6 Appendix

6.1 Manifold

Proposition 10. If S(x,0) is differentiable with respect to x and V S (x, 0) # 0 throughout By, By
is an (d — 1)-dimensional differentiable manifold and has measure zero.

Proof. For any point b € By, since V;S(x,0) # 0, there is some direction where V,S(z, 0) is
non-zero. By the implicit function theorem, this means that there is a differentiable mapping from a
subset of R?~! to a neighborhood of b within By. Thus, By is a (d — 1)-dimensional differentiable
manifold. Further, in R¢, every open cover has a countable subcover. Thus, there is a countable
family of local patches (with local differentiable charts). Since each local patch is a continuous
mapping from a measure zero set R?~!, the local patches have measure zero. Since a countable union
of measure zero sets has measure zero, By has measure zero. O

6.2 Important Lemma

Lemma 11. Suppose 0 € ©Oyegy10r and Assumption E] holds. If g(x) is smooth and has bounded
support,

Fe)= [ gla)da (1)
S(xz,0)<s

is smooth at 0.

Proof. For this proof, we rely heavily on the arguments in [Hoveijn| (2007)

Since g(x) has bounded support, for ||z|| > M,, g(x) = 0. Intuitively, this means we can define a
function that is equal to S(x, 0) for |z|| < M, and is a small value ||z|| > M, and mollify to make
it smooth. More precisely, let Sy,i, = min(—2, min|, <2, S(z,0)). Define f(x) to be equal to
S(z,0) inside a ball of radius 2, and equal to S,,;, outside. Then mollify the function between
balls of radius M, and 2M .. If we shift the function by S,,,;,,, the function is smooth, always positive,
and vanishes at infinity. Thus, it satisfies the Shifted class C functions of Definition 2 of Hoveijn
(2007).

Then, we can examine the function

Gls) = / g(e)d, (16)
—1<f(z)<s

which will have the same derivatives (if they exist) as F'(s) around 0. Note that S,,;, < —2 < —1,
so the integration between the level sets is well-defined.

0 is a regular value because 6 € Oreguiar. Further, we don’t need the non-degeneracy conditions of
Hoveijn|(2007)) because V,.S(x, #) is continuous (Assumption on a compact set (the support of
g(x)) and thus is bounded below. And thus, a neighborhood around 0 are regular values.

We can use the flow box and diffeomorphism argument from [Hoveijn|(2007) to express the volume
function as an integral with & as the upper limit (see Proposition 7 of Hoveijn (2007)). While Hoveijn
(2007) uses 1 as the integrand, the same argument holds for g(z) as the integrand, and we recover
that since g(z) is smooth, the integral is smooth.

O

6.3 Decision Boundary Density

Proposition 12. [f 0 € ©eguiqr and Assumptions @ and [7] hold, then b(6) exists.
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Proof. The existence of b(#) will follow from Lemma
Define

F(s) = / p*(z)dx (17
S(z,0)<s
zlzllg* [S(z,0) < s] (18)

then b(¢) = F’(0) which exists by Lemma|[T1}

6.3.1 Gradient of Z

Lemma 13.

1. 1
VZ(9) = 3 lim - Sol<s VoS(z, 0)Ely|zlp(x)dx (19)

Proof. The model classifies correctly when S(z, 8)y > 0 and classifies incorrectly when S(x, )y <
0

1
VZ(0)-a=lim —(Z(0 + ha) — Z(0 — ha)) (20)
h—0 2h
1
— lim o ([ Prly = ~1laldpo) + [ Prly = 1la]dp(x)—
h—0 2h S(z,04+ha)>0 S(z,04+ha)<0
21
-/ Prly = ~1jaldp(o) - [ Prly = 1jaldp(x)] 22)
S(xz,0—ha)>0 S(xz,0—ha)<0
= lim — / (Pr[y = 1|z] — Prly = 1]z])dp(z)+ (23)
h—0 2h S(xz,0+ha)<0,S(z,0—ha)<0
+ (Prly = 1[z] — Prfy = 1]a])dp(a) + 4)
S(z,0+ha)>0,S(x,0—ha)<0
+ (Prly = 1)) — Pafy = ~1fa])dp(o)+ o)
S(z,0+ha)<0,5(z,0—ha)>0
+ (Prly = ~1la] = Prly = ~1[e])dp(a)] 26)
S(x,0+ha)>0,5(x,0—ha)>0
. 1
— lim o ([ Blylaldplc) — | Efy[e}dp(a)
h=0 2N/ 52,04 ha)<0,5(z,0—ha)>0 S(2,0+ha)>0,5(z,0—ha)<0
27
Applying Taylor’s theorem,
. 1
v2(0)-a = fim ool | Blylaldp(o) - [ Ely[«ldp(z)
—0 |S(z,0)|<—ha-V¢S(x,0)+0(h?) |S(z,0)|<ha-VoS(z,0)+O0(h?)
(28)
Because h — 0,
. 1
vZ(0)-a = finy ool | Blylaldpl) — | Elyla)dp(z)]
h=0 21" |5(2,6)|<—ha-VS(x,0) |S(2,8)| <ha-VeS(z,8)
(29)
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—sgn(ha - VoS(z,0))

VZ(0)-a= lim Ely|z]dp(x (30)
) h=0 J|5(2,0)|<|ha-VS(z,0)| 2h leldp()
1 1
VZ(0)-a=—=lim ———————a - VpS(z,0)Ely|x]|dp(x 3D
©) 2 h=0 J|5(2,0)|<|ha-VeS(,0)| |ha - VaS(z,0)| (. O)Elyleldp(z)
1 1
VZ(#)-a=—=lim —a-VpS(z,0)Ely|x]dp(z) (32)
2 5—0 S
|S(z,0)|<s
1 1
VZ0)-a=a-—=lim — VoS(z,0)E[y|z]dp(x) (33)
250 8
|S(x,0)|<s
(34)
And thus,
1. 1
VZ(0) = —= lim — VoS(z,0)E[y|z]dp(x) (35)
25208 J15(z,0)|<s
O

6.4 Expected gradient of loss for uncertainty sampling

Theorem If Assumptions @ @ and E hold and 6 € © yeqyiqr and b(0) # O, then if 21 is chosen
via uncertainty sampling with the parameters 0,

lim  E[V{(:®,0)] = —¢'(0)

TNominipool —> O b (3 )

vZ(6). (36)

Proof. We can decompose drawing the closest point as first drawing an absolute value of the score
so that is the second closest to 0 and then drawing the closest point conditioned on that score, which
will be according to p*(z, y) among the x with |S(x,0)| < s..

Let 7(s) = E|s(z,0)|<s[Ey«[Vel((7,y),0)]]. Aslongas s > 0and P(|S(z,0)| < s) > 0, itis
well-defined quantity since Vg¢(2(*);60) < M,. However, if P(|S(x,0)| < s) = 0 for s > 0, then
b(#) = 0 (which we assumed is not the case). Thus, for s > 0, (s) is defined.

lim  E[V(z?;0)]= lim E[r(sy)] (37)

Tminipool —> OO Tminipool —> OO

For any s > 0, P(|S(x,0)| < s) > 0 (from above) which implies that as nyinipool — 00, P(s2 >
s) = 0. Thus,

s —=p0 (38)

Thus, since Vg[(z(t); 0) < My, r(s2) is bounded, so if the limit lim_, 7(s) exists, then:

lim Er(s2)] = lig%) r(s) (39

Mminipool —> OO
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lim r(s) = hm E|S(I 0)<s[Vol(z,0)] (40)

s—0
. Jisw.oy1<s Vol((z,y), 0)dp* (2,y)
= lim = 41
0 Jis(.oy<s " (@)
— 1 f|S(z,9)|§s vew(y5($79))dp*(x7y)
= lim = (42)
0 Jiste.oy1<s W (@)
— isteoy<s V' WS(,0))yV oS (x, 0)dp* (2, y)
= lim e 43)
0 Jis.0y1<s W@ 9)
. <YVoS(z,0)dp*(z,y
— ¢/(0) lim flS( 0)|< é ' )dp*(z,y) )
o0 Jis (w015 " (@, 9)
limg_o 1 yVeS(z,0)dp*(z,y
lim ’I"(S) _ w/(o) —0 I\S(x 9)\<9 0 ( ) ( ) 45)
s—0 limg_,q & f|S(ac 6)|<sP p(z)dz

The bottom limit exists by [T2]and the top limit exists by an adaption of Proposition[I2] with replacing
the integrand p* (z) with VyS(z, 0)(p*(x,y = 1) — p*(z,y = —1)) (which is smooth). This can be
done by Lemma [TT]

The bottom is exactly 2b(6),

lim r(s) = 1//(0) ! VoS(x,0)dp*(z,y) (46)
50 2b(0) sy 5 J|1S(e,0)|<s YYORRn DA Y
—'(0) 1 / .
= h VoS(z,0)dp*(z, 47
bO) | 25505 )50 9)\<gy oS(, 6)dp” (@)
_ —9'(0)
=0 V40 48)
The last line follows from Lemmal[I3] O

6.5 Descent Direction

Theorem @Assume that Assumptions || l l EI @ and |z hold, and assume ¥'(0) < 0. For any

by > 0, € > 0, and n, for any sufficiently large A > 2M3/2 1/2( Y'(0)) "2 120213, for all
iterates of uncertainty sampling {0;} where 0;_, € @regularr VZ(0i-1)| > € and b(0;—1) < by, as
Nminipool — 00,

VZ(Htfl) . E[Gt — 9t71|9t71] < 0. 49)

Proof. The first thing to note is that if ||[VZ(6,_1)|| > 0, then b(6;_1) > 0.

IVZ(6:—1)|| >0 (50)
1 1
— — lim - VS(x,0;_1)E[y|x|p(x)dx| >0 51
=305 o VS b Bl
1
lim — IVS(2, 0:—1) ||Ely|z]|p(z)dz > 0 (52)
5205 J15(2,0,_1)|<s
lim ! Mp(x)dxz > 0 (53)
5208 J1S(x,0,_1)|<s
Mb(0,—1) >0 (54)
b(0r—1) >0 (55)
(56)
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This will allow us to use Theorem [§]later in the proof.

As in the main text, we have

t

Li(0) = 0(z%,0) + \|10]13

i=1

(57)

Thus, Li(0) = L; 1(0) + £(2®,0) and further VL;(0;) = 0. Together, this implies that

VLt(Gt_l) = Vﬂ(z(t), Gt_l).

Using the Taylor expansion, for some value 6’ on the line segment between 6; and 6;_1,

0= VLt(Ht) = VE(z(t), Qt_l) + V2Lt(9/)(9t — Ht_l)
0 — 01 = —[V2Ly(0)]'V0(zD,0,_1)

M,
[ =

Further, we can do another larger Taylor expansion,

0=VL(6) = Vﬂ( 9t 1)+V Li(0:-1)(0r — 0;-1) + Q

where

Qi = (0 — 0, 1) [V Le(0"))i(0; — 0, 1)

M M
@il < S IIVPL))ill

/\

For simplicity, define g = VZ(0;_1).

From the three-term Taylor expansion,

Op — 01 = _[VQLt(at—l)] L(Ve(z ® 0i-1) +Q)
—g- (0 —0,1) = QT[VQLt(et )]~ (Vf( ® 0:i-1) + Q)
= g7 [V?Li(6:-1)] 'V, 0, 1) + T [VPLi(6:-1)] ' Q

T2 Iy L Mpn

> g [V Lt(atfl)] VK(Z 791571) ||g|| A AQ
M3

> g" V2L (01-1)] 7 V(2" 0, 1) — MTE

Noting that (A + B)™' = A1 — A='B(A + B)~!, we can expand

[V2Li(0;-1)) " = VL1 (6,1)) ' — R

where R = [V2L,_1(0;-1)]7*V20(2®), 0,_1)[V2Ly(6,—1)] " and thus | R|| < 5%

lgllME _ llgliMin
A2 A3

—g- (0 —04—1) > gT[VQLtfl(etfl)]_lé(z(t),etfl) -
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(62)
(63)

(64)

(65)
(66)
(67)

(68)

(69)

(70)

(71)



On the right side, the only thing that depends on the randomness at iteration ¢ is £(2(*), 6; 1) whose
expectation is given by Theorem(this is where we use that § € Opeeuiar and b() > 0). So taking
the expectation for uncertainty sampling and noting 7minipool — 00,

—g B[Oy — 0,-1|0:—1] > g7 [VZLi—1(0:-1]

>

>

Y

v

Therefore, for A > 207 ?b}/?(—4/ (0))~/2¢=1/22/3 (and ensuring each power is at least 1),

=¥ 0)  llgllME gl M

bO,_)7 a2 N

—'(0) lgll®  lgllMZ  lgllM7n
b(O1) (t— )M, A2 e
='(0) llgl*  llglMZ  llgllMin
b(O_1)nM, N2 e

lgll [-¢'(0) lgll Min — Mjn?
Men | 5(6,_1) 2 P

e [0 Mpn B M}n?
M | b ¢ A2 A3

—g- E[Qt — 6t71|9t71] >0

Flipping the sign and plugging in g, we get the result.
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