagnate or introduce substantial bias depending
on the learning rule.

To summarize, in this section we argue for the necessity of completeness type conditions for FVI-
type learning procedures, and demonstrate barriers for exploration with decoupled optimization
approaches, both with expectation and square loss constraints. We believe overcoming these barriers
is crucial to the development of a computationally efficient algorithm.
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