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In this supplementary material we include in section A the proof of our main result which establishes
the structure-adaptive and accelerated linear convergence rate for Rest-Katyusha algorithm. Further,
in section B we also extend our analysis to the case where we underestimate the RSC parameter. We
also provide an additional numerical result for testing the convergence rate of Rest-Katyusha with
different choices of the input parameter β.

A Proof of Theorem 3.4 and Corollary 3.5

We first state the convergence result for Katyusha algorithm for non-strongly convex functions:

Lemma A.1. [1, Theorem 4.1] Under A.3, starting at x0, with epoch length m = 2n, denote
D(x0, x?) := 16(F (x0)− F ?) + 6L

n ‖x
0 − x?‖22, the s-th snapshot point x̂s of Katyusha algorithm

satisfies:

E[F (x̂s)]− F ? ≤ D(x0, x?)

(s+ 3)2
. (1)

Now based on the inequality of effective RSC by Lemma 3.3 in the main text we are able to provide
the proof of our main result.

Proof. At each iteration, the algorithm chooses an index i uniformly at random to perform the
calculation of one stochastic variance-reduced gradient. The update sequences yk+1 and zk+1 within
t-th outer-loop of Rest-Katyusha depend on the realization of the following random variable which
we denote as ξtk:

ξt = {itm, itm−1, ..., it1, it0, it−1m , ..., it−10 , ..., i0m, ..., i
0
0}, (2)

and for the randomness within a single outer-loop of Rest-Katyusha we specifically denote ξt\ξt−1
as

ξt\ξt−1 = {itm, itm−1, ..., it1, it0}. (3)

According to Lemma A.1, setting m = 2n, for the first stage t = 0:

Eξ0 [F (x1)]− F ? ≤ ε1 :=
4

n(S0 + 3)2

[
4n
(
F (x0)− F ?

)
+

3L

2
‖x0 − x?‖22

]
.
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Then, applying Markov’s inequality, with probability at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (4)

Then we define three sequences εt, ρt and vt: εt+1 = 1
β2 εt > ε, ρt+1 = 1

β ρt (with ρ1 := ρ),
vt = 2εt

λρt
+ ε. Next we use and induction argument to upper bound Eξt−1

F (xt)− F ?.

Induction step 1: We turn to the first iteration of the second stage, note that due to the effective RSC,
we can write:

‖x− x?‖22 ≤
1

µc

[
F (x)− F ? + 2τ(1 + c)2v2

]
, (5)

hence we can have the following:

Eξ1\ξ0 [F (x2)− F ?] ≤ 16

(S + 3)2
[F (x1)− F ?] +

6L

nµc(S + 3)2

[
F (x1)− F ? + 2τ(1 + c)2v21

]
≤

16 + 6L
nµc

(S + 3)2
[F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v21 ,

and then we take expectation over ξ0 we have:

Eξ1 [F (x2)− F ?] ≤
16 + 6L

nµc

(S + 3)2
Eξ0 [F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v21

=
16 + 6L

nµc

(S + 3)2
ε1 +

12Lτ(1 + c)2

nµc(S + 3)2

(
2ε1
ρλ

+ ε

)2

≤
16 + 6L

nµc

(S + 3)2
ε1 +

12Lτ(1 + c)2

nµc(S + 3)2

(
2ε1
ρλ

+ ε1

)2

.

then we set:

12Lτ(1 + c)2

nµc

[(
2

ρλ
+ 1

)
ε1

]2
≤
(

16 +
6L

nµc

)
ε1, (6)

equivalently: (
2

ρλ
+ 1

)2

ε1 ≤
8nµc + 3L

6Lτ(1 + c)2
, (7)

and denote D(x0, x?) := 16[F (x0)− F ?] + 6L
n ‖x

0 − x?‖22, we have:

ε1 :=
D(x0, x?)

(S0 + 3)2
≤ 8nµc + 3L

6Lτ(1 + c)2( 2
ρλ + 1)2

. (8)

Hence in order to satisfy inequality (6), it is enough to set:

S0 ≥


(

1 +
2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L

. (9)

By this choice of S0, according to inequality (6) we can write:

Eξ1 [F (x2)− F ?] ≤
32 + 12L

nµc

(S + 3)2
ε1, (10)

to get Eξ1 [F (x2)− F ?] ≤ 1
β2 ε1 = ε2, it is enough to set:

S =

β
√

32 +
12L

nµc

 (11)
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Induction step 2: For the (t + 1)-th iteration, according to the induction hypothesis, we have
Eξt−1F (xt)− F ? ≤ εt−1

β2 = εt, and hence with probability 1− ρt
2 we have:

Eξt [F (xt+1)− F ?] ≤
16 + 6L

nµc

(S + 3)2
Eξt−1

[F (xt)− F ?] +
12Lτ(1 + c)2

nµc(S + 3)2
v2t

=
16 + 6L

nµc

(S + 3)2
εt +

12Lτ(1 + c)2

nµc(S + 3)2

(
2εt
ρtλ

+ ε

)2

≤
16 + 6L

nµc

(S + 3)2
εt +

12Lτ(1 + c)2

nµc(S + 3)2

(
2εt
ρtλ

+ εt

)2

.

then we set:
12Lτ(1 + c)2

nµc

[(
2

ρtλ
+ 1

)
εt

]2
≤
(

16 +
6L

nµc

)
εt, (12)

equivalently: (
2

ρtλ
+ 1

)2

εt ≤
8nµc + 3L

6Lτ(1 + c)2
, (13)

Now because ρt = 1
β ρt−1, εt = 1

β2 εt−1, we have:(
2

ρtλ
+ 1

)2

εt =

(
2

ρt−1λ
+

1

β

)2

εt−1 ≤
(

2

ρt−1λ
+ 1

)2

εt−1 ≤ ... ≤
(

2

ρλ
+ 1

)2

ε1. (14)

Hence by the same choice of S0 given by (9), inequality (12) holds and consequently we can have:

Eξt [F (xt+1)− F ?] ≤
32 + 12L

nµc

(S + 3)2
εt, (15)

to get Eξt [F (xt+1)− F ?] ≤ 1
β2 εt = εt+1, it is enough to set:

S =

β
√

32 +
12L

nµc

. (16)

Hence we finish the induction – by the choice of:

S0 ≥


(

1 +
2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L

, S =

β
√

32 +
12L

nµc

, (17)

then we will have:
Eξt [F (xt+1)− F ?] ≤ εt

β2
(18)

where εt+1 = 1
β2 εt and ε1 = D(x0,x?)

(S0+3)2 = 4
n(S0+3)2

[
4n
(
F (x0)− F ?

)
+ 3L

2 ‖x
0 − x?‖22

]
, with

probability 1−
∑t
i=1

ρi
2 ≥ 1− ρ

2
β
β−1 ≥ 1− ρ (since β ≥ 2). Now we have finished the proof of

Theorem 3.4.

Proof of Corollary 3.5. Finally we make a summary of this result for the proof of Corollary 3.5.
First we write the number of snapshot point calculation we need to achieve Eξt−1

F (xt)− F ? ≤ δ at
the second stage:

Ns =

β
√

32 +
12L

nµc

 logβ2

F (x1)− F ?

δ
. (19)

When 2nµc
L ≤ 3

4 , Ns = O

(√
L

2nµc
log F (x1)−F?

δ

)
; when 2nµc

L ≥ 3
4 , Ns = O

(
log F (x1)−F?

δ

)
.

Hence it is enough to run O
(

(1 +
√

L
2nµc

) log F (x1)−F?
δ

)
≥ O

(
max(1,

√
L

2nµc
) log F (x1)−F?

δ

)
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epochs. Since we set the epoch length m = 2n and hence the number of stochastic gradient Ofi(.)
calculation is of O(n). Therefore with some more straightforward calculation we conclude that the
complexity of the Rest-Katyusha algorithm is:

N ≥ O

n+

√
nL

µc

 log

1
ρ(S0+3)2

[
16(F (x0)− F ?) + 6L

n ‖x
0 − x?‖22

]
δ

+O(n)S0. (20)

B Rest-Katyusha with an underestimation of µc

It is generally not guaranteed that any accelerated stochastic variance-reduced gradient method
designed for strongly-convex functions can be directly applied in our modified restricted strong-
convexity setting, even when the RSC parameter can be exactly known. It is true that for strongly-
convex functions with known strong-convexity parameter, that the convergence rates for a restarted
version of non-strongly-convex accelerated gradient descent and the strongly-convex accelerated
gradient descent are the same, and we believe that this may be the case for Katyusha as well if
the objective is strongly-convex. However, it is still an open question for an objective which only
satisfies restricted strong-convexity. One may heuristically replace our algorithm’s second stage with
the strongly-convex version of Katyusha and this seems to have a comparable result empirically
for some datasets if the RSC is accurately given (this is necessary for this method). However, the
Rest-Katyusha is superior to this alternative – (1) in terms of theory, as it is a provably convergent
algorithm, (2) in terms of practice, Rest-Katyusha appears to be much more robust to the inaccurate
estimation of RSC. This section we provide an analysis for Rest-Katyusha where we underestimate
the RSC parameter.

We have already established the convergence result for Rest-Katyusha algorithm when it is restarted at

a frequency S =

⌈
β
√

32 + 12L
nµc

⌉
, but in practice the effective RSC parameter µc is usually unknown

and difficult to estimate accurately. We need to find some practical approaches to estimate µc and
determine whether to restart or not on the fly. To lay down the basics, we now warm up with the
analysis for Rest-Katyusha when only an underestimation of µc is given, to see how the convergence
rate of the algorithm will change.

Algorithm 1 Rest-Katyusha with a rough RSC
estimate (x0, µ0, β, S0, T, L)

Initialize: m = 2n, S =

⌈
β
√

32 + 12L
nµ0

⌉
;

x1 = Katyusha (x0,m, S0, L)
for t = 1, ..., T do

xt+1 = Katyusha (xt,m, S, L)
end for

We present the rough RSC estimate ver-
sion of Rest-Katyusha. The only difference
is that the restart period has changed from⌈
β
√

32 + 12L
nµc

⌉
to
⌈
β
√

32 + 12L
nµ0

⌉
, where µ0

is an rough (under-)estimate of the effective
RSC constant µc and β ≥ 2 is a constant which
controls the robustness of possible overestima-
tion. With this restart period, we are able to
establish accelerated linear convergence result
in the regime where 0 < µ0 <

β2

4 µc. In other
words, with this restart period, as long as µc is
no more than β2/4 times overestimated by µ0,

the Rest-Katyusha is guaranteed to achieve accelerated linear convergence w.r.t. µ0.

Theorem B.1. Under A.1 - 4, denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), D(x0, x?) :=

16(F (x0)−F ?)+ 6L
n ‖x

0−x?‖22, µc = γ
2 −8τ(1+ c)2Φ2(M), and 0 < µ0 <

β2

4 µc, with β ≥ 2, if

we run Rest-Katyusha with S0 ≥
⌈(

1 + 2
ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
, S =

⌈
β
√

32 + 12L
nµ0

⌉
, then

the following inequality holds:

E[F (xT+1)− F ?] ≤ max

{
ε,

(
µ0

µcβ2

)T D(x0, x?)

(S0 + 3)2

}
, (21)
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with probability at least 1− ρ.

Corollary B.2. Under the same assumptions, parameter choices and notations as Theorem B.1, the
total number of stochastic gradient evaluation required by Rest-Katyusha to get an δ-accuracy is:

O

n+

√
nL

µ0

 log β2µc
µ0

1

δ
+O(n)S0, (22)

Proof. At each iteration, the algorithm chooses an index i uniformly at random to perform the
calculation of one stochastic variance-reduced gradient. The update sequences yk+1 and zk+1 within
t-th outer-loop of Rest-Katyusha depend on the realization of the following random variable which
we denote as ξtk:

ξt = {itm, itm−1, ..., it1, it0, it−1m , ..., it−10 , ..., i0m, ..., i
0
0}, (23)

and for the randomness within a single outer-loop of Rest-Katyusha we specifically denote ξt\ξt−1
as

ξt\ξt−1 = {itm, itm−1, ..., it1, it0}. (24)

According to Lemma A.1, setting m = 2n, for first stage t = 0:

Eξ0 [F (x1)]− F ? ≤ ε1 :=
4

n(S0 + 3)2

[
4n
(
F (x0)− F ?

)
+

3L

2
‖x0 − x?‖22

]
.

Then with probability at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (25)

Then we denote α = µ0

µc
and also define three sequences εt, ρt and vt: εt+1 = α

β2 εt, ρt+1 =
√
α
β ρt

(with ρ1 := ρ), vt = 2εt
λρt

+ ε. Next we use and induction argument to upper bound Eξt−1
F (xt)−F ?.

Induction step 1: We turn to the first iteration of the second stage, note that due to the effective RSC,
we can write:

‖x− x?‖22 ≤
1

µc

[
F (x)− F ? + 2τ(1 + c)2v2

]
, (26)

hence we can have the following:

Eξ1\ξ0 [F (x2)− F ?] ≤ 16

(S + 3)2
[F (x1)− F ?] +

6L

nµc(S + 3)2

[
F (x1)− F ? + 2τ(1 + c)2v21

]
≤

16 + 6L
nµc

(S + 3)2
[F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v21 ,

and then we take expectation over ξ0 we have:

Eξ1 [F (x2)− F ?] ≤
16 + 6L

nµc

(S + 3)2
Eξ0 [F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 3)2
v21

=
16 + 6L

nµc

(S + 3)2
ε1 +

12Lτ(1 + c)2

nµc(S + 3)2

(
2ε1
ρλ

+ ε

)2

≤
16 + 6L

nµc

(S + 3)2
ε1 +

12Lτ(1 + c)2

nµc(S + 3)2

(
2ε1
ρλ

+ ε1

)2

.

then we set:
12Lτ(1 + c)2

nµc

[(
2

ρλ
+ 1

)
ε1

]2
≤
(

16 +
6L

nµc

)
ε1, (27)

equivalently: (
2

ρλ
+ 1

)2

ε1 ≤
8nµc + 3L

6Lτ(1 + c)2
, (28)
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and denote D(x0, x?) := 16[F (x0)− F ?] + 6L
n ‖x

0 − x?‖22, we have:

ε1 :=
D(x0, x?)

(S0 + 3)2
≤ 8nµc + 3L

6Lτ(1 + c)2( 2
ρλ + 1)2

. (29)

Hence in order to satisfy inequality (27), it is enough to set:

S0 ≥

⌈(
1 +

2

ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
≥


(

1 +
2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L

. (30)

By this choice of S0, according to inequality (27) we can write:

Eξ1 [F (x2)− F ?] ≤
32 + 12L

nµc

(S + 3)2
ε1, (31)

to get Eξ1 [F (x2)− F ?] ≤ α
β2 ε1 = ε2, it is enough to set:

S =

β
√

32 +
12L

nµ0

. (32)

Induction step 2: For the (t + 1)-th iteration, according to the induction hypothesis, we have
Eξt−1

F (xt)− F ? ≤ αεt−1

β2 = εt, and hence with probability 1− ρt
2 we have:

Eξt [F (xt+1)− F ?] ≤
16 + 6L

nµc

(S + 3)2
Eξt−1

[F (xt)− F ?] +
12Lτ(1 + c)2

nµc(S + 3)2
v2t

=
16 + 6L

nµc

(S + 3)2
εt +

12Lτ(1 + c)2

nµc(S + 3)2

(
2εt
ρtλ

+ ε

)2

≤
16 + 6L

nµc

(S + 3)2
εt +

12Lτ(1 + c)2

nµc(S + 3)2

(
2εt
ρtλ

+ εt

)2

.

then we set:
12Lτ(1 + c)2

nµc

[(
2

ρtλ
+ 1

)
εt

]2
≤
(

16 +
6L

nµc

)
εt, (33)

equivalently: (
2

ρtλ
+ 1

)2

εt ≤
8nµc + 3L

6Lτ(1 + c)2
, (34)

Now because ρt =
√
α
β ρt−1, εt = α

β2 εt−1, we have:(
2

ρtλ
+ 1

)2

εt =

(
2

ρt−1λ
+

√
α

β

)2

εt−1 ≤
(

2

ρt−1λ
+ 1

)2

εt−1 ≤ ... ≤
(

2

ρλ
+ 1

)2

ε1. (35)

Hence by the same choice of S0 given by (30), inequality (33) holds and consequently we can have:

Eξt [F (xt+1)− F ?] ≤
32 + 12L

nµc

(S + 3)2
εt, (36)

to get Eξt [F (xt+1)− F ?] ≤ α
β2 εt = εt+1, it is enough to set:

S =

β
√

32 +
12L

nµc

. (37)

Hence we finish the induction – by the choice of:

S0 ≥

⌈(
1 +

2

ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
, S =

β
√

32 +
12L

nµ0

, (38)
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then we will have:
Eξt [F (xt+1)− F ?] ≤ αεt

β2
(39)

where εt+1 = α
β2 εt and ε1 = D(x0,x?)

(S0+3)2 = 4
n(S0+3)2

[
4n
(
F (x0)− F ?

)
+ 3L

2 ‖x
0 − x?‖22

]
, with

probability 1− 1
2

∑t
i=1 ρi ≥ 1− ρ

2
β

β−
√
α
≥ 1− ρ. Now we have finished the proof of Theorem B.1.

Proof of Corollary B.2. Finally we make a summary of this result for the proof of Corollary B.2.
First we write the number of snapshot point calculation we need to achieve Eξt−1

F (xt)− F ? ≤ δ at
the second stage:

Ns =

β
√

32 +
12L

nµ0

 log β2
α

F (x1)− F ?

δ
. (40)

When 2nµc
L ≤ 3

4 , Ns = O

(√
L

2nµc
log F (x1)−F?

δ

)
; when 2nµc

L ≥ 3
4 , Ns = O

(
log F (x1)−F?

δ

)
.

Hence it is enough to run O
(

(1 +
√

L
2nµc

) log F (x1)−F?
δ

)
≥ O

(
max(1,

√
L

2nµc
) log F (x1)−F?

δ

)
epochs. Since we set the epoch length m = 2n and hence the number of stochastic gradient Ofi(.)
calculation is of O(n). Therefore with some more trivial calculation we conclude that the complexity
of the Rest-Katyusha algorithm is:

N ≥ O

n+

√
nL

µ0

 log β2µc
µ0

1
ρ(S0+3)2

[
16(F (x0)− F ?) + 6L

n ‖x
0 − x?‖22

]
δ

+O(n)S0. (41)

C Numerical test for different choices of β

In this section we provide additional experimental result on different choices of β. We choose to use
the REGED dataset in this experiment as a example.

Figure 1: Comparison of different choices of β
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(C)λ = 2× 10−5 Adaptive Rest-Katyusha
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We test the Rest-Katysuha and Adaptive Rest-Katyusha on regularization level λ = 2× 10−5 with 4
different choices of β including the theoretically optimal choice which is approximately 2.7. However
we found out that the choice of β which provides the best practical performance is often slightly
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Figure 2: Lasso regression on News20 dataset
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Figure 3: Lasso regression on Sector dataset

larger in experiments for real datasets. For this specific example, we can see that the best choice for
β is 5 or 10 for both Rest-Katyusha and Adaptive Rest-Katyusha.

D Some more additional results

We provide here an additional large-scale sparse regression result on the benchmark News20 dataset
(class 1, the version by J. Rennie. “Improving Multi-class Text Classification with Naive Bayes”.
2001) which sized 15935 by 62061, as well as the Sector dataset which sized 6412 by 55197, both
of these datasets are available online on LIBSVM website. We also plot the `2 distance towards a
solution x? where after a large number of iterations both of the algorithms will actually converge
to. We can clearly see that for this specific case, minimizing the objective in a low precision is not
enough to ensure that we are close to the solution, i.e. a 10−5 objective gap accuracy means only
10−1 accuracy on the optimization variable (geometrically the objective can be very flat along some
directions).
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