
Supplementary Material:
On Learning Intrinsic Rewards for

Policy Gradient Methods

Zeyu Zheng Junhyuk Oh
Computer Science & Engineering

University of Michigan
{zeyu,junhyuk,baveja}@umich.edu

Satinder Singh

A Full Implementation Details

A.1 Atari Experiments

Episode Generation. As in Mnih et al. [2015], each episode starts by doing a no-op action for a
random number of steps after restarting the game. The number of no-op steps is sampled from 0 to
30 uniformly. Within an episode, each action chosen is repeated for 4 frames, before selecting the
next action. An episode ends when the game is over or the agent loses a life.

Input State Representation. As in Mnih et al. [2015], we take the maximum value at each pixel
from 4 consecutive frames to compress them into one frame which is then rescaled to a 84× 84 gray
scale image. The input to all four neural networks is the stack of the last 4 gray scale images (thus
capturing frame-observations over 16 frames). The extrinsic rewards from the game are clipped to
[−1, 1].

Details of the Two Networks in the Policy Module. Note that the policy module is unchanged
from the OpenAI implementation. Specifically, the two networks are convolutional neural networks
(CNN) with 3 convolutional layers and 1 fully connected layer. The first convolutional layer has
thirty-two 8× 8 filters with stride 4. The second convolutional layer has sixty-four 4× 4 filters with
stride 2. The third convolutional layer has sixty-four 3× 3 filters with stride 1. The fourth layer is a
fully connected layer with 512 hidden units. Each hidden layer is followed by a rectifier non-linearity.
The value network (that estimates Gex+in) shares parameters for the first four layers with the policy
network. The policy network has a separate output layer with an output for every action through a
softmax nonlinearity, while the value network separately outputs a single scalar for the value.

Details of the Two Networks in the Intrinsic Reward Module. The intrinsic reward module has
two very similar neural network architectures as the policy module described above. It again has
two networks, a “policy” network that instead of a softmax over actions produces a scalar reward for
every action through a tanh nonlinearity to keep the scalar in [−1, 1]; we will refer to it as the intrinsic
reward function. The value network to estimate Gex has the same architecture as the intrinsic reward
network except for the output layer that has a single scalar output without a non-linear activation.
These two networks share the parameters of the first four layers.

Hyper-Parameters for Policy module. We keep the default values of all hyper-parameters in the
original OpenAI implementation of the A2C-based policy module unchanged for both the augmented
and baseline agents1.

1We use 16 actor threads to generate episodes. For each training iteration, each actor acts for 5 time steps.
For training the policy, the weighting coefficients of policy-gradient term, value network loss term, and the

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Hyper-Parameters for Intrinsic Reward module in Augmented Agent. We use RMSProp to
optimize the two networks of the intrinsic reward module. The decay factor used for RMSProp is
0.99, and the ε is 0.00001. We do not use momentum. Recall that there are two parameters special
to LIRPG. Of these, the step size β was initialized to 0.0007 and annealed linearly to zero over 50
million time steps for all the experiments reported below. We did a small hyper-parameter search for
λ for each game (this is described below in the caption of Figure 1). As for the A2C implementation
for the policy module we clipped the gradient by norm to 0.5 in the intrinsic reward module.

A.2 Mujoco Experiments

Details of the Two Networks in the Policy Module. Note that the policy module is unchanged
from the OpenAI implementation; we provide details for completeness. The policy network is a MLP
with 2 hidden layers, too. The input to the policy network is the observation. The first two layer are
fully connected layers with 64 hidden units. Each hidden layer is followed by a tanh non-linearity.
The output layer outputs a vector with the size of the dimension of the action space with no non-
linearity applied to the output units. Gaussian noise is added to the output of the policy network to
encourage exploration. The variance of the Gaussian noise was a input-independent parameter which
was also trained by gradient descent. The corresponding value network (that estimates Gex+in) has a
similar architecture with the policy network. The only difference is that that output layer outputs a
single scalar without any non-linear activation. These two networks do not share any parameters.

Details of the Two Networks in the Intrinsic Reward Module. The intrinsic reward function
networks are quite similar to the two networks in the policy module. Each network is a multi-layer
perceptron (MLP) with 2 hidden layers. We concatenated the observation vector and the action vector
as the input to the intrinsic reward network. The first two layer are fully connected layers with 64
hidden units. Each hidden layer is followed by a tanh non-linearity. The output layer has one scalar
output. We apply tanh on the output to bound the intrinsic reward to [−1, 1]. The value network to
estimate Gex has the same architecture as the intrinsic reward network except for the output layer
that has a single scalar output without a non-linear activation. These two networks do not share any
parameters.

Hyper-Parameters for Policy Module We keep the default values of all hyper-parameters in the
original OpenAI implementation of PPO unchanged for both the augmented and baseline agents2.

Hyper-Parameters for Intrinsic Reward Module We use Adam [Kingma and Ba, 2014] to
optimize the two networks of the intrinsic reward module. The step size β was initialized to 0.0001
and was fixed over 1 million time steps for all the experiments reported below. The mixing coefficient
λ was fixed to 1.0 and instead we multiplied the extrinsic reward by 0.01 cross all 5 environments.
The PPO implementation clips the gradient by norm to 0.5. We keep this part unchanged for the
policy network and clip the gradients by the same norm for the reward network. We used generalized
advantage estimate (GAE) [Schulman et al., 2015] for both training the reward network and the policy
network. The weighting factor for GAE was 0.95.

B More Experimental Results

entropy regularization term in the objective function are 1.0, 0.5, and 0.01. The learning rate α for training the
policy is set to 0.0007 at the beginning and anneals to 0 linearly over 50 million steps. The discount factor γ is
0.99 for all experiments.

2For each training iteration, the agent interacts with the environment for 2048 steps. The learning rate α for
training the policy is set to 0.0003 at the beginning and was fixed over training. We used a batch size of 32 and
swept over the 2048 data points for 10 epochs before the next sequence of interaction. The discount factor γ is
0.99 for all experiments.

2



0 1 2 3 4 5
1e7

500

1000

1500

2000

2500

3000 Alien

0 1 2 3 4 5
1e7

0

200

400

600

800

1000

1200

Amidar

0 1 2 3 4 5
1e7

0

5000

10000

15000

20000

25000
Asterix

0 1 2 3 4 5
1e7

0

500000

1000000

1500000

2000000

2500000

3000000

Atlantis

0 1 2 3 4 5
1e7

0

2000

4000

6000

8000

10000
BeamRider

0 1 2 3 4 5
1e7

0

100

200

300

400

500

600
Breakout

0 1 2 3 4 5
1e7

0

50000

100000

150000

200000

250000

300000

350000

400000
DemonAttack

0 1 2 3 4 5
1e7

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0
DoubleDunk

0 1 2 3 4 5
1e7

500

1000

1500

2000

2500

3000

MsPacman

0 1 2 3 4 5
1e7

0

2500

5000

7500

10000

12500

15000

17500

20000
Qbert

0 1 2 3 4 5
1e7

2000

4000

6000

8000

10000

12000

14000

Riverraid

0 1 2 3 4 5
1e7

0

5000

10000

15000

20000

25000

30000

35000

40000
RoadRunner

0 1 2 3 4 5
1e7

500

1000

1500

2000

2500

SpaceInvaders

0 1 2 3 4 5
1e7

22.5

20.0

17.5

15.0

12.5

10.0

7.5

Tennis

0 1 2 3 4 5
1e7

0

20000

40000

60000

80000

100000

UpNDown

A2C
A2C-live-bonus
A2C-pixel-SimHash
A2C-LIRPG

Figure 1: The x-axis is time steps during learning. The y-axis is the average game score over the
last 100 training episodes. The black curves are for the baseline architecture. The deep blue curves
are for the A2C-live-bonus baseline. The light blue curves are for the A2C-pixel-SimHash baseline.
The red curves are for our LIRPG based augmented architecture. The dark curves are the average of
four runs with different random seeds. The shaded areas show the standard errors of 5 individual
runs. Hyper-parameter Search: We explored the following values for the intrinsic reward weighting
coefficient λ, {0.003, 0.005, 0.01, 0.02, 0.03, 0.05}. We explored the following values for the term ξ,
{0.001, 0.01, 0.1, 1}, that weights the loss from the value function estimates with the loss from the
intrinsic reward function (the policy component of the intrinsic reward module).

3



0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Alien

0 2 4 6 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Amidar

0 1 2 3 4 5 6 7 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Asterix

0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Atlantis

0 1 2 3 4 5 6 7 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BeamRider

0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Breakout

0 1 2 3 4 5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
DemonAttack

0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
DoubleDunk

0 1 2 3 4 5 6 7 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
MsPacman

0 1 2 3 4 5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Qbert

0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Riverraid

0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
RoadRunner

0 1 2 3 4 5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
SpaceInvaders

0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Tennis

0 1 2 3 4 5
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
UpNDown

Figure 2: Intrinsic reward variation and frequency of action selection. We selected a good run for
each game from the runs shown in Figure 1, and used the learned intrinsic reward module and the
associated policy module for the selected run without any further learning to play the game for 100
thousand steps, i.e., 400 thousand frames, to collect data. For each game/plot the x-axis shows the
index of the actions that are available in that game. The red bars show the means and standard
deviations of the intrinsic rewards associated with each action. The blue bars show the frequency of
each action being selected.

4



0 2000004000006000008000000

500

1000

1500

2000

2500

de
la

y 
10

Hopper

0 200000400000600000800000

500

0

500

1000

1500

2000

2500 HalfCheetah

0 2000004000006000008000000

500

1000

1500

2000

2500

3000 Walker2d

0 200000400000600000800000
500

400

300

200

100

0

100

200

300
Ant

0 2000004000006000008000000

100

200

300

400

500

600

700
Humanoid

0 2000004000006000008000000

500

1000

1500

2000

2500

de
la

y 
20

Hopper

0 200000400000600000800000

500

0

500

1000

1500

2000

2500 HalfCheetah

0 2000004000006000008000000

500

1000

1500

2000

2500

3000 Walker2d

0 200000400000600000800000
500

400

300

200

100

0

100

200

300
Ant

0 2000004000006000008000000

100

200

300

400

500

600

700
Humanoid

0 2000004000006000008000000

500

1000

1500

2000

2500

de
la

y 
40

Hopper

0 200000400000600000800000

500

0

500

1000

1500

2000

2500 HalfCheetah

0 2000004000006000008000000

500

1000

1500

2000

2500

3000 Walker2d

0 200000400000600000800000
500

400

300

200

100

0

100

200

300
Ant

0 2000004000006000008000000

100

200

300

400

500

600

700
Humanoid

PPO
PPO-live-bonus
PPO-LIRPG
PPO-LIRPG(R in)

Figure 3: The x-axis is time steps during learning. The y-axis is the average reward over the last 100
training episodes. Each column corresponds to a domain labeled at the top. Each row corresponds to
the delay labeled on the left hand side (for 10, 20, and 40 steps from the top row to the bottom row).
The black curves are for the baseline PPO architecture. The blue curves are for the PPO-live-bonus
baseline. The red curves are for our LIRPG based augmented architecture. The green curves are for
our LIRPG architecture in which the policy module was trained with only intrinsic rewards. The dark
curves are the average of 10 runs with different random seeds. The shaded area shows the standard
errors of 10 runs.

5



References
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

6


	Full Implementation Details
	Atari Experiments
	Mujoco Experiments

	More Experimental Results

