
Supplementary Material: Discrimination-aware
Channel Pruning for Deep Neural Networks

Zhuangwei Zhuang1∗ , Mingkui Tan1∗†, Bohan Zhuang2∗, Jing Liu1∗,
Yong Guo1, Qingyao Wu1, Junzhou Huang3,4, Jinhui Zhu1†

1South China University of Technology, 2The University of Adelaide,
3University of Texas at Arlington, 4Tencent AI Lab

{z.zhuangwei, seliujing, guo.yong}@mail.scut.edu.cn, jzhuang@uta.edu
{mingkuitan, qyw, csjhzhu}@scut.edu.cn, bohan.zhuang@adelaide.edu.au

We organize our supplementary material as follows. In Section S1, we give some theoretical analysis
on the loss function. In Section S2, we introduce the details of fine-tuning algorithm in DCP. Then,
in Section S3, we discuss the effect of pruning each individual block in ResNet-18. We explore the
number of additional losses in Section S4. We explore the effect of the number of samples on channel
selection in Section S5. We study the influence on the quality of pre-trained models in Section S6.
In Section S7, we apply our method to prune MobileNet v1 and MobileNet v2 on ILSVRC-12. We
discuss the model complexities of the pruned models in Section S8, and report the detailed structure
of the pruned VGGNet with DCP-Adapt in Section S9. We provide more visualization results of the
feature maps w.r.t. the pruned/selected channels in Section S10.

S1 Convexity of the loss function

In this section, we analyze the property of the loss function.

Proposition 1 (Convexity of the loss function) Let W be the model parameters of a considered
layer. Given the mean square loss and the cross-entropy loss defined in Eqs. (5) and (3), then the
joint loss function L(W) is convex w.r.t. W.

Proof 1 The mean square loss (3) w.r.t. W is convex because Oi,j,:,: is linear w.r.t. W. Without
loss of generality, we consider the cross-entropy of binary classification, it can be extend to multi-
classification, i.e.,

Lp
S(W) =

N∑
i=1

yi
[
− log

(
hθ

(
F(p,i)

))]
+ (1− yi)

[
− log

(
1− hθ

(
F(p,i)

))]
,

where hθ
(
F(p,i)

)
= 1

1+e−θTF(p,i) , Fp(W) = AvgPooling(ReLU(BN(Op))) and Op
i,j,:,: is linear

w.r.t. W. Here, we assume F(p,i) and W are vectors. The loss function Lp
S(W) is convex w.r.t. W

as long as − log
(
hθ
(
F(p,i)

))
and − log

(
1− hθ

(
F(p,i)

))
are convex w.r.t. W. First, we calculate

the derivative of the former, we have

∇F(p,i)

[
− log

(
hθ

(
F(p,i)

))]
= ∇F(p,i)

[
log
(
1 + e−θ

TF(p,i)
)]

=
(
hθ

(
F(p,i)

)
− 1
)
θ

and

∇2
F(p,i)

[
− log

(
hθ

(
F(p,i)

))]
=∇F(p,i)

[(
hθ

(
F(p,i)

)
− 1
)
θ
]

=hθ

(
F(p,i)

)(
1− hθ

(
F(p,i)

))
θθT. (S1)

∗Authors contributed equally.
†Corresponding author.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Using chain rule, the derivative w.r.t. W is

∇W

[
− log

(
hθ

(
F(p,i)

))]
=
(
∇WF(p,i)

)
∇F(p,i)

[
− log

(
hθ

(
F(p,i)

))]
=
(
∇WF(p,i)

)(
hθ

(
F(p,i)

)
− 1
)
θ,

then the hessian matrix is

∇2
W

[
− log

(
hθ

(
F(p,i)

))]
=∇W

[(
∇WF(p,i)

)(
hθ

(
F(p,i)

)
− 1
)
θ
]

=∇2
WF(p,i)

(
hθ

(
F(p,i)

)
− 1
)
θ +∇W

[(
hθ

(
F(p,i)

)
− 1
)
θ
] (
∇WF(p,i)

)T
=∇W

[(
hθ

(
F(p,i)

)
− 1
)
θ
] (
∇WF(p,i)

)T
=
(
∇WF(p,i)

)
∇F(p,i)

[(
hθ

(
F(p,i)

)
− 1
)
θ
] (
∇WF(p,i)

)T
=
(
∇WF(p,i)

)
hθ

(
F(p,i)

)(
1− hθ

(
F(p,i)

))
θθT

(
∇WF(p,i)

)T
.

The third equation is hold by the fact that ∇2
WF(p,i) = 0 and the last equation is follows by Eq. (S1).

Therefore, the hessian matrix is semi-definite because hθ
(
F(p,i)

)
≥ 0, 1− hθ

(
F(p,i)

)
≥ 0 and

zT∇2
W

[
− log

(
hθ

(
F(p,i)

))]
z = hθ

(
F(p,i)

)(
1− hθ

(
F(p,i)

))(
zT∇WF(p,i)θ

)2
≥ 0, ∀z.

Similarly, the hessian matrix of the latter one of loss function is also semi-definite. Therefore, the
joint loss function L(W) is convex w.r.t. W.

S2 Details of fine-tuning algorithm in DCP

Let Lp be the position of the inserted output in the p-th stage. W denotes the model parameters. We
apply forward propagation once, and compute the additional loss Lp

S and the final loss Lf . Then, we
compute the gradients of Lp

S w.r.t. W, and update W by

W←W − γ
∂Lp

S

∂W
, (S2)

where γ denotes the learning rate.

Based on the last W, we compute the gradient of Lf w.r.t. W, and update W by

W←W − γ ∂Lf

∂W
. (S3)

The fine-tuning algorithm in DCP is shown in Algorithm S1.

Algorithm S1 Fine-tuning Algorithm in DCP
Input: Position of the inserted output Lp, model parameters W, the number of fine-tuning iteration
T , learning rate γ, decay of learning rate τ .
for Iteration t = 1 to T do

Randomly choose a mini-batch of samples from the training set.
Compute gradient of Lp

S w.r.t. W: ∂Lp
S

∂W .
Update W using Eq. (S2).
Compute gradient of Lf w.r.t. W: ∂Lf

∂W .
Update W using Eq. (S3).
γ ← τγ.

end for

2



S3 Channel pruning in a single block

To evaluate the effectiveness of our method on pruning channels in a single block, we apply our
method to each block in ResNet-18 separately. We implement the algorithms in ThiNet [4], APoZ [2]
and weight sum [3], and compare the performance on ILSVRC-12 with pruning 30% channels in the
network. As shown in Figure S1, our method outperforms the strategies of APoZ and weight sum
significantly. Compared with ThiNet, our method achieves lower degradation of performance under
the same pruning rate, especially in the deeper layers.

res-2a
res-2b

res-3a
res-3b

res-4a
res-4b

res-5a
res-5b

0

5

10

15
In

cr
ea

se
d 

to
p-

1 
er

ro
r (

%
) ThiNet

APoZ
Weight sum
Ours

Figure S1: Pruning different blocks in ResNet-18. We report the increased top-1 error on ILSVRC-12.

S4 Exploring the number of additional losses

To study the effect of the number of additional losses, we prune 50% channels from ResNet-56 for
2× acceleration on CIFAR-10. As shown in Table S1, adding too many losses may lead to little gain
in performance but incur significant increase of computational cost. Heuristically, we find that adding
losses every 5-10 layers is sufficient to make a good trade-off between accuracy and complexity.

Table S1: Effect on the number of additional losses over ResNet-56 for 2× acceleration on CIFAR-10.

#additional losses 3 5 7 9
Error gap (%) +0.31 +0.27 +0.21 +0.20

S5 Exploring the number of samples

To study the influence of the number of samples on channel selection, we prune 30% channels from
ResNet-18 on ILSVRC-12 with different number of samples, i.e., from 10 to 100k. Experimental
results are shown in Figure S2.

101 102 103 104 105

#samples

20

40

60

80

Te
st

in
g 

er
ro

r (
%

)

Top-1
Top-5

Figure S2: Testing error on ILSVRC-12 with different number of samples for channel selection.

3



In general, with more samples for channel selection, the performance degradation of the pruned
model can be further reduced. However, it also leads to more expensive computation cost. To make a
trade-off between performance and efficiency, we use 10k samples in our experiments for ILSVRC-12.
For small datasets like CIFAR-10, we use the whole training set for channel selection.

S6 Influence on the quality of pre-trained models

To explore the influence on the quality of pre-trained models, we use intermediate models at epochs
{120, 240, 400} from ResNet-56 for 2× acceleration as pre-trained models, which have different
quality. From the results in Table S2, DCP shows small sentity to the quality of pre-trained models.
Moreover, given models of the same quality, DCP steadily outperforms the other two methods.

Table S2: Influence of pre-trained model quality over ResNet-56 for 2× acceleration on CIFAR-10.

Epochs (baseline error) ThiNet Channel pruning DCP
120 (10.57%) +1.22 +1.39 +0.39
240 (6.51%) +0.92 +1.02 +0.36
400 (6.20%) +0.82 +1.00 +0.31

S7 Pruning MobileNet v1 and MobileNet v2 on ILSVRC-12

We apply our DCP method to do channel pruning based on MobileNet v1 and MobileNet v2 on
ILSVRC-12. The results are reported in Table S3. Our method outperforms ThiNet [4] in top-1 error
by 0.75% and 0.47% on MobileNet v1 and MobileNet v2, respectively.

Table S3: Comparisons of MobileNet v1 and MobileNet v2 on ILSVRC-12. "-" denotes that the
results are not reported.

Model ThiNet [4] WM [1, 5] DCP

MobileNet v1
(Baseline 31.15%)

#Param. ↓ 2.00× 2.00× 2.00×
#FLOPs ↓ 3.49× 3.49× 3.49×

Top-1 gap (%) +4.67 +6.90 +3.92
Top-5 gap (%) +3.36 - +2.71

MobileNet v2
(Baseline 29.89%)

#Param. ↓ 1.35× 1.35× 1.35×
#FLOPs ↓ 1.81× 1.81× 1.81×

Top-1 gap (%) +6.36 +6.40 +5.89
Top-5 gap (%) +3.67 +4.60 +3.77

S8 Complexity of the pruned models

We report the model complexities of our pruned models w.r.t. different pruning rates in Table S4 and
Table S5. We evaluate the forward/backward running time on CPU/GPU. We perform the evaluations
on a workstation with two Intel Xeon-E2630v3 CPU and a NVIDIA TitanX GPU. The mini-batch
size is set to 32. Normally, as channels pruning removes the whole channels and related filters directly,
it reduces the number of parameters and FLOPs of the network, resulting in acceleration in forward
and backward propagation. We also report the speedup of running time w.r.t. the pruned ResNet18
and ResNet50 under different pruning rates in Figure S3. The speedup on CPU is higher than GPU.
Although the pruned ResNet-50 with the pruning rate of 50% has similar computational cost to the
ResNet-18, it requires 2.38× GPU running time and 1.59× CPU running time to ResNet-18. One
possible reason is that wider networks are more efficient than deeper networks, as it can be efficiently
paralleled on both CPU and GPU.

4



Table S4: Model complexity of the pruned ResNet-18 and ResNet-50 on ILSVRC-2012. f./b.
indicates the forward/backward time tested on one NVIDIA TitanX GPU or two Intel Xeon-E2630v3
CPU with a mini-batch size of 32.

Network Prune rate (%) #Param. #FLOPs GPU time (ms) CPU time (s)
f./b. Total f./b. Total

ResNet-18

0 1.17× 107 1.81× 109 14.41/33.39 47.80 2.78/3.60 6.38
30 8.41× 106 1.32× 109 13.10/29.40 42.50 2.18/2.70 4.88
50 6.19× 106 9.76× 108 10.68/25.22 35.90 1.74/2.18 3.92
70 4.01× 106 6.49× 108 9.74/22.60 32.34 1.46/1.75 3.21

ResNet-50

0 2.56× 107 4.09× 109 49.97/109.69 159.66 6.86/9.19 16.05
30 1.70× 107 2.63× 109 43.86/96.88 140.74 5.48/6.89 12.37
50 1.24× 107 1.82× 109 35.48/78.23 113.71 4.42/5.74 10.16
70 8.71× 106 1.18× 109 33.28/72.46 105.74 3.33/4.46 7.79

Table S5: Model complexity of the pruned ResNet-56 and VGGNet on CIFAR-10.

Network Prune rate (%) #Param. #FLOPs

ResNet-56

0 8.56× 105 1.26× 108

30 6.08× 105 9.13× 107

50 4.31× 105 6.32× 107

70 2.71× 105 3.98× 107

VGGNet
0 2.00× 107 3.98× 108

30 1.04× 107 1.99× 108

40 7.83× 106 1.47× 108

MobileNet 0 3.22× 106 2.13× 108

30 2.25× 106 1.22× 108

0 30 50 70
Pruning rate (%)

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p 

of
 ru

nn
in

g 
tim

e(
%

) ResNet18-GPU
ResNet18-CPU
ResNet50-GPU
ResNet50-CPU

Figure S3: Speedup of running time w.r.t. ResNet18 and ResNet50 under different pruning rates.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Depth

0

20

40

60

80

Pr
un

in
g 

ra
te

 (%
)

Figure S4: Pruning rates w.r.t. each layer in VGGNet. We measure the pruning rate by the ratio of
pruned input channels.

5



S9 Detailed structure of the pruned VGGNet

We show the detailed structure and pruning rate of a pruned VGGNet obtained from DCP-Adapt on
CIFAR-10 dataset in Table S6 and Figure S4, respectively. Compared with the original network, the
pruned VGGNet has lower layer complexities, especially in the deep layer.

Table S6: Detailed structure of the pruned VGGNet obtained from DCP-Adapt. "#Channel" and
"#Channel∗" indicates the number of input channels of convolutional layers in the original VGGNet
(testing error 6.01%) and a pruned VGGNet (testing error 5.43%) respectively.

Layer #Channel #Channel∗ Pruning rate (%)
conv1-1 3 3 0
conv1-2 64 56 12.50
conv2-1 64 64 0
conv2-2 128 128 0
conv3-1 128 115 10.16
conv3-2 256 199 22.27
conv3-3 256 177 30.86
conv3-4 256 123 51.95
conv4-1 256 52 79.69
conv4-2 512 59 88.48
conv4-3 512 46 91.02
conv4-4 512 31 93.94
conv4-5 512 37 92.77
conv4-6 512 37 92.77
conv4-7 512 44 91.40
conv4-8 512 31 93.94

S10 More visualization of feature maps

In Section 5.4, we have revealed the visualization of feature maps w.r.t. the pruned/selected channels.
In this section, we provide more results of feature maps w.r.t. different input images, which are shown
in Figure S5. According to Figure S5, the selected channels contain much more information than the
pruned ones.

(a) Input image (b) Feature maps of the pruned channels (c) Feature maps of the selected channels

6



(a) Input image (b) Feature maps of the pruned channels (c) Feature maps of the selected channels

Figure S5: Visualization of feature maps w.r.t. the pruned/selected channels of res-2a in ResNet-18.

References
[1] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[2] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trimming: A data-driven neuron pruning approach
towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[3] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. In ICLR,
2017.

[4] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network compression.
In ICCV, pages 5058–5066, 2017.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, pages 4510–4520, 2018.

7


	Convexity of the loss function
	Details of fine-tuning blackalgorithm in DCP
	Channel pruning in a single blackblock
	Exploring the number of additional losses
	Exploring the number of samples
	Influence on the quality of pre-trained models
	Pruning MobileNet v1 blackand MobileNet v2 on ILSVRC-12
	blackComplexity of the pruned models
	Detailed structure of the pruned VGGNet
	More visualization of feature maps

