Uncertainty Sampling is Preconditioned Stochastic
Gradient Descent on Zero-One Loss

Stephen Mussmann Percy Liang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Stanford, CA Stanford, CA
mussmann@stanford.edu pliang@cs.stanford.edu
Abstract

Uncertainty sampling, a popular active learning algorithm, is used to reduce the
amount of data required to learn a classifier, but it has been observed in practice to
converge to different parameters depending on the initialization and sometimes to
even better parameters than standard training on all the data. In this work, we give
a theoretical explanation of this phenomenon, showing that uncertainty sampling
on a convex (e.g., logistic) loss can be interpreted as performing a preconditioned
stochastic gradient step on the population zero-one loss. Experiments on synthetic
and real datasets support this connection.

1 Introduction

Active learning algorithms aim to learn parameters with less data by querying labels adaptively.
However, since such algorithms change the sampling distribution, they can introduce bias in the
learned parameters. While there has been some work to understand this (Schiitze et al.| 2006; Bachl
2007} |Dasgupta and Hsul 2008} Beygelzimer ef al.l 2009), the most common algorithm, “uncertainty
sampling” (Lewis and Gale, |1994; Settles, |2010), remains elusive. One of the oddities of uncertainty
sampling is that sometimes the bias is helpful: uncertainty sampling with a subset of the data can
yield lower error than random sampling on all the data (Schohn and Cohnl 2000; |Bordes ef al., 2005
Chang et al.| 2017). But sometimes, uncertainty sampling can vastly underperform, and in general,
different initializations can yield different parameters asymptotically. Despite the wealth of theory
on active learning (Balcan e al.,[2006; [Hanneke et al.| 2014), a theoretical account of uncertainty
sampling is lacking.

In this paper, we characterize the dynamics of a variant of uncertainty sampling to explain the bias
introduced. For convex models, we show that uncertainty sampling with respect to a convex loss on all
the points is performing a preconditioned[]_-]stochastic gradient step on the (non-convex) population
zero-one loss. Furthermore, each uncertainty sampling iterate in expectation moves in a descent
direction of the zero-one loss, unless the parameters are at an approximate stationary point. This
explains why uncertainty sampling sometimes achieves lower zero-one loss than random sampling,
since that is the quantity it implicitly optimizes. At the same time, as the zero-one loss is non-convex,
we can get stuck in a local minimum with higher zero-one loss (see Figure|[T).

Empirically, we validate the properties of uncertainty sampling on a simple synthetic dataset for
intuition as well as 25 real-world datasets. Our new connection between uncertainty sampling and the
zero-one loss minimization clarifies the importance of a good (sufficiently large) seed set, rather than

"Preconditioned refers to multiplication of a symmetric positive semidefinite matrix to the (stochastic)
gradient for (stochastic) gradient descent (L1, [2018}; |Klein et al.l2011). It is often chosen to approximate the
inverse Hessian.
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Figure 1: A typical run of uncertainty sampling. Each iteration, uncertainty sampling chooses to label
the point closest to the current decision boundary. (a) Random initialization of uncertainty sampling.
(b) A point closest to the decision boundary is added. (c) Several more points around the decision
boundary are added until convergence. We see that uncertainty sampling uses only a fraction of the
data, but converges to a local minimum of the zero-one loss. (d) Three different local minima of the
zero-one loss are shown, where the horizontal linear classifier much more preferable to the other two.

using a single point per class, as is commonly done in the literature (Tong and Koller, 2001} Yang
and Loog, [2016).

2 Setup

We focus on binary classification. Let z = (z,y) be a data point, where = € R* is the input and
y € {—1, 1} is the label, drawn from some unknown true data distribution z ~ p*. Assume we have
a family of scoring functions S(z, #), where § € R? are the parameters; for linear models, we have
S(x,0) =0 - ¢(x), where ¢ : R¥ — R? is the feature map.

Given parameters 6, we predict 1 if S(x,0) > 0 and —1 otherwise, and therefore err when y and
S(x, §) have opposite signs. Define Z(6) to be the zero-one loss (misclassification rate) over the data
distribution, generally the quantity of interest:

def
Z(0) = E(z,y)~p* [H(—yS(z,6))], (1)
where H is the Heaviside function:
0 =<0,
H(z) €L z=0, @)
1 z>0.

Note that the training zero-one loss is step-wise constant, and the gradient is 0 almost everywhere.
However, if the PDF of p* is continuous, then the population zero-one loss is differentiable at most
parameters, a fact that will be shown later.

Since minimizing the zero-one loss is computationally intractable (Feldman ef al.|[2012), it is common
to define a convex surrogate £((x,y), ) = ¥ (yS(z, #)) which upper bounds the zero-one loss; for
example, the logistic loss is 1(s) = log(1 + e~®). Given a labeled dataset D = {z1,...,2,}, we
can define the estimator that minimizes the sum of the loss plus quadratic regularization:

0p & argminzf(2,9)+)\”9“§a ®)
z€D

This can generally be solved efficiently via convex optimization.

Passive learning: random sampling. Define the population loss as

def
L(0) = E.p-[(2,0)]. “)
In standard passive learning, we sample D randomly from the population and compute 6. As
|D| — oo, the parameters will generally converge to the minimizer of L (note this is in general
distinct from the minimizer of 7).



Active learning: uncertainty sampling. In active learning, we have access to a pool of 71
unlabeled data points (known x, unknown y) drawn from p* and adaptively choose the points to label.
In this work, we analyze uncertainty sampling (Lewis and Galel|1994; Settles|, 2010), which is widely
used for its simplicity and efficacy (Yang and Loog, [2016).

Let us denote our label budget as n, the number of points we label. Uncertainty sampling (Algorithm
[I) begins with neeq < n labeled points D drawn randomly from the pool and minimizes the
regularized loss (3)) to obtain initial parameters. Then, the algorithm draws a random minipool (subset
A of the data pool A7), and chooses the point x € X) that the current model is most uncertain about,
i.e., the one with the smallest absolute value of scoreE] It then queries x to get the corresponding label
y and adds (x, y) to D. Finally, we update the model by optimizing . A key difference between
this version of uncertainty sampling and most other versions is that we remove the minipool Xy from
Ay after choosing a point from it; this is done simply for theoretical convenience. The process is
continued until we have labeled n points in total.

Algorithm 1 Uncertainty Sampling

Input: Loss ¢, regularization parameter A, label budget n, labeled D of size ngeeq, unlabeled Ay of
S1Z€ Npool, MINIPOOI SiZ€ Nminipool
Train 0., = argming >, ., £(z,0) + A||0]]3
for t = (ngeea +1),...,ndo
Draw a random subset &y of size Tminipool from Xy
Choose z = arg min, ¢ »,, |S(z,0)]
Query z to get label y
D=DU{(z,y)}
Ay = Ay \ Au
Train 6, = argming >, ., £(2,0) + X||0]|3
end for
Return 6,,

We have four hyperparameters related to the number of data points: 7geed, Tminipools 7pool> and 7.
We start with neq labeled points and 7,401 unlabeled points, and select a new point from a random
subset of size Nminipool Sampled without replacement until we have n labeled points in total. Note that
Tlpool Z 70 * Mminipool -

3 Theory

We present three results shedding light on uncertainty sampling that build on each other. First, in
Section[3.1] we show how the optimal parameters change with the addition of a single point to the
convex surrogate (e.g. logistic) loss. Then, we show that uncertainty sampling is preconditioned
stochastic gradient descent on the zero-one loss in Section [3.2] Finally, we show that uncertainty
sampling iterates in expectation move in a descent direction of Z in Section[3.3]

3.1 Incremental Parameter Updates

First, we analyze how the sample convex surrogate loss minimizer changes with each additional
point; these are the iterates of uncertainty sampling. Let us assume the loss is convex and thrice-
differentiable with bounded derivatives:

Assumption 1 (Convex Surrogate Loss). The surrogate loss {(z,0) is convex in 0.

Assumption 2 (Surrogate Loss Regularity). The surrogate loss £(z, 0) is continuously thrice differ-
entiable in 0, and the first three derivatives are bounded by M, in Frobenius norm.

2For binary classification, the uncertainty measures of highest entropy, smallest margin, and most uncertain
Settles| (2010) are equivalent.



Consider any iterative algorithm (e.g., random sampling or uncertainty sampling) that at each iteration
t adds a single point z(*) and minimizes the regularized training loss:
t
def i
Li(0) = ) e(z1,0) + M0I3 )
i=1
to produce 6;. Since L;_; and L, differ by only one point, we expect 6;_1 and 6; to also be close. We

can make this formal using Taylor’s theorem. First, since 6; is a minimizer, we have VL;(6;) = 0.
Then, since the loss is continuously twice-differentiable, for some 6’ between 6;_1 and 6,:

0 - VLt(ef) - VLt(Ht_l) + V2Lt(0/)(9t - Gt_l). (6)
Since ¢ is convex and the quadratic regularizer, V2L, is invertible and we can solve for 6;:
Gt = 6‘t,1 - [VQLt(QI)]_1VLt(9t,1). (7)

Since ;1 minimizes L; 1, we have VL;_1(6;_1) = 0. Also note that L;(0) = L;_1(0)+£(2"), 6).
Thus,

0, = 0,1 — [V2Li(0")]71Ve(z®, 6, 4). (8)

The update above holds for any choice of z(*), in particular, when z(*) is chosen by random sampling
or uncertainty sampling. For random sampling, z(*) ~ p*, so we have

E[VE(z",0,_1)] = VL(0;-1), ©9)

from which one can interpret the iterates of random sampling as preconditioned SGD on the population
surrogate loss L.

3.2 Parameter Updates of Uncertainty Sampling

Let us now turn to uncertainty sampling. Whereas random sampling is preconditioned SGD on the
population surrogate loss L, we will now show that uncertainty sampling is preconditioned SGD on
the population zero-one loss Z.

The very rough intuition is as follows: the gradient VZ(#) only depends on the density at the decision
boundary corresponding to # since points not at the decision boundary contribute zero gradient.
Asymptotically, uncertainty sampling selects points close to the decision boundary defined by 6 and
points are selected proportional to the density.

Based on , we seek to understand E[V/(z(®), 0;_,)], where z(*) is chosen by uncertainty sampling.
First, we must define some concepts. Each parameter vector € defines a decision boundary:

Definition 3 (Decision Boundary).

By % {z: S(z,0) = 0}. (10)

If S(z,0) is differentiable with respect to z and VS (z,0) # 0 for all x € By, then by the implicit
function theorem, By is a (d — 1)-dimensional differentiable manifold and has measure zero (see
Proposition [I0]in the Appendix). When this condition is satisfied, the decision boundary is well
behaved, and Z and uncertainty sampling has nice properties. For these reasons, denote the set of
parameters that meet this condition as regular parameters Oregytar:

Definition 4 (Regular Parameters).

@regulur déf {9 Vo € B‘97VJ,S(3736) 7é O} (11)

For logistic regression with identity features (¢(z) = z), V,.S(z, ) = 0, so the only point not in
Oreguiar is 6 = 0. For logistic regression with quadratic features, 6 - ¢(z) = zT Az +b"x + ¢ (the
parameters are A, b, and c¢), parameters where A is non-singular and ¢ # ibTA_lb are in Oregylar.
Thus, the parameters not in Oeguiar have measure zero.

Another important quantity is the probability density at the decision boundary. Before defining this,
we first need to make two assumptions on the data distribution p* and an assumption that the score
function is smooth.



Assumption 5 (Smooth PDF). p* has an smooth (all derivatives exist) probability density function.
Assumption 6 (Bounded Support). The support of p* is bounded.
Assumption 7 (Smooth Score). The score S(z,0) is smooth, that is, all derivatives with respect to x

and 0 exist.

Recall that the decision boundary By has measure zero for 6 € Oegylar- AssumptionE]implies that
there is zero probability mass on all decision boundaries corresponding to 6 € Oyeguiar (P(z € By) =
0 for x ~ p*). However, we can define a probability density on the decision boundary By:

o . P(S(z,0) < h) —P(S(x,0) <
h—0 h
If Assumptions E], @, and [7| hold, then the limit exists for § € Oreguar. For this statement, see
Proposition[T2]in the appendix.

Now that we have defined the set of regular parameters Oycouiar, the density at the decision boundary
b(#), and Assumptions @ and [/) we are ready to formally state the expected gradient of the
surrogate loss on a point chosen by uncertainty sampling. Our main result, Theorem [§] states
that as the minipool size goes to infinity, E[V/(2(*), )] tends in the direction of the gradient of
the population zero-one loss Z(6), where the expectation is with respect to the randomness of the
minipool Xy and label . In particular, let z(*) be chosen via uncertainty sampling with the parameters
0: 2 = argmin, ¢y |S(z,0)| and y® ~ p*(y | (). We require that the size of the minipool
goes to infinity (and thus the size of the unlabeled pool must go to infinity as well) to ensure that we
are choosing points arbitrarily close to the decision boundary.

Theorem 8 (Expected Uncertainty Sampling Gradient). If Assumptions [6] and 7 hold and
0 € Orequiar and b(0) # 0, then if 2 is chosen via uncertainty sampling with parameters 0,

im B[00 = —2LOgz0). (13)

TMominipool —> OQ b (9)

Thus, similar to how random sampling yields preconditioned SGD on the population surrogate loss L
(9), uncertainty sampling yields preconditioned SGD on the population zero-one loss Z.

3.3 Descent Direction

So far, we have shown that uncertainty sampling is preconditioned SGD on the population zero-one
loss Z by analyzing E[V£(2("), §)]. To show that these updates are descent directions on Z, we need
to also consider the preconditioner [V2L;(6’)]~! appearing in . Due to quadratic regularization
(3). the preconditioner is positive definite. However, we need to be careful since the preconditioner
depends on the iterate 6; both through 6" and the function L;. Because of this, we only move in
a descent direction in expectation if |[VZ(0;—1)|| > € and for large enough regularization, which
ensures that the dependence on 6; doesn’t change the preconditioner too much.

Theorem 9 (Uncertainty Sampling Descent Direction). Assume that Assumptions (1] 2} P} [6] and
[Zhold, and assume ' (0) < 0. For any by > 0, € > 0, and n, for any sufficiently large A >

2M5/2b5/2(—w'(O))_l/Qe_l/QnQ/g, for all iterates of uncertainty sampling {0;} where 0;_1 €
VZ(gtfl)” Z €, and b(atfl) S bO) as nminipool — 00,

@regular;

VZ(Ht,ﬁ . E[@t — 9t71|9t71] < 0. (14)

Although A\ may appear to have to be quite large, note that typical regularization is proportion to the
number of data points, while this regularization can be sub-linear which corresponds to rather weak
regularization for large n.

This result explains why uncertainty sampling can achieve lower zero-one loss than random sampling;
because it is implicitly descending on Z. Further, since Z is non-convex, uncertainty sampling can
converge to different values depending on the initialization.
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Figure 2: Synthetic dataset based on a mixture of four Gaussians (left) and the associated learning
curves for runs of uncertainty sampling with different initial seed sets (right). Depending on the seed
set, uncertainty sampling can produce either better or worse parameters than random sampling. See
the main text for more information.

4 Experiments

We run uncertainty sampling on a simple synthetic data to illustrate the dynamics (Section[&.I)) as
well as 25 real datasets (Section[d.2)). In both cases, we show how uncertainty sampling converges to
different parameters depending on initialization, and how it can achieve lower asymptotic zero-one
loss compared to minimizing the surrogate loss on all the data. Note that most active learning
experiments are interested in measuring the rate of convergence (data efficiency), whereas this paper
focuses exclusively on asymptotic values and the variation that we obtain from different seed sets.
Also note that we measure only zero-one loss (error) but all algorithms optimize the logistic loss.

4.1 Synthetic Data

Figure E] (left) shows a mixture of Gaussian distributions in two dimensions. All the Gaussians
are isotropic, and the size of the circle indicates the variance (one standard deviation for the inner
circle, and two standard deviations for the outer circle). The points drawn from the two red Gaussian
distributions are labeled y = 1 and the points drawn from the two blue ones are labeled y = —1. The
percentages refer to the mixture proportions of the clusters. We see that there are four local minima
of the population zero-one loss, indicated by the green dashed lines. Each minima will misclassify
one of the Gaussian clusters, yielding losses of just over 10%, 20%, 30%, and 40%. The black dotted
line corresponds to the parameters that minimize the logistic loss, which yields a loss of 18%.

Figure [2] (right) shows learning curves for different seed sets, which consist of two points, one from
each class. We see that the uncertainty sampling learning curves converge to four different asymptotic
losses, corresponding to the four local minima of the zero-one loss mentioned earlier. The thick black
dashed line is the zero-one loss for random sampling. We see that uncertainty sampling can achieve
lower loss than random sampling. This occurs when the conditional label distribution is misspecified
in a way that the (global) optimum of the logistic loss does not correspond to the global minimum of
the zero-one loss.

4.2 Real-World Datasets

We collected 25 datasets from OpenML (retrieved August, 2017) that had a large number of data
points and where logistic regression outperformed the majority classifier (predict the majority label).
We further subsampled each dataset to have 10,000 points, which was divided into 7000 training
points and 3000 test points. We ran a different version of uncertainty sampling from the version that
we analyzed theoretically. Selecting from large minipools would require too much data and sampling
without replacement (as is usually done in practice) would converge trivially since the entire dataset
would eventually be labeled. Thus, instead of selecting points from the minipool subset and without
replacement, we select points from the entire pool with replacement. We ran uncertainty sampling on
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Figure 3: A scatter plot of the asymptotic zero-one loss for uncertainty sampling for two particular
datasets for 13 seed sizes. The black line is the zero-one loss on the full dataset.
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Figure 4: A plot showing the distribution of runs ~ asymptotic zero-one loss compared to the zero-
over the datasets (with 10 runs per dataset) of  one loss on the full dataset. The plot shows the
when uncertainty sampling converges to a lower  density of points with kernel density estimation.
zero-one loss than using the entire dataset. The red lines are the median losses. Each “violin”
captures 230 points (10 runs over 23 datasets).

each dataset with random seed sets of sizes that are powers of two from 2 to 4096 and then 7000. We
stopped when uncertainty sampling did not choose an unlabeled point for 1000 iterations. For each
dataset and seed set size, we ran uncertainty sampling 10 times, for a total of 25 - 13 - 10 = 3250 runs.

In Figure 3] we see scatter plots of the asymptotic zero-one loss of 130 points: 13 seed set sizes, each
with 10 runs. The dataset on the left was chosen to exhibit the wide range of convergence values of
uncertainty sampling, some with lower zero-one loss than with the full dataset. In both plots, we see
that the variance of the zero-one loss of uncertainty sampling decreases as the seed set grows. This is
expected from theory since the initialization has less variance for larger seed set sizes (as the seed
set size goes to infinity, the parameters converge). For most of the datasets, the behavior was more
similar to the plot on the right, where uncertainty sampling has a higher mean zero-one loss than
random sampling for most seed sizes.

To gain a more quantitative understanding of all the datasets, we summarized the asymptotic zero-one
loss of uncertainty sampling for various random seed set sizes. In Figure ] we show the proportions
of the runs over the datasets where uncertainty sampling converges to a lower zero-one loss than
using the entire dataset. In Figure[5] we show a “violin plot” for the distribution of the ratio between
the asymptotic zero-one loss of uncertainty sampling and the zero-one loss using the full dataset. We
note that the mean and variance of uncertainty sampling significantly drops as the size of the seed set
grows larger. The initial parameters are poor if the seed set is small, and it is well-known that poor
initializations for optimizing non-convex functions locally can yield poor results, as seen here.



5 Related Work and Discussion

The phenomenon that uncertainty sampling can achieve lower error with a subset of the data rather
than using the entire dataset has been observed multiple times. In fact, the original uncertainty
sampling paper (Lewis and Galel [1994)) notes that “For 6 of 10 categories, the mean [F-score] for a
classifier trained on a uncertainty sample of 999 examples actually exceeds that from training on the
full training set of 319,463”. |Schohn and Cohn|(2000) defines a heuristic that selects the point closest
to the decision boundary of an SVM, which is equivalent to uncertainty sampling in our formulation.
In the abstract, the authors note, “We observe... that a SVM trained on a well-chosen subset of the
available corpus frequency performs better than one trained on al/ available data”. More recently,
Chang et al.|(2017) develops an “active bias” technique that emphasizes the uncertain points and find
that it increases the performance compared to using a fully-labeled dataset.

There is also work showing the bias of active learning can harm final performance. |Schiitze et al.
(2006) notes the “missed cluster effect”, where active learning can ignore clusters in the data and
never query points from there; corresponding to a local minimum of the zero-one loss. |Dasgupta and
Hsu| (2008)) has a section on the bias of uncertainty sampling and provides another example where
uncertainty sampling fails due to sampling bias, which we can explain as convergence to a spurious
local minimum of the zero-one loss. [Bach|(2007) and |Beygelzimer et al.|(2009) note this bias issue
and propose different importance sampling schemes to re-weight points and correct for the bias.

In this work, we find that uncertainty sampling updates are preconditioned SGD steps on the
population zero-one loss and move in descent directions for parameters that are not approximate
stationary points. Note that this does not give any global optimality guarantees. In fact, for linear
classifiers, it is NP-hard to optimize the training zero-one loss below % — € (for any € > 0) even when
there is a linear classifier that achieves just e training zero-one loss (Feldman et al., [2012).

One of the key questions in light of this work is when optimizing convex surrogate losses yield good
zero-one losses. If the loss function corresponds to the negative log-likelihood of a well-specified
model, then the zero-one loss Z will have a local minimum at the parameters that optimize the
log-likelihood. If the loss function is “classification-calibrated”, Bartlett ez al.|(2006) shows that if
the convex surrogate loss of the estimated parameters converges to the optimal convex surrogate loss,
then the zero-one loss of the estimated parameters converges to the global minimum of the zero-one
loss (Bayes error). This holds only for universal classifiers (Micchelli ez al.,|2006)), but in practice,
these assumptions are unrealistic. For instance, several papers show how outliers and noise can cause
linear classifiers learned on convex surrogate losses to suffer high zero-one loss (Nguyen and Sanner,
20135 'Wu and Liu, 2007; Long and Servedio, [2010).

Other works connect active learning with optimization in rather different ways. Ramdas and Singh
(2013)) uses active learning as a subroutine to improve stochastic convex optimization. |Guillory ef al.
(2009) shows how performing online active learning updates corresponds to online optimization
updates of non-convex functions, more specifically, truncated convex losses. In this work, we analyze
active learning with offline optimization and show the connection between uncertainty sampling and
one particularly important non-convex loss, the zero-one loss.

In summary, our work is the first to show a connection between the zero-one loss and the commonly-
used uncertainty sampling. This provides an explanation and understanding of the various empirical
phenomena observed in the active learning literature. Uncertainty sampling simultaneously offers the
hope of converging to lower error but the danger of converging to local minima (an issue that can
possibly be avoided with larger seed sizes). We hope this connection can lead to improved active
learning and optimization algorithms.

Reproducibility. The code, data, and experiments for this paper are available
on the CodaLab platform at https://worksheets.codalab.org/worksheets/
0xf8dfebbcc1dc408fb54b3cclbababce8/.
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