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A Proof of Theorem 3.2

Proof. Recall that we directly have Pr(ŷ = k|y = k) = t and Pr(y = k) = 1/c, then according to
the additional assumption (II) and the law of total probability, it holds that

r∞ =
t

c

c∑
k=1

Pr (wT
k x̌ > maxl 6=k w

T
l x̌ | y = k, ŷ = k). (1)

Let us denote x́ := x− ε · sgn(wy − w̄) as the degraded adversarial example, then we further have
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k=1

Pr (wT
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≤ t

c

c∑
k=1

Pr (wT
k x́ > (cw̄ −wk)T x́/(c− 1) | y = k, ŷ = k)

=
t

c

c∑
k=1

Pr ((wk − w̄)Tx > ε‖wk − w̄‖1 | y = k, ŷ = k),

(2)

by taking advantage of the assumption (I) and replacing the max operation with an average. Finally
our result follows after using the Markov’s inequality.

The method for deriving the upper bound of r2 is analogous to our proof of Theorem 3.1. We consider
the conditional expectations to get:
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(3)

in which the following inequality is used:
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B Proof of Lemma 3.1

Lemma B.1. Let σ(·) = max{·, 0} be a rectifier function, then for any xa, xb ∈ R, it holds that
|σ(xa)− σ(xb)| ≤ max{1xa>0, 1xb>0}|xa − xb|. (5)

The proof is self-evident. We generalize Lemma B.1 to n-dimensional Euclidean space as follows.
Lemma B.2. Let σ(·) be a function employing element-wise rectifier, then for any xa,xb ∈ Rn, it
holds that

‖σ(xa)− σ(xb)‖p ≤ ‖H(xa,xb)‖p‖xa − xb‖p, (6)
in which H(xa,xb) := diag(max{1xa[1]>0, 1xb[1]>0}, . . . ,max{1xa[n]>0, 1xb[n]>0}).

Proof. From definition of the vector lp norms, we get

‖σ(xa)− σ(xb)‖p = (
∑

u|σ(xa[u])− σ(xb[u])|p)
1
p

≤ (
∑

u max{1xa[u]>0, 1xb[u]>0}|xa[u]− xb[u]|p)
1
p

= ‖H(xa,xb)(xa − xb)‖p
≤ ‖H(xa,xb)‖p‖(xa − xb)‖p,

(7)

in which the last inequality is obtained using the definition of the induced matrix norms.

Lemma B.3. Given xa ∈ Rn, there exists ε ∈ R+, for all xb satisfying ‖xa−xb‖∞ < ε, the diagonal
matrix H(xa,xb) defined in Lemma B.2 can be simplified as H(xb) := diag(1xb[1]>0,...,xb[n]>0).

Proof. Let us first prove a one-dimensional form. Given xa 6= 0, we can let ε = |xa|
2 , then for all xb

satisfying |xb − xa| < ε, it holds that max{1xa>0, 1xb>0} = 1xa>0 = 1xb>0. If given xa = 0, then
1xa>0 = 0 and 1xa>0 ≤ 1xb>0 for all xb ∈ R. Hence, we have max{1xa>0, 1xb>0} = 1xb>0 and
max{1xa>0, 1xb>0}|xa − xb| = 1xb>0|xa − xb|. Above derivations can be directly generalized to
higher dimensions, following (7).

Finally it comes to our formal proof of Lemma 3.1. We provide two ways of proving it as below.

Proof. Let us first denote hk(·) := gŷ(·)− gk(·) and

Dj(x
′,x) := diag

(
max{1Wj [:,1]T a′j−1>0, 1Wj [:,1]T aj−1>0}, . . . ,

max{1Wj [:,nj ]T a′j−1>0, 1Wj [:,nj ]T aj−1>0}
)
.

(8)

According to our Lemma B.2, it follows that,
|hk(x′)− hk(x)|
≤‖wŷ −wk‖q‖σ(WT

d−1σ(. . . σ(WT
1 x′)))− σ(WT

d−1σ(. . . σ(WT
1 x)))‖p

≤‖wŷ −wk‖q‖Dd−1(x′,x)‖p‖Wd−1‖p‖σ(. . . σ(WT
1 x′)))− σ(. . . σ(WT

1 x)))‖p
≤‖wŷ −wk‖q max{‖Dd−1(x′)‖p, ‖Dd−1(x)‖p}‖Wd−1‖p‖σ(. . . σ(WT

1 x′)))− σ(. . . σ(WT
1 x)))‖p

· · ·

≤

‖wŷ −wk‖q
d−1∏
j=1

max{‖Dj(x
′)‖p, ‖Dj(x)‖p}‖Wj‖p

 ‖x′ − x‖p,

for any x′ ∈ Bp(x, R), in which the Hölder’s inequality is used and all matrix norms are the induced
norms. In fact, since Dj(x

′) is diagonal and its entries belong to {0, 1}, function
∏
‖Dj(·)‖p, for

q ∈ {1, 2}, has at most 2 possible values (i.e., 0 and 1). Hence, we further have

|hk(x′)− hk(x)| ≤ ‖x′ − x‖p‖wŷ −wk‖q sup
x′′∈B(x,R)

d−1∏
j=1

(max{‖Dj(x
′′)‖p, ‖Dj(x)‖p}‖Wj‖p)

= ‖x′ − x‖p‖wŷ −wk‖q sup
x′′∈B(x,R)

d−1∏
j=1

(‖Dj(x
′′)‖p‖Wj‖p),
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by exploiting the fact that x ∈ Bp(x, R). 2 The Lemma is now evident from what we have proved.

We also provide an alternative proof, in which the Lemma 3.3 in Weng et al.’s paper [3] is utilized.
Denote D+hk(x;d) := limt→0+

hk(x+td)−hk(x)
t , it follows that

Lk
q,x ≤ sup

x′∈S
{| sup
‖d‖p=1

D+hk(x′;d)|}, (9)

in which S is a convex bounded closed set and x ∈ S. According to Lemma B.3, it follows that

|hk(x′ + td)− hk(x′)|/t
≤‖wŷ −wk‖q‖σ(WT

d−1σ(. . . σ(WT
1 (x′ + td))))− σ(WT

d−1σ(. . . σ(WT
1 x′)))‖p/t

≤‖wŷ −wk‖q‖Dd−1(x′ + td)‖p‖Wd−1‖p‖σ(. . . σ(WT
1 (x′ + td))))− σ(. . . σ(WT

1 x′)))‖p/t
· · ·

≤

‖wŷ −wk‖q
d−1∏
j=1

‖Dj(x
′ + td)‖p‖Wj‖p

 ‖d‖p,
when t→ 0+, in which the Hölder’s inequality is used as well. Therefore, if we let S = Bp(x, R), it
holds that x′ + td ∈ Bp(x, R) (when t→ 0+) and

Lk
q,x ≤ ‖wŷ −wk‖q sup

x′∈Bp(x,R)

d−1∏
j=1

(‖Dj(x
′)‖p‖Wj‖p). (10)

C Proof and Discussions of Theorem 3.3

Proof. We know from our Lemma 3.1 that there must exist at least an x̂ ∈ Bp(x, R) such that,

0 ≤ Lk
q,x ≤ ‖wŷ −wk‖q

d−1∏
j=1

(‖Dj(x̂)‖p‖Wj‖p) , (11)

as the function
∏

(‖Dj(·)‖p‖Wj‖p) is bounded from above and below for any x ∈ Rn, q ∈ {1, 2}
and k ∈ {1, . . . , c}. Let us first consider the q = 2 case. For simplicity of notation, we will ignore
the subscript M1, · · · ,Mi within probability and expectation terms in the sequel. It holds that

E(Lk
2,x) ≤E

‖wŷ −wk‖2
d−1∏
j=1

‖Dj(x̂)‖2‖Wj‖2


=‖wŷ −wk‖2E

d−1∏
j=1

‖Dj(x̂)‖2‖Wj‖2


=‖wŷ −wk‖2Pr (‖Dd−1(x̂)‖2 = 1)

d−1∏
j=1

E (‖Wj‖2| ‖Dd−1(x̂)‖2 = 1) .

(12)

Based on our assumptions on Mj , it is not difficult to show that {Dj(x̂)[u, u]} are independent
Bernoulli distributed random variables. Let us denote Dj(x̂)[u, u] ∼ B(1, 1− βj,u), in which βj,u
should rely only on x and maybe {Wj}, then it is easy to validate that

Pr(‖Dd−1(x̂)‖2 = 1) =1−
nd−1∏
u=1

βd−1,u. (13)

2It can easily be seen that sup
∏

max{‖Dj(x
′′)‖p, ‖Dj(x)‖p} = sup

∏
‖Dj(x

′′)‖p holds for q ∈ {1, 2}.
Definitely, sup

∏
max{‖Dj(x

′′)‖p, ‖Dj(x)‖p} ≥ sup
∏
‖Dj(x

′′)‖p. Thus if the equation does not hold, it
must be sup

∏
max{‖Dj(x

′′)‖p, ‖Dj(x)‖p} = 1 and sup
∏
‖Dj(x

′′)‖p = 0. Further, it follows with simple
deductions that supmax{‖Dd−1(x

′′)‖p, ‖Dd−1(x)‖p} = 1 and sup ‖Dd−1(x
′′)‖p = 0, for q ∈ {1, 2} (i.e.,

p ∈ {∞, 2}), and this contradicts the fact that x ∈ Bp(x, R).
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For the j-th layer, we also have

E (‖Wj‖2|‖Dd−1(x̂)‖2 = 1) ≤E (‖Wj‖F |‖Dd−1(x̂)‖2 = 1)

≤E (‖W ′j‖F |‖Dd−1(x̂)‖2 = 1)

=‖W ′j‖F ,
(14)

in which ‖ · ‖F indicates the Frobenius norm. Consequently, it holds that

E(Lk
2,x) ≤c2 · Pr (‖Dd−1(x̂)‖2 = 1)

≤c2 · (1− η(α1, . . . , αd−1;x)),
(15)

in which the function η(α1, . . . , αd−1;x) is recursively defined, with a range of [0, 1]. First, it is
defined that:

η(α1, . . . , αd−1;x) =
∏
u

ξd−1,u. (16)

Second, for j ∈ {2, . . . , d− 1}, it is further defined that

ξj,u =
∏
u′

(αj + ξj−1,u′ − αjξj−1,u′), (17)

for u ∈ {1, . . . , nj}. Third, we define ξ1,u = (α1)n̂0 for u ∈ {1, . . . , n1}, in which n̂0 indicates the
number of nonzero pixels in x̂. It’s easy to prove that ξj,u ≤ βj,u holds and thus the result follows. We
can also validate that η(α1, · · · , αd−1;x) is monotonically increasing (i.e., 1− η(α1, · · · , αd−1;x)
is monotonically decreasing) w.r.t. each αj , by using the chain rule.

The q = 1 case is proven similarly, except for

E(‖Wj‖∞|‖Dj(x̂)‖∞ = 1) ≤E (‖Wj‖∞|‖Dj(x̂)‖∞ = 1)

≤E (‖W ′j‖∞|‖Dj(x̂)‖∞ = 1)

=‖W ′j‖∞.
(18)

The induced matrix norm ‖ · ‖∞ can be rewritten as the group norm ‖ · ‖1,∞.

On the base of our introduced (probably smaller) local Lipschitz constants (than the commonly known
ones, i.e., c2 and c1), we build theoretical relationships between the robustness and network sparsity.
It is worthy noting that such constants are of great importance in evaluating the robustness of DNNs,
and it is effective to regularize DNNs by just minimizing Lk

q,x, or equivalently ‖∇gŷ(x)−∇gk(x)‖q
for differentiable continuous functions [2]. In particular, if the network model is over-parameterized
and redundant, pruning may impose little effect on the value of gŷ(x)− gk(x). Thus we reckon, for
such DNN models, an appropriately higher weight sparsity implies a larger value of γ and thus further
stronger robustness. Definitely, over-sparsifying shall lead to a significant decrease in gŷ(x)− gk(x),
and the robustness is by no means assured. We also note that if the network model is less redundant,
a reasonably small sparsity may suffice to lead to a decrease in gŷ(x)− gk(x) and a complex effect
to the adversarial robustness, which may also be considered as “over-sparsifying”. There are similar
conclusions if aj gets sparser instead (i.e., when βj,u gets larger).

D More Experimental Results

Due to the length limit of our paper, some experimental results are illustrated here. First we show in
Figure 3, for nonlinear DNNs, how r∞ and r2 calculated using rFGS and the C&W’s attack vary with
the weight sparsity. The results are basically consistent with those on the base of FGS and DeepFool.
Note that the r2 in Figure 3 (d) starts decreasing since the third round of pruning instead of the very
beginning. It is attractive to test the C&W’s attack also on the VGG-like network and ResNet models.
However, it seems computationally more expensive than the other tested attacks, and unfortunately
we were not able to get its results for all 10(m+ 1) models with limited computational resources.

One might also be curious about the robustness and sparsity of linear DNNs. Following the architec-
ture of “LeNet-300-100”, we construct a linear MLP without ReLU activations and test the impact
of the model sparsity on the adversarial robustness on MNIST. We set m = 16 and illustrate the
results in Figure 4. The linear MLP models are more vulnerable to the tested l∞ and l2 attacks than
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their “one layer counterparts” as tested in Section 4.1, possibly on account of the training strategy.
As expected, we observe a considerable increase in r∞ when the weight sparsity is high (≥ 80%).
Apart from this, it is a little bit surprising that there exists a very shallow “valley” on each blue curve,
between the points corresponding to the dense references and some extremely sparse models, which
is worth exploring in future works.

(a) (b) (c) (d)

(e) (f)

Figure 3: The robustness of nonlinear DNNs with varying weight sparsity. Specifically, (a)-(b):
LeNet-300-100, (c)-(d): LeNet-5, (e): VGG-like network, (f): ResNet-32.

(a) (b) (c) (d)

Figure 4: The robustness of linear MLPs with varying weight sparsity.

We also report experimental results in regard of the CLEVER scores in Table 3. The four LeNet-5
models correspond to the dense reference and three sparse models after 3, 5 and 15 times of network
pruning, respectively. We observe similar trend to that illustrated in Figure 2, in the sense of l∞ and
l2. Results in the l1 norm are different from the other two, which is worth exploring in the future.
Contemporaneous with our work, some other general metrics are also proposed (e.g., [1]). It can be
interesting to further evaluate the adversarial robustness of sparse models with them.

Table 3: The CLEVER scores of dense and sparse nonlinear DNNs.

Model l∞ l2 l1 Sparsity (W )

0.0383±0.0006 0.7595±0.0112 3.8515±0.0668 0.00%
LeNet-300-100 0.0489±0.0006 0.8075±0.0098 3.8055±0.0644 83.19%

0.0356±0.0038 0.3085±0.0255 1.1611±0.1303 99.53%

LeNet-5

0.0552±0.0019 1.0281±0.0313 4.3718±0.1383 0.00%
0.0577±0.0017 1.0360±0.0226 4.0236±0.1315 65.70%
0.0577±0.0016 0.9994±0.0318 3.5609±0.1507 83.19%
0.0277±0.0020 0.2974±0.0314 0.8295±0.1189 99.53%

E Imbalance Classes

For simplicity of notations, we assume the samples are generated from unbiased distributions in
Theorem 3.1 and 3.2. Here we note that the obtained theoretical results generalize to imbalance data
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as well. Take the binary case (i.e., Theorem 3.1) as an example, suppose Py(k) = pk (instead of 1/2)
for k = ±1, then following the same line of derivation we will have:

r2 = t · w
T (p+1µ+1 − p−1µ−1)

‖w‖2
and r∞ ≤ t ·

wT (p+1µ+1 − p−1µ−1)

ε‖w‖1
. (19)

References
[1] Chirag Agarwal, Bo Dong, Dan Schonfeld, and Anthony Hoogs. An explainable adversarial robustness

metric for deep learning neural networks. arXiv preprint arXiv:1806.01477, 2018.

[2] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In NIPS, 2017.

[3] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca
Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In ICLR, 2018.

6


	Proof of Theorem 3.2
	Proof of Lemma 3.1
	Proof and Discussions of Theorem 3.3
	More Experimental Results
	Imbalance Classes

