
Supplementary Material: Reducing Network Agnostophobia

Proof of Lemma 1
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Rearranging and using the constraint that
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This yields a contradiction as we assumed 8c 2 {1, . . . , C} : 0 < �
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 S. The right sum is subtracted
and is always < 0. The left sum yields ��
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 S. Thus for unknown inputs, the loss is minimized when all softmax outputs have
equal value.
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Figure 4: LENET++ RESPONSES TO KNOWN UNKNOWNS. This figure shows responses of a network
trained to classify MNIST digits and reject Latin letters when exposed to samples of classes that the network was
trained on.
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Figure 5: LENET++ RESPONSES TO CIFAR IMAGES. This figure shows responses of a network trained
to classify MNIST digits and reject Latin letters when exposed to samples from CIFAR dataset, which are very
different from both the classes of interest (MNIST) and the background classes (Letters).
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Figure 6: LENET++ RESPONSES TO CHARACTERS FROM NOT MNIST DATASET. This figure shows
responses of a network trained to classify MNIST digits and reject Latin letters when exposed to characters from
the Not MNIST dataset.
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