
Appendix

A Notations and Lemmas

A.1 Additional Notation

Here we define some additional notations required for the proof. We define certain notations before
we provide the main theoretical contributions of our paper. If f(x, y) is a function of two variable
of x, y, where y ∈ [m], then f(x) is the vector [f(x, 1), · · · , f(x,m)]T . If PX,Y is probability
distribution of (X,Y ) ∈ X × [m], then PY |X=x is the conditional distribution of Y given X = x.

For a matrix A, let ‖A‖p = max‖x‖p=1 ‖Ax‖p ,∀p ∈ N ∪ {0,∞}. Then |||A|||∞ = maxi
∑
j |Aij |,

|||A|||1 = maxj
∑
i |Aij | and |||A|||2 = σmax(A), the maximum singular value. 1 is all ones

vector with appropriate dimensions and I is identity matrix with appropriate dimensions. [n] =
{1, 2, . . . , n} ,∀n ≥ 1. For a vector x ∈ Rn, xi (i ∈ [n]) is its i-th coordinate.

For the sake of proof we will assume that F is class of vector functions of the form D(x) ∈ Rm. In
terms of the notation in the main material original D(x, y) is D(x)y here. For a class F of vector
valued functions D : X → Rn. Therefore we re-define the operation ◦ between a matrix T ∈ Rn×n
and F as,

T ◦ F = {TD(·) | f(·) ∈ F} .

If PX,Y is probability distribution of (X,Y ) ∈ X × [m], then PY |X=x is the conditional discrete
distribution of Y given X = x, pX(x) is the marginal density of X , and

PY |X=x = [PY |X=x(Y = 1), PY |X=x(Y = 1), . . . , PY |X=x(Y = m)]T , and (16)

pX(x) = pX(x)PY |X=x (17)

A.2 Supporting Lemmas

Lemma 1 (Characterization of neural network distance). dF,φ(P,Q) ≥ 0 for all P,Q. And if φ is a
convex or concave function, then the Neural network distance is 0 when the distributions are same,
i.e. dF,φ(P, P ) = 0.

Proof. For concave φ(·) we define µφ = φ(1/2). Since, by definition D = 1/21 is feasible solution
to the optimization problem in (5), thus dF,φ(P,Q) ≥ 0.

dF,φ(P, P ) = sup
D∈F

E
(x,y)∼P

[φ (D(x)y)] + E
(x,y)∼P

[φ (1−D(x)y)]− 2φ(1/2)

≤ sup
D∈F

2 φ

(
E

(x,y)∼P

[
1

2
(D(x)y + 1−D(x)y)

])
− 2φ(1/2)

= sup
D∈F

2 φ (1/2)− 2φ(1/2) = 0

The inequality in second line follows from Jensen’s inequality for concave φ(·).

For convex φ(·) we define µφ = φ(0) + φ(1). Since, by definition D = 1 is feasible solution to the
optimization problem in (5), thus dF,φ(P,Q) ≥ 0.

dF,φ(P, P ) = sup
D∈F

E
(x,y)∼P

[φ (D(x)y)] + E
(x,y)∼P

[φ (1−D(x)y)]− φ(0)− φ(1)

= sup
D∈F

E
(x,y)∼P

[φ (D(x)y) + φ (1−D(x)y)]− (φ(0) + φ(1))

≤ sup
D∈F

E
(x,y)∼P

[φ(0) + φ(1)]− (φ(0) + φ(1)) = 0

The last inequality follows from Jensen’s inequality for convex φ(·)

This Lemma 1 ensures that all the multiplicative lower bounds and upper bounds in Theorem 4 and
its corollaries implies recoverability.
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Lemma 2. If P is a distributions on X × [m] and P̃ is the distribution of sample (X, Ỹ ) of P when
passed through the noisy-channel given by the confusion matrix C ∈ Rm×m (as defined in Section
1). Then,

P̃ Ỹ |X=x = CTPY |X=x , (18)

where PY |X=x = [PY |X=x(Y = 1), PY |X=x(Y = 1), . . . , PY |X=x(Y = m)]T .

Proof.

P̃Ỹ |X=x(Ỹ = j) =
∑

i∈[m]

P
(
Ỹ = j|Y = i

)
PY |X=x(Y = j), ∀j ∈ [m]

P̃Ỹ |X=x(Ỹ = j) =
∑

i∈[m]

CijPY |X=x(Y = j), ∀j ∈ [m]

P̃ Ỹ |X=x = CTPY |X=x

B Proof of Theorem 1

We first prove the approximation bounds for total variation distance in Eq. (3), and then use it to prove
similar bounds for the Jensen-Shannon divergence in Eq. (4). Recall that total variation distance
between P and Q can be written in several ways:

dTV(P,Q) =
1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m
〈 v, P (S(v), ·)−Q(S(v), ·)〉

=
1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m

∑

y∈[m]

|P (S(v), y)−Q(S(v), y)|

=
1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m
‖P (S(v), ·)−Q(S(v), ·)‖1 ,

where we used the notation of a row-vector P (S(v), ·) = [P (S(v), 1), · · · , P (S(v),m)] and
∐

is the
disjoint union of sets. The lower bound on dTV(P̃ , Q̃) follows that

dTV(P,Q) =
1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m
〈 v, P (S(v), ·)−Q(S(v), ·)〉

(a)
=

1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m
〈 v,
(
P̃ (S(v), ·)− Q̃(S(v), ·)

)
C−1〉

(b)

≤ |||C−T |||1
1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m
‖v‖∞

∥∥P̃ (S(v), ·)− Q̃(S(v), ·)
∥∥

1

(c)
= |||C−T |||1 dTV(P̃ , Q̃)

where (a) follows from the fact that P̃ ({Sy}y∈[m], ·) = P ({Sy}y∈[m], ·)C, (b) follows from the
fact that vTAx ≤ ‖v‖∞‖Ax‖1 ≤ ‖v‖∞|||A|||1‖x‖1, and (c) follows from |||A|||1 = |||AT |||∞ and
‖v‖∞ = 1. The upper bound follows from similar arguments:

dTV

(
P̃ , Q̃

)
≤ |||CT |||1

1

2
max∐
v S

(v)=X

∑

v∈{−1,1}m
‖v‖∞

∥∥P (S(v), ·)−Q(S(v), ·)
∥∥

1

= dTV (P,Q)

where last equality uses the fact that |||CT |||1 = 1 for all row-stochastic matrices C.

To prove the approximation bounds for Jensen-Shannon divergence, we use the following lemma that
bounds the JS divergence by the TV distance.
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Lemma 3. 1
2dTV (P,Q)

2 ≤ dJS(P ‖ Q) ≤ 2 dTV (P,Q).

A proof is provided in Section B.1. The following series of inequalities follow from this lemma.

dJS(P ‖ Q)
(a)

≥ dJS

(
P̃
∥∥∥ Q̃

) (b)

≥ 1

2
dTV

(
P̃ , Q̃

)2

(c)

≥ |||C−1|||−2
∞

2
dTV (P,Q)

2

(b)

≥ |||C−1|||−2
∞

8
dJS(P ‖ Q)

2

where (a) is the data-processing inequality for f -divergences, (b) uses Lemma 3, and (c) uses
equation (3).

B.1 Proof of Lemma 3

dKL

(
P

∥∥∥∥
P +Q

2

)
= E
X∼P

[
log

2P (X)

P (X) +Q(X)

]

(a)

≤ E
X∼P

[
2P (X)− (P (X) +Q(X))

P (X) +Q(X)

]

≤ sup
X

2P (X)

P (X) +Q(X)
· E
X∼P

[ |2P (X)− (P (X) +Q(X))|
2P (X)

]

≤ 2 · 2dTV

(
P,
P +Q

2

)

≤ 2 dTV (P,Q) , (19)

where (a) uses log x ≤ x− 1.

dJS(P ‖ Q) =
1

2
dKL

(
P

∥∥∥∥
P +Q

2

)
+

1

2
dKL

(
Q

∥∥∥∥
P +Q

2

)

(b)

≥ dTV

(
P,
P +Q

2

)2

+ dTV

(
Q,

P +Q

2

)2

=
1

2
dTV (P,Q)

2

where (a) uses equation (19), and (b) uses Pinsker’s inequality 0.5 dKL(P ‖ Q) ≤ dTV (P,Q)
2

C Examples satisfying Assumption 1

Several classes of functions that are used in practice and studied in theory indeed satisfy our
Assumption 1. For example, consider the set of 1-Lipschitz continuous and bounded functions
F = {f : Rd × [m] → R | 0 ≤ f(x, y) ≤ 1 for all x and y, and |f(x1, y1) − f(x2, y2)| ≤
‖x1 − x2‖+ |y1 − y2| for all x1, x2, y1, and y2}, which was studied in [3] in the context of general-
ization bounds for the neural network distance. It follows that this F satisfies Assumption 1, with
c = 1/2 and F −1/2 ∈ F1. This is a special case of some examples of classes of functions satisfying
the assumption, that we provide in the following Remark. A proof is provided in Appendix G.

Remark 2. The following classes of discriminators satisfy the inclusion condition in Assumption 1:

1. Class of all bounded functions D : X × [m]→ [c1, c2] for any c1 ≤ c2 ∈ R.

2. Class of all bounded functions D : X × [m]→ [c1, c2], which are L-Lipschitz in x for any
c1 ≤ c2 ∈ R and L ≥ 0.

3. Class of all bounded functions D : X × [m]→ [c1, c2], which are L-Lipschitz in x and y
for any c1 ≤ c2 ∈ R and L ≥ (c2 − c1).
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D Tightness of Theorem 2

Remark 3. For any full-rank confusion matrix C ∈ Rd1×d2 , there exist pairs of distributions
(P1, Q1) and (P2, Q2), and a function class F satisfying Assumption 1, such that

1. dF (P̃1, Q̃1) = dF (P1, Q1), and

2. dF (P2, Q2) = |||C−1|||∞dF (P̃2, Q̃2) .

Proof. Let X = {x1, x2} and F = {f | f(x, y) ∈ [−1, 1]}. From Remark 2, we know that
F satisfies Assumption 1. Then it is easy to check that dF (P,Q) = |||(P −Q)(({x1}, ·)|||1 +
|||(P −Q)(({x2}, ·)|||1, where we used the notation P ({x}, ·) = [P ({x}, 1), · · · , P ({x},m)].

1. Lower bound: It is easy to show that there exists PX,Y and QX,Y such that (P −
Q)(({x1}, ·) = ε1 and (P −Q)(({x2}, ·) = −ε1 for any ε ∈ [0, 1/m]. Thus,

dF (P,Q) = |||ε1|||1 + ||| − ε1|||1 = 2mε . (20)
Then we can show that,

(P̃ − Q̃)({x}, ·) = CT (P −Q)({x}, ·) = ±εCT1 (21)
Thus,

dF (P̃ , Q̃) = 2||| ± εCT1|||1 = 2ε1TCT1 = 2ε1T1 = 2mε , (22)
where the penultimate equality follow from C1 = 1, since C is row-stochastic.

2. Upper bound: We can again show that there exists PX,Y and QX,Y such that
(P − Q)(({x1}, ·) = εC−T v and (P − Q)(({x2}, ·) = −εC−T v, where v ∈
arg maxvi∈±1|||C−T v|||1, for sufficiently small ε. Thus,

dF (P,Q) = ||| ± εC−T v|||1 = 2ε|||C−T |||1|||v|||1 = 2ε|||C−1|||∞|||v|||1 . (23)
Using similar steps as the above lower-bound case, we can show that,

dF (P̃ , Q̃) = 2||| ± εCTC−T v|||1 = 2ε|||v|||1 . (24)

E Necessity of Assumption 1

In this section, we ask if Assumption 1 is necessary also. We show that for all pairs of distributions
(P,Q) satisfying the following technical conditions, and all confusion matrix C, there exists a class
F where approximation bounds in (9) fail.
Assumption 2. We consider a pair of distributions PX,Y and QX,Y and a confusion matrix C
satisfying the following conditions:

• The random variable X conditioned on Y = y is a continuous random variable with density
functions dPX|Y=y and dQX|Y=y , respectively.

• There exists S ⊆ X such that PX(S) +QX(S) > 0, and PX,Y (x, ·)−QX,Y (x, ·) is not a
right eigenvector of C, for all x ∈ S, where PX,Y (x, ·) = [PX,Y (x, 1), · · · , PX,Y (x,m)]T .

A pair (P,Q) violating the above assumptions either has X that is a mixture of continuous and
discrete distribution, or all (P (x, ·)−Q(x, ·))’s are aligned with the right eigenvectors of C.
Theorem 4. For all sufficiently small ε > 0, all distributions PX,Y and QX,Y satisfying Assumption
2, and all full-rank C ∈ Rm×m, there exist F3 not satisfying Assumption 1, such that

dF3
(P̃ , Q̃) = Oε(ε) and dF3

(P,Q) = Ωε(1), (25)
and F4 not satisfying Assumption 1, such that

dF4(P̃ , Q̃) = Ωε(1) and dF4(P,Q) = Oε(ε) . (26)

We refer to Appendix H for a proof. This implies that some assumptions on the function class F are
necessary, such as those in Assumption 1. Without any restrictions, we can find bad examples where
the two distances dF (P,Q) and dF (P̃ , Q̃) are arbitrarily different for any C, PX,Y , and QX,Y .
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F Proof of Theorem 2

We start with the following two key lemmas.

Lemma 4. For any sample (X,Y ) ∼ P (or Q), let P̃ (or Q̃) denote the sample whose label Y is
corrupted by a noise defined by a confusion matrix C, where Cyỹ is the probability the a label y is
corrupted as a label ỹ. Then, for any P , Q, and any class of discriminators F ,

dF (P̃ , Q̃) = dC◦F (P,Q) . (27)
Lemma 5. If a class of discriminators F satisfies Assumption 1 with a constant shift c, then for all
row-stochastic non-negative matrix C,

|||C−1|||−1

∞ I ◦ (F − c) ⊆ C ◦ (F − c) ⊆ (F − c) . (28)

From the ordering of sets of functions in Lemma 5, it follows that

dC◦F (P,Q) ≥ d|||C−1|||−1
∞ I◦F (P,Q) = |||C−1|||−1

∞ dF (P,Q) (29)

where the last equality follows from the fact that D ∈ F if and only if αD ∈ αI ◦ F . Note that we
ignored the shift c, as the definition of the neural network distance is invariant to any constant shift
c, and we can cancel any given shift c of a set F as we see fit. Next, it follows immediately from
Lemma 5 that

dC◦F (P,Q) ≤ dF (P,Q) . (30)
This finishes the proof of the theorem.

F.1 Proof of Lemma 4

For any function D : X × [m]→ R and a distribution P over X × [m], we denote the expectation by
〈D,P 〉 = E(X,Y )∼P [D(X,Y )]. Further, we let P̃ (S, ỹ) =

∑
y P (S, y)Cyỹ = PC(S, ỹ) denote the

distribution of the corrupted sample, by noise with confusion matrix C. Note that we intentionally
overloaded the matrix multiplication notation PC. We also treat D as a (infinite-dimensional) matrix,
and let DCT (x, y) =

∑
ỹD(x, ỹ)Cyỹ . It follows that,

dF (P̃ , Q̃) , sup
D∈F

EP̃ [D(X,Y )]− EQ̃[D(X,Y )]

= sup
D∈F
〈D, P̃ − Q̃〉

= sup
D∈F
〈D, (P −Q)C〉

= sup
D∈F
〈DCT , (P −Q)〉

= sup
D̃∈C◦F

〈D̃, (P −Q)〉 ,

where the last equality follows from the definition of the ◦ operation in Eq. (6). This proves the
desired claim.

F.2 Proof of Lemma 5

We will prove the desired claim for F1 and F2 separately. As the set orderings are preserved under
addition of sets, this proves the desired claim.

First we will prove the Lemma when condition T ◦ F ⊆ F holds. We use the notations from
AppendixF.1. We want to prove,

|||C−1|||−1

∞ I ◦ F ⊆ C ◦ F
⇐⇒ ∀D ∈ F , ∃D′ ∈ F such that |||C−1|||−1

∞ D(x, y) = D′CT (x, y), ∀x ∈ X ,∀y ∈ [m]

⇐⇒ ∀D ∈ F , ∃D′ ∈ F such that |||C−1|||−1

∞ DC−T (x, y) = D′(x, y), ∀x ∈ X ,∀y ∈ [m]

⇐⇒ |||C−1|||−1

∞ C−1 ◦ F ⊆ F .
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The last statement is true by the the Assumption 1 because |||
(
C−1/|||C−1|||∞

)
|||∞ = 1. The second

covering C ◦ F ⊆ F is also true by Assumption 1 because |||C|||∞ = 1 since C is row-stochastic
matrix with rows summing to 1.

Now we will prove the case when condition F = {αf(x) | f(x)y = g(x) ∈ R, g ∈ Fx, α ∈ [0, 1]}
holds. C ◦ F ⊆ F holds true because 1 is an eigenvector of C with eigenvalue 1. Similarly to the
previous condition, we need to prove that C−1/|||C−1|||∞ ◦ F ⊆ F , but since 1 is an eigenvector of
C−1 with eigenvalue 1/|||C−1|||∞ ≤ 1, the again holds true.

G Proof of Remarks 2 and 1

G.1 Class of all bounded functions (Total Variation)

Let F([c1, c2]) be class of all functions with range inside [c1, c2]m. Proof follows from the Appendix
G.2 by taking limL→∞.

G.2 Class of all bounded and Lipschitz functions in x

Let F(L, [c1, c2]) be class of all vector valued L-Lipschitz functions in x with range inside [c1, c2]m.
That is,

|||D(x1)−D(x2)|||∞ ≤ L|||x1 − x2|||2 and D(x) ∈ [c1, c2] ∀x, x1, x2 ∈ X , y ∈ [m] (31)

Lemma 6. dF(L,[c1,c2])(P,Q) = (c2−c1)
2 dF(2L/(c2−c1),[−1,1])(P,Q)

Proof. There exists a bijection f : F(L, [c1, c2]) → F(2L/(c2 − c1), [−1, 1]), such that f(D) =
2D−(c1+c2)

c2−c1 . This is true since f is invertible, f(D) ∈ [−1, 1], and f is 2L/(c2 − c1)-Lipschitz.

dF(L,[c1,c2])(P,Q) = sup
D∈F(L,[c1,c2])

E
(x,y)∼P

[D(x, y)]− E
(x,y)∼Q

[D(x, y)]

=
(c2 − c1)

2
sup

D∈F(2L/(c2−c1),[−1,1])

E
(x,y)∼P

[f(D)(x, y)]− E
(x,y)∼Q

[f(D)(x, y)]

=
(c2 − c1)

2
dF(2L/(c2−c1),[−1,1])(P,Q) (32)

By Lemma 6 any [c1, c2] is similar to [−1, 1] up to a scaling, thus we only prove for [−1, 1]. Now we
will show that the inclusion condition (Assumption 1) hold for this class of functions.
Lemma 7. T ◦ F(L, [−1, 1]) ⊆ F(L, [−1, 1]), ∀|||T |||∞ = 1

Proof. We want to show that, ∀ D′ ∈ T ◦ F(L, [−1, 1]), we also have D′ ∈ F(L, [−1, 1]). In
other words, ∀ D ∈ F(L, [−1, 1]), TD ∈ F(L, [−1, 1]). First the we show that range of D ∈
T ◦ F(L, [−1, 1]) is [−1, 1], i.e.,

|||TD(x)|||∞ ≤ |||T |||∞|||D(x)|||∞ ≤ 1 · 1 ≤ 1 . (33)

In a similar way we prove the Lipschitz property.

|||TD(x1)− TD(x2)|||∞ ≤ |||T |||∞|||D(x1)−D(x2)|||∞ ≤ 1 · L|||x1 − x2|||2 (34)

Finally, we can use Theorem 2 to get the desired result.

G.3 Class of all bounded and Lipschitz functions in x and y

As |y1 − y2| ≥ 1 for all y1 6= y2, L-Lipschitz functions with L ≥ c2 − c1 only imposes conditions
on pairs of data with the same values of y. Hence, this boils down to the previous case studied in
Appendix G.2.
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G.4 Class of projection discriminators

The function class is F = {f1 + f2|f1 ∈ F (θ)
1 , f2 ∈ F (θ)

2 , θ ∈ Rdθ}, where

F (θ)
1 =

{
vec(y)T V ψ(x; θ)

∣∣V ∈ V1

}
, and, (35)

F (θ)
2 =

{
vT ψ′(x; θ)

∣∣ v ∈ V2

}
, where, (36)

V1 =
{
V ∈ Rm×dV

∣∣ max
i
|Vij | ≤ 1 for all j ∈ [dV ]

}
, and (37)

V2 =
{
v ∈ Rdv

∣∣ ‖v‖ ≤ 1
}
. (38)

We will show that both F (θ)
1 and F (θ)

2 satisfy Assumption 1. For any A ∈ Rm×m, we can write
A ◦ F (θ)

1 as

A ◦ F (θ)
1 = {vec(y)TAV ψ(x; θ)

∣∣V ∈ V1 } . (39)

If |||A|||∞ = 1, then, maxi∈[m] |(AV )ij | = |||(AV )·,j |||∞ = |||A(V·,j)|||∞ ≤ |||A|||∞|||V·,j |||∞ =

1 · maxi∈[m] |Vij | ≤ 1, which implies than AV ∈ V1. Thus F (θ)
1 satisfies inclusion condition,

A ◦ F (θ)
1 ⊆ F (θ)

1 . Since

V2 =
{
v ∈ Rdv

∣∣ ‖v‖ ≤ 1
}

=
{
αv
∣∣ v ∈ Rdv , ‖v‖ = 1, α ∈ [0, 1]

}
(40)

we can re-write F (θ)
2 as,

F (θ)
2 =

{
αg(x, y) | g(x, y) = f(x), for any f(x) ∈ {vT ψ′(x; θ)

∣∣ ‖v‖ = 1}, and α ∈ [0, 1]

}
.

(41)

Thus F (θ)
2 satisfies the label invariance condition. Finally, since Assumption 1 holds true for F (θ)

1

and F (θ)
2 , it also holds for F .

H Proof of Theorem 4

Let F = {D |D(x) ∈ [−1, 1]m}. We show that,

F3 =

{
D ∈ F

∣∣∣∣
∣∣D(x)TCT (p(x)− q(x))

∣∣ ≤ ε ∀x ∈ X
}
.

F4 =

{
D ∈ F

∣∣∣∣
∣∣D(x)T (p(x)− q(x))

∣∣ ≤ ε ∀x ∈ X
}
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Then,

dF3(P̃ , Q̃) = sup
D∈F

E
(x,y)∼P̃

[D(x)y]− E
(x,y)∼Q̃

[D(x)y]

= sup
D∈F

E
(x,y)∼P

[(CD(x))y]− E
(x,y)∼Q

[(CD(x))y]

= sup
D∈F

∫

X
D(x)TCT (p(x)PY |X=x(y))− q(x)QY |X=x(y))

≤ sup
D∈F

∫

X
ε = O(ε)

dF3
(P,Q) = sup

D∈F
E

(x,y)∼P
[D(x)y]− E

(x,y)∼Q
[D(x)y]

= sup
D∈F

∫

X
D(x)T (p(x)PY |X=x − q(x)QY |X=x)

≥ sup
D∈F

∫

XS
D(x)T (p(x)PY |X=x − q(x)QY |X=x)

(a)

≥ sup
D∈F

D(x)⊥vx

∫

XS
D(x)Tux

= sup
D∈F

∫

XS
D(x)T (ux − (uTx v̂x)v̂x)

= sup
D∈F

∫

XS
|||ux − (uTx v̂x)v̂x)|||1,

where in (a) we put p(x)PY |X=x(y)− q(x)QY |X=x(y) = ux and CTux = vx. Since ux is not and
eigenvector of C, ux 6⊥ vx and therefore the integrand is positive. Finally using the assumption that
PX(XS) +QX(X ) > 0 we get that LHS is positive number. Now by taking ε much smaller than the
LHS we get the desired result. Other case also follows similarly.

I Proof of Theorem 3

Proposition 1. There exists a class F of parametric vector valued functions which satisfy the
Lipschitzness in parameters property (12) and such that F − 1/21 satisfy inclusion condition
(Assumption 1).

Proof. For the proof we show that there exists a class of discriminators which satisfy the inclusion
condition of Assumption 1 and in particular we have the following example. Let F ′ be a class of
vector functions parameterized by the u′ ∈ U ′ which is L′-Lipschitz in the parameters and who
element functions satisfy |||fu′(x)|||∞ ≤ 1/2. We define a new class of vector functions

F , {T ′fu′(·) + 1/21 | ∀ f(·) ∈ F ′, |||T ′|||∞ ≤ 1} , (42)

parameterized by u = (u′, T ′) ∈ U ′ × {T ′ | |||T ′|||∞ ≤ 1}. Then,

|||T ′1Du′1(x, ·)− T ′2Du′2(x, ·)|||∞
(a)

≤ |||T ′1Du′1(x, ·)− T ′2Du′1(x, ·)|||∞ + |||T ′2Du′1(x, ·)− T ′2Du′2(x, ·)|||∞
(b)

≤ |||T ′1Du′1(x, ·)− T ′2Du′1(x, ·)|||
2

+ |||T ′2|||∞|||Du′1(x, ·)−Du′2(x, ·)|||∞
(c)

≤ |||T ′1 − T ′2|||2|||Du′1(x, ·)|||
2

+ |||T ′2|||∞L′|||u′1 − u′2|||2
(d)

≤ |||T ′1 − T ′2|||2
√
m+ L′|||u′1 − u′2|||2

≤ (
√
m+ L′) (|||T ′1 − T ′2|||2 + |||u′1 − u′2|||2)

(e)

≤
√

2(
√
m+ L′)

√
|||T ′1 − T ′2|||22 + |||u′1 − u′2|||22 (43)
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where (a) uses triangle inequality, (b) and (c) uses |||x|||∞ ≤ |||x|||2 and ‖Ax‖p ≤ ‖A‖p ‖x‖p (see

Section 1), (c) is true since F ′ is L′-Lipschitz in u′, (d) uses |||Du′(x, ·)|||∞ ≤ 1/2 and |||T ′2|||∞ ≤ 1,
and (e) uses x+ y ≤

√
2(x2 + y2).

Next we show that F lies in the range [0, 1]m as follows.

|||T ′Du′(x, ·)|||∞ ≤ |||T ′|||∞|||Du′(x, ·)|||∞
(b)

≤ 1 · 1/2 (44)

We can prove inclusion condition in Assumption 1 by the fact that |||TT ′|||∞ ≤ |||T |||∞|||T ′|||∞ ≤ 1 · 1
and hence TT ′ is valid choice for for T .

Next we present a straightforward corollary of Theorem 2.

Theorem 5. Let F be a parametric class of vector valued functions parameterized by u ∈ U ⊆ Rp
such that fu : X → [0, 1]m, ∀fu ∈ F . Further, if F is L-Lipschitz in the parameter u, as defined in
equation (12), and if F satisfies Assumption 1, then,

dF (P̃ , Q̃) ≤ dF (P,Q) ≤ |||C−1|||∞dF (P̃ , Q̃) (45)

Proof. A proof directly follows from Theorem 2.

Corollary 1 (of [3], Theorem 3.1.). Assume the same class F as in Theorem 5. Let P̃ , Q̃ be two
distributions on X , Ỹ and be P̃n, Q̃n be empirical versions of them with at least n samples each.
Then there is universal constant c such that when n ≥ cp log(pL/ε)

ε2 , we have with probability at least
1− exp(−p) over the randomness of P̃n, Q̃n,

∣∣∣dF (P̃n, Q̃n)− dF (P̃ , Q̃)
∣∣∣ ≤ ε (46)

Proof. Proof is directly follow from [3][Theorem 3.1.].

dF (P̃ , Q̃)
(a)

≤ dF (P,Q)
(a)

≤ |||C−1|||∞dF (P̃ , Q̃)

dF (P̃n, Q̃n)− ε
(a)

≤ dF (P,Q)
(a)

≤ |||C−1|||∞(dF (P̃n, Q̃n) + ε)

where (a) is true by Theorem 5 and (b) is true from the Corollary 1.

J Numerical comparisons to AmbientGAN [10]

In Table 1, we plot the generated label accuracy (as defined in Section 5.1) of RCGAN (which
uses the proposed projection discriminator) and AmbientGAN (which uses the DCGAN with no
projection discriminator) for multiple values of noise levels (1 − α). One of the main reasons
for the performance drop of AmbientGAN is that without the projection discriminator, training of
AmbientGAN is sensitive to how the mini-batches are chosen. For example, if the distribution of
the labels in the mini-batch of the real data is different from that of the mini-batch of the generated
data, then the performance of (conditional) AmbientGAN significantly drops. This is critical as we
have noisy labels, and matching the labels is in the mini-batch is challenging. Our proposed RCGAN
provides an architecture and training methods for applying AmbientGAN to noisy labeled data, to
overcome theses challenges. When a projection discriminator is used, as in all our RCGAN and
RCGAN-U implementations, the performance is not sensitive to how the mini-batches are sampled.
When a discriminator that is not necessarily a projection discriminator is used, as in our RCGAN+y
architecture, we propose a novel scheduling of the training, which avoids local minima resulting from
mis-matched mini-batches (explained in Appendix L). The results are averaged over 10 instances.
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Noise level (1-α)
0.2 0.3 0.5

RCGAN 0.994 0.994 0.994
AmbientGAN 0.940 0.902 0.857

Table 1: Noisy MNIST dataset: in generated label accuracy, RCGAN improves upon the stan-
dard implementation of the AmbientGAN with DCGAN architecture (we refer to Appendix L for
implementation details).

K Mixing regularizer for RCGAN

In addition to the permutation regularizer, we also propose another novel regularizer; the mixing
regularizer (controlled by λ′). Mixing error happens if, when generator is asked to produce samples
from one class, it produces a mix of different classes. To combat this, we propose the mixing
regularizer, which tries to minimize the best possible classification loss E [`(h2(x), y)] when asked
to predict Y given X . This encourages the generated samples from different classes to be different.
Maximizing the mixing regularizer is similar to maximizing the InfoGAN loss [11], which is a
variational lower bound on the mutual information between Y and X .

h1

G

D

h2

C

z
y

x

ỹ

ỹreal

xreal

permutation
regularizer

mixing
regularizer

adversarial
loss

Figure 4: The output x of the conditional generator G is paired with a noisy label ỹ corrupted by the
channel C. The discriminator D estimates whether a given labeled sample is coming from the real
data (xreal, ỹreal) or generated data (x, ỹ). The permutation regularizer h1 is pre-trained on real data.

With this regularizer, the D-step and G-step of the RCGAN(-U) are modified as follows. We train on
the following loss with λ, λ′ > 0.
D-step:

max
D∈F,h2∈H

E
(x,ỹ)∼P̃X,Ỹ

[φ (D(x, ỹ))] + E
z∼N y∼PY
ỹ|y∼Cy

[φ (1−D(G(z; y), ỹ))− λ′l(h2(G(z; y), y)] .

G-step:

min
G∈G

E
z∼N y∼PY
ỹ|y∼Cy

[
φ (1−D(G(z; y), ỹ)) + λ l(h∗1(G(z; y)), y)︸ ︷︷ ︸

permutation regularizer

+λ′ l(h2(G(z; y)), y)︸ ︷︷ ︸
mixing regularizer

]
. (47)

However, in our experiments, we did not see any performance gain when using the mixing regularizer.
This is possibly because the generator architecture naturally enforces the separation of classes.

L Implementation details

Hyper-parameters and architectures for MNIST: Biased GAN uses the standard conditional
DCGAN architecture [37] implementation2. RCGAN, RCGAN-U, and unbiased GAN use the same
DCGAN architecture [37] with hinge loss, φ(a) = max(0, 1 − 2a), and conditional projection
discriminator [32], as suggested by our theoretical analysis. Additionally, we also present RCGAN+y

2https://github.com/carpedm20/DCGAN-tensorflow
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architecture, which has the same architecture as RCGAN but the input to the first layer of its
discriminator is concatenated with a one-hot representation of the label.

We use λ = 0 and λ = 1 for RCGAN and RCGAN-U respectively, and a linear classifier for the
permutation regularizer. For RCGAN-U, the learning rate of the confusion matrix is 10 times as that
of the discriminator and the generator.

RCGAN+y training: RCGAN+y architecture has the same architecture as RCGAN but the input
to the first layer of its discriminator is concatenated with a one-hot representation of the label. We
observed that RCGAN+y is harder to train especially at low noise regimes of α ≥ 0.4. To combat
this we add additional artificial noise, parameterized by α̃, so that the effective noise parameter is
ᾱ = α̃(α − (1−α)

9 ) + (1−α)
9 . We schedule α̃ during the training so that from epoch 0 to 30, the

effective noise ᾱ = 0.3 and from epoch 30 to 80, we linearly reduce α̃ so that the effective noise
linearly decrease from 0.3 to α. Finally from epoch 80 to 100 we keep the artificial noise parameter
α̃ to 1, so that effective noise ᾱ = α. This stabilizes the training of RCGAN+y.

We suspect that the reason why RCGAN+y works better than RCGAN is that RCGAN+y optimizes
over a larger class of functions, which might be necessary when learning a conditional distribution with
large noise. Thus, as the noise increases it becomes more challenging for the projection discriminator
to differentiate between P̃ and Q̃, since it is much simpler function of y with y appearing only in the
final layer. However, in RCGAN+y since we concatenate y to the input of the first layer, RCGAN+y
discriminator may be able to better differentiate between P̃ and Q̃.

Hyper-parameters and architectures for CIFAR-10: We use ResNet based GAN used in [15] with
spectral normalization [31] and conditional projection discriminator [32] 3. We note that the spectral
normalization work [31] reports higher inception score than what we achieved on the noiseless
setting, possibly due to limited hyper-parameter tuning. For all the four approaches we use the same
hyper-parameters.

We use λ = 0 and λ = 1 for RCGAN and RCGAN-U respectively, and a linear classifier for the
permutation regularizer. For RCGAN-U, the learning rate of the confusion matrix is same as that of
the discriminator and the generator.

RCGAN-U CIFAR-10 initialization: For CIFAR-10 dataset, we observed that even with the per-
mutation regularizer, the learned confusion matrix in RCGAN-U was a permuted version of the true
C, possibly because a linear classifier might be too simple to classify CIFAR images. To combat
this, we initialized the confusion matrix M to be diagonally dominant. We initialized the confusion
matrix to be learned M so that diagonal entries are 0.2 and off-diagonal entries are (1− 0.2)/9. In
our experiments, this ensured that the approximately true confusion matrix C was learned by M in
RCGAN-U. We believe that better CIFAR-10 classifier for permutation regularizers can achieve the
same effect as this initialization.

M Additional experimental information

In this section, we provide tables with the numerical values of the data points in the Figures 2 and 3.

3https://github.com/watsonyanghx/GAN_Lib_Tensorflow
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Noise (1− α) RCGAN+y RCGAN RCGAN-U unbiased GAN biased GAN
0.875 0.905 0.11 0.215 0.1 0.119
0.85 0.984 0.211 0.235 0.1 0.138
0.8 0.987 0.44 0.489 0.1 0.192
0.7 0.985 0.978 0.992 0.1 0.288
0.6 0.976 0.983 0.991 0.2 0.375
0.5 0.976 0.991 0.986 0.869 0.475
0.4 0.984 0.994 0.99 0.997 0.57
0.3 0.983 0.994 0.987 0.991 0.681
0.2 0.99 0.994 0.995 0.999 0.765
0.1 0.99 0.994 0.995 0.998 0.873
0.0 0.995 0.995 0.994 0.994 0.994

Table 2: Numerical values for the data-points in Figure 2 (left panel). Noisy MNIST dataset:
Generated label accuracy of RCGAN, RCGAN-U, RCGAN+y, unbiased GAN and biased GAN.

Noise (1− α) RCGAN+y RCGAN RCGAN-U unbiased GAN biased GAN
0.875 0.156 0.885 0.86 0.898 0.872
0.85 0.102 0.774 0.77 0.894 0.854
0.8 0.088 0.638 0.69 0.9 0.634
0.7 0.11 0.096 0.098 0.768 0.55
0.6 0.088 0.1 0.058 0.902 0.322
0.5 0.07 0.106 0.094 0.472 0.274
0.4 0.072 0.098 0.08 0.158 0.164
0.3 0.096 0.088 0.084 0.098 0.142
0.2 0.076 0.086 0.086 0.07 0.138
0.1 0.112 0.068 0.096 0.088 0.104
0.0 0.069 0.069 0.069 0.069 0.069

Table 3: Numerical values for the data-points in Figure 2 (right panel). Noisy MNIST dataset: Label
recovery error of RCGAN, RCGAN-U, RCGAN+y, unbiased GAN and biased GAN.

Noise (1− α) RCGAN RCGAN-U unbiased GAN biased GAN
0.8 0.111 0.126 0.110 0.117
0.6 0.443 0.263 0.1 0.148
0.4 0.700 0.71 0.4 0.340
0.2 0.724 0.815 0.6 0.507
0.0 0.751 0.751 0.751 0.751

Table 4: Numerical values for the data-points in Figure 3 (left panel). Noisy CIFAR-10 dataset:
Generated label accuracy of RCGAN, RCGAN-U, unbiased GAN and biased GAN.

Noise (1− α) RCGAN RCGAN-U unbiased GAN biased GAN
0.8 7.8 7.58 4.37 7.6
0.6 7.85 7.56 4 7.68
0.4 8.05 8.03 4 7.75
0.2 8.11 8.12 6 7.91
0.0 8.13 8.13 8.13 8.13

Table 5: Numerical values for the data-points in Figure 3 (right panel). Noisy CIFAR-10 dataset:
Inception score of RCGAN, RCGAN-U, unbiased GAN and biased GAN.
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Figure 5: Images generated from the RCGAN+y, RCGAN , RCGAN-U, Unbiased and Biased
GANs trained using noisy MNIST dataset, where class labels are flipped uniformly at random with
probability 1− ‘real label accuracy’, under the uniform flipping model.
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Figure 6: Images generated from the RCGAN-U, Unbiased and Biased GANs trained using
noisy CIFAR-10 dataset, where class labels are flipped uniformly at random with probability
1− ‘real label accuracy’, under the uniform flipping model.
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