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Abstract

Coordinate descent methods usually minimize a cost function by updating a random
decision variable (corresponding to one coordinate) at a time. Ideally, we would
update the decision variable that yields the largest decrease in the cost function.
However, finding this coordinate would require checking all of them, which would
effectively negate the improvement in computational tractability that coordinate
descent is intended to afford. To address this, we propose a new adaptive method
for selecting a coordinate. First, we find a lower bound on the amount the cost
function decreases when a coordinate is updated. We then use a multi-armed
bandit algorithm to learn which coordinates result in the largest lower bound by
interleaving this learning with conventional coordinate descent updates except
that the coordinate is selected proportionately to the expected decrease. We show
that our approach improves the convergence of coordinate descent methods both
theoretically and experimentally.

1 Introduction

Most supervised learning algorithms minimize an empirical risk cost function over a dataset. Design-
ing fast optimization algorithms for these cost functions is crucial, especially as the size of datasets
continues to increase. (Regularized) empirical risk cost functions can often be written as

F (x) = f(Ax) +

d∑
i=1

gi(xi), (1)

where f(·) : Rn −→ R is a smooth convex function, d is the number of decision variables (coordi-
nates) on which the cost function is minimized, which are gathered in vector x ∈ Rd, gi(·) : R −→ R
are convex functions for all i ∈ [d], and A ∈ Rn×d is the data matrix. As a running example, consider
Lasso: if Y ∈ Rn are the labels, f(Ax) = 1/2n‖Y − Ax‖2, where ‖ · ‖ stands for the Euclidean
norm, and gi(xi) = λ|xi|. When Lasso is minimized, d is the number of features, whereas when the
dual of Lasso is minimized, d is the number of datapoints.

The gradient descent method is widely used to minimize (1). However, computing the gradient of the
cost function F (·) can be computationally prohibitive. To bypass this problem, two approaches have
been developed: (i) Stochastic Gradient Descent (SGD) selects one datapoint to compute an unbiased
estimator for the gradient at each time step, and (ii) Coordinate Descent (CD) selects one coordinate
to optimize over at each time step. In this paper, we focus on improving the latter technique.

When CD was first introduced, algorithms did not differentiate between coordinates; each coordinate
i ∈ [d] was selected uniformly at random at each time step (see, e.g., [19, 20]). However, recent
works (see, e.g., [10, 24, 15]) have shown that exploiting the structure of the data and sampling the
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Figure 1: Our approach for coordinate descent. The top (green) part of the approach handles the
updates to the decision variable xti (using whichever CD update is desired; our theoretical results

hold for updates in the classH in Definition 4 in the supplementary materials. The bottom (yellow)
part of the approach handles the selection of i ∈ [d] according to a coordinate selection strategy

which is updated via bandit optimization (using whichever bandit algorithm is desired) from rt+1
i .

coordinates from an appropriate non-uniform distribution can result in better convergence guarantees,
both in theory and practice. The challenge is to find the appropriate non-uniform sampling distribution
with a lightweight mechanism that maintains the computational tractability of CD.

In this work, we propose a novel adaptive non-uniform coordinate selection method that can be
applied to both the primal and dual forms of a cost function. The method exploits the structure of the
data to optimize the model by finding and frequently updating the most predictive decision variables.
In particular, for each i ∈ [d] at time t, a lower bound rti is derived (which we call the marginal
decrease) on the amount by which the cost function will decrease when only the ith coordinate is
updated.

The marginal decrease rti quantifies by how much updating the ith coordinate is guaranteed to improve
the model. The coordinate i with the largest rti is then the one that is updated by the algorithm max_r,
described in Section 2.3. This approach is particularly beneficial when the distribution of rtis has a
high variance across i; in such cases updating different coordinates can yield very different decreases
in the cost function. For example, if the distribution of rtis has a high variance across i, max_r is up
to d2 times better than uniform sampling, whereas state-of-the-art methods can be at most d3/2 better
than uniform sampling in such cases (see Theorem 2 in Section 2.3). More precisely, in max_r the
convergence speed is proportional to the ratio of the duality gap to the maximum coordinate-wise
duality gap. max_r is able to outperform existing adaptive methods because it explicitly finds the
coordinates that yield a large decrease of the cost function, instead of computing a distribution over
coordinates based on an approximation of the marginal decreases.

However, the computation of the marginal decrease rti for all i ∈ [d] may still be computationally
prohibitive. To bypass this obstacle, we adopt in Section 2.4 a principled approach (B_max_r) for
learning the best rtis, instead of explicitly computing all of them: At each time t, we choose a single
coordinate i and update it. Next, we compute the marginal decrease rti of the selected coordinate i and
use it as feedback to adapt our coordinate selection strategy using a bandit framework. Thus, in effect,
we learn estimates of the rtis and simultaneously optimize the cost function (see Figure 1). We prove
that this approach can perform almost as well as max_r, yet decreases the number of calculations
required by a factor of d (see Proposition 2).

We test this approach on several standard datasets, using different cost functions (including Lasso,
logistic and ridge regression) and for both the adaptive setting (the first approach) and the bandit
setting (the second approach). We observe that the bandit coordinate selection approach accelerates
the convergence of a variety of CD methods (e.g., StingyCD [11] for Lasso in Figure 2, dual CD [18]
for L1-regularized logistic-regression in Figure 3, and dual CD [13] for ridge-regression in Figure 3).
Furthermore, we observe that in most of the experiments B_max_r (the second approach) converges
as fast as max_r (the first approach), while it has the same computational complexity as CD with
uniform sampling (see Section 4).
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2 Technical Contributions

2.1 Preliminaries

Consider the following primal-dual optimization pairs

min
x∈Rd

F (x) = f(Ax) +

d∑
i=1

gi(xi), min
w∈Rn

FD(w) = f?(w) +

d∑
i=1

g?i (−a>i w), (2)

whereA = [a1, . . . ,ad], ai ∈ Rn, and f? and g?i are the convex conjugates of f and gi, respectively.1
The goal is to find x̄ := argminx∈RdF (x). In rest of the paper, we will need the following notations.
We denote by ε(x) = F (x) − F (x̄) the sub-optimality gap of F (x), and by G(x,w) = F (x) −
(−FD(w)) the duality gap between the primal and the dual solutions, which is an upper bound
on ε(x) for all x ∈ Rd. We further use the shorthand G(x) for G(x,w) when w = ∇f(Ax).
For w = ∇f(Ax), using the Fenchel-Young property f(Ax) + f?(w) = (Ax)>w, G(x) can
be written as G(x) =

∑d
i=1Gi(x) where Gi(x) =

(
g?i (−a>i w) + gi(xi) + xia

>
i w
)

is the ith

coordinate-wise duality gap. Finally, we denote by κi = ū − xi the ith dual residue where
ū = arg minu∈∂g?i (−a>

i w) |u− xi| with w = ∇f(Ax).

2.2 Marginal Decreases

Our coordinate selection approach works for a class H of update rules for the decision variable
xi. For the ease of exposition, we defer the formal definition of the class H (Definition 4) to the
supplementary materials and give here an informal but more insightful definition. The classH uses
the following reference update rule for xi, when f(·) is 1/β-smooth and gi is µi-strongly convex:
xt+1
i = xti + stiκ

t
i, where

sti = min

{
1,

Gti + µi|κti|2/2
|κti|2(µi + ‖ai‖2/β)

}
. (3)

κti, the ith dual residue at time t, and Gti, the ith coordinate-wise duality gap at time t, quantify
the sub-optimality along coordinate i. Because of (3), the effect of sti is to increase the step size of
the update of xti when Gti is large. The classH contains also all update rules that decrease the cost
function faster than the reference update rule (see two criteria (11) and (12) in Definition 4 in the
supplementary materials. For example, the update rules in [18] and [11] for Lasso, the update rules in
[20] for hinge-loss SVM and ridge regression, the update rule in [6] for the strongly convex functions,
in addition to the reference update rule defined above, belong to this classH.

We begin our analysis with a lemma that provides the marginal decrease rti of updating a coordinate
i ∈ [d] according to any update rule in the classH.
Lemma 1 In (1), let f be 1/β-smooth and each gi be µi-strongly convex with convexity parameter
µi ≥ 0 ∀i ∈ [d]. For µi = 0, we assume that gi has a L-bounded support. After selecting the
coordinate i ∈ [d] and updating xti with an update rule inH, we have the following guarantee:

F (xt+1) ≤ F (xt)− rti , (4)

where

rti =

{
Gti −

‖ai‖2|κti|
2

2β if sti = 1,
sti(G

t
i+µi|κ

t
i|

2/2)
2 otherwise.

(5)

In the proof of Lemma 1 in the supplementary materials, the decrease of the cost function is upper-
bounded using the smoothness property of f(·) and the convexity of gi(·) for any update rule in the
classH.
Remark 1 In the well-known SGD, the cost function F (xt) might increase at some iterations t. In
contrast, if we use CD with an update rule in H, it follows from (5) and (3) that rti ≥ 0 for all t,
and from (4) that the cost function F (xt) never increases. This property provides a strong stability
guarantee, and explains (in part) the good performance observed in the experiments in Section 4.

1Recall that the convex conjugate of a function h(·) : Rd −→ R is h?(x) = supv∈Rd{x>v − h(v)}.
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2.3 Greedy Algorithms (Full Information Setting)

In first setting, which we call full information setting, we assume that we have computed rti for
all i ∈ [d] and all t (we will relax this assumption in Section 2.4). Our first algorithm max_r makes
then a greedy use of Lemma 1, by simply choosing at time t the coordinate i with the largest rti .
Proposition 1 (max_r) Under the assumptions of Lemma 1, the optimal coordinate it for minimizing
the right-hand side of (4) at time t is it = arg maxj∈[d] r

t
j .

Remark 2 This rule can be seen as an extension of the Gauss-Southwell rule [13] for the class of
cost functions that the gradient does not exist, which selects the coordinate whose gradient has the
largest magnitude (when ∇iF (x) exits), i.e., it = arg maxi∈[d] |∇iF (x)|. Indeed, Lemma 2 in the
supplementary materials shows that for the particular case of L2-regularized cost functions F (x),
the Gauss-Southwell rule and max_r are equivalent.

If functions gi(·) are strongly convex (i.e., µi > 0), then max_r results in a linear convergence rate
and matches the lower bound in [2].
Theorem 1 Let gi in (1) be µi-strongly convex with µi > 0 for all i ∈ [d]. Under the assumptions of
Lemma 1, we have the following linear convergence guarantee:

ε(xt) ≤ ε(x0)

t∏
l=1

1−max
i∈[d]

Gi(x
t)µi

G(xt)
(
µi + ‖ai‖2

β

)
 , (6)

for all t > 0, where ε(x0) is the sub-optimality gap at t = 0.

Now, if functions gi(·) are not necessary strongly convex (i.e., µi = 0), max_r is also very effective
and outperforms the state-of-the-art.
Theorem 2 Under the assumptions of Lemma 1, let µi ≥ 0 for all i ∈ [d]. Then,

ε(xt) ≤ 8L2η2/β

2d+ t− t0
(7)

for all t ≥ t0, where t0 = max{1, 2d log dβε(x
0)/4L2η2}, ε(x0) is the sub-optimality gap at t = 0

and η = O(d) is an upper bound on mini∈[d] G(xt) ‖ai‖/Gi(xt) for all iterations l ∈ [t].

To make the convergence bounds (6) and (7) easier to understand, assume that µi = µ1 and that the
data is normalized, so that ‖ai‖ = 1 for all i ∈ [d]. First, by letting η = O(d) be an upper bound
on mini∈[d] G(xt)/Gi(xt) for all iterations l ∈ [t], Theorem 1 results in a linear convergence rate, i.e.,
ε(xt) = O (exp(−c1t/η)) for some constant c1 > 0 that depends on µ1 and β, whereas Theorem 2
provides a sublinear convergence guarantee, i.e., ε(xt) = O

(
η2/t

)
.

Second, note that in both convergence guarantees, we would like to have a small η. The ratio η can
be as large as d, when the different coordinate-wise gaps Gi(xt) are equal. In this case, non-uniform
sampling does not bring any advantage over uniform sampling, as expected. In contrast, if for instance
c ·G(xt) ≤ maxi∈[d]Gi(x

t) for some constant 1/d ≤ c ≤ 1, then choosing the coordinate with the
largest rti results in a decrease in the cost function, that is 1 ≤ c · d times larger compared to uniform
sampling. Theorems 1 and 2 are proven in the supplementary materials.

Finally, let us compare the bound of max_r given in Theorem 2 with the state-of-the-art bounds of
ada_gap in Theorem 3.7 of [15] and of CD algorithm in Theorem 2 of [8]. For the sake of simplicity,
assume that ‖ai‖ = 1 for all i ∈ [d]. When c ·G(xt) ≤ maxi∈[d]Gi(x

t) and some constant 1/d ≤
c ≤ 1, the convergence guarantee for ada_gap is E [ε(xt)] = O

(√
dL2
/β(c2+1/d)3/2(2d+t)

)
and the

convergence guarantee of the CD algorithm in [8] is E [ε(xt)] = O
(
dL2
/βc(2d+t)

)
, which are much

tighter than the convergence guarantee of CD with uniform sampling E [ε(xt)] = O
(
d2L2

/β(2d+t)
)
.

In contrast, the convergence guarantee of max_r is ε(xt) = O
(
L2
/βc2(2d+t)

)
, which is

√
d/c times

better than ada_gap, dc times better than the CD algorithm in [8] and c2d2 times better than uniform
sampling for the same constant c ≥ 1/d.
Remark 3 There is no randomness in the selection rule used in max_r (beyond tie breaking), hence
the convergence results given in Theorems 1 and 2 a.s. hold for all t.
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2.4 Bandit Algorithms (Partial Information Setting)

State-of-the-art algorithms and max_r require knowing a sub-optimality metric (e.g., Gti in [15, 8], the
norm of gradient ∇iF (xt) in [13], the marginal decreases rti in this work) for all coordinates i ∈ [d],
which can be computationally expensive if the number of coordinates d is large. To overcome this
problem, we use a novel approach inspired by the bandit framework that learns the best coordinates
over time from the partial information it receives during the training.

Multi-armed Bandit: In a multi-armed bandit (MAB) problem, there are d possible arms (which
are here the coordinates) that a bandit algorithm can choose from for a reward (rti in this work) at
time t. The goal of the MAB is to maximize the cumulative rewards that it receives over T rounds
(i.e.,

∑T
i=1 r

t
it

, where it is the arm (coordinate) selected at time t). After each round, the MAB only
observes the reward of the selected arm it, and hence has only access to partial information, which it
then uses to refine its arm (coordinate) selection strategy for the next round.

Algorithm 1 B_max_r

input: x0, ε and E
initialize: set r̄0i = r0i for all i ∈ [d]
for t = 1 to T do

if t mod E == 0 then
set r̄ti = rti for all i ∈ [d]

end if
Generate K ∼ Bern(ε)
if K == 1 then

Select it ∈ [d] uniformly at random
else

Select it = arg maxi∈[d] r̄
t
i

end if
Update xtit by an update rule inH
Set r̄t+1

it
= rt+1

it
and r̄t+1

i = r̄ti for all i 6= it
end for

In our second algorithm B_max_r, the
marginal decreases rti computed for all i ∈
[d] at each round t by max_r are replaced
by estimates r̄i computed by an MAB as
follows. First, time is divided into bins of
size E. At the beginning of a bin te, the
marginal decreases rtei of all coordinates
i ∈ [d] are computed, and the estimates
are set to these values (r̄ti = rtei for all
i ∈ [d]). At each iteration te ≤ t ≤ te +E
within that bin, with probability ε a coor-
dinate it ∈ [d] is selected uniformly at
random, and otherwise (with probability
(1− ε)) the coordinate with the largest r̄ti
is selected. Coordinate it is next updated,
as well as the estimate of the marginal de-
crease r̄t+1

it
= rt+1

it
, whereas the other es-

timates r̄t+1
j remain unchanged for j 6= it.

The algorithm can be seen as a modified
version of ε-greedy (see [3]) that is devel-

oped for the setting where the reward of arms follow a fixed probability distribution, ε-greedy uses
the empirical mean of the observed rewards as an estimate of the rewards. In contrast, in our setting,
the rewards do not follow such a fixed probability distribution and the most recently observed reward
is the best estimate of the reward that we could have. In B_max_r, we choose E not too large and
ε large enough such that every arm (coordinate) is sampled often enough to maintain an accurate
estimate of the rewards rti (we use E = O(d) and ε = 1/2 in the experiments of Section 4).

The next proposition shows the effect of the estimation error on the convergence rate.
Proposition 2 Consider the same assumptions as Lemma 1 and Theorem 2. For simplicity, let ‖ai‖ =

‖a1‖ for all i ∈ [d] and ε(x0) ≤
√

2αL2‖a1‖2/β (ε/d + 1−ε/c) = O(d).2 Let jt? = arg maxi∈[d] r̄
t
i .

If maxi∈[d] r
t
i/r

t
jt?
≤ c(E, ε) for some finite constant c = c(E, ε), then by using B_max_r (with bin

size E and exploration parameter ε) we have

E
[
ε(xt)

]
≤ α

2 + t− t0
, where α =

8L2‖a1‖2

β (ε/d2 + (1−ε)/η2c)
, (8)

for all t ≥ t0 = max
{

1, 4ε(x
0)/α log(2ε(x

0)/α)
}

= O(d) and where η is an upper bound on
mini∈[d] G(xt)/Gi(xt) for iterations l ∈ [t].

What is the effect of c(E, ε)? In Proposition 2, c = c(E, ε) upper bounds the estimation error of
the marginal decreases rti . To make the effect of c(E, ε) on the convergence bound (8) easier to

2These assumptions are not necessary but they make the analysis simpler. For example, even if ε(x0) does
not satisfy the required condition, we can scale down F (x) by m so that F (x)/m is minimized. The new
sub-optimality gap becomes ε(x0)/m, and for a sufficiently large m the initial condition is satisfied.
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Table 1: The shaded rows correspond to the algorithms introduced in this paper. z̄ denotes the
number of non-zero entries of the data matrix A. The numbers below the column dataset/cost are the
clock time (in seconds) needed for the algorithms to reach a sub-optimality gap of ε(xt) = exp (−5).

method computational cost dataset/cost
(per epoch) aloi/Lasso a9a/log reg usps/ridge reg

uniform O(z̄) 27.8 11.8 1
ada_gap O(d · z̄) 52.8 42.4 88
max_r O(d · z̄) 6.2 4.5 9.5

gap_per_epoch O(z̄ + d log d) 75 11.1 300
Approx O(z̄ + d log d) 16.3 2.3 -

NUACDM O(z̄ + d log d) - - 6
B_max_r O(z̄ + d log d) 11 1.9 1

understand, let ε = 1/2, then α ∼ 1/(1/d2+1/η2c). We can see from the convergence bound (8) and
the value of α that if c is large, the convergence rate is proportional to d2 similarly to uniform
sampling (i.e., ε(xt) ∈ O(d

2
/t)). Otherwise, if c is small, the convergence rate is similar to max_r

(ε(xt) ∈ O(η
2
/t), see Theorem 2).

How to control c = c(E, ε)? We can control the value of c by varying the bin size E. Doing so,
there is a trade-off between the value of c and the average computational cost of an iteration. On the
one hand, if we set the bin size to E = 1 (i.e., full information setting), then c = 1 and B_max_r
boils down to max_r, while the average computational cost of an iteration is O(nd). On the other
hand, if E > 1 (i.e., partial information setting), then c ≥ 1, while the average computational
complexity of an iteration is O(nd/E). In our experiments, we find that by setting d/2 ≤ E ≤ d,
B_max_r converges faster than uniform sampling (and other state-of-the-art methods) while the
average computational cost of an iteration is O(n+ log d), similarly to the computational cost of an
iteration of CD with uniform sampling (O(n)), see Figures 2 and 3. We also find that any exploration
parameter ε ∈ [0.2, 0.7] in B_max_r works reasonably well. The proof of Proposition 2 is similar to
the proof of Theorem 2 and is given in the supplementary materials.

3 Related Work
Non-uniform coordinate selection has been proposed first for constant (non-adaptive) probability
distributions p over [d]. In [24], pi is proportional to the Lipschitz constant of g?i . Similar distributions
are used in [1, 23] for strongly convex f in (1).

Time varying (adaptive) distributions, such as pti = |κti|/(
∑d
j=1 |κtj |) [6], and pti = Gi(x

t)/G(xt)
[15, 14], have also been considered. In all these cases, the full information setting is used, which
requires the computation of the distribution pt (Ω(nd) calculations) at each step. To bypass this
problem, heuristics are often used; e.g., pt is calculated once at the beginning of an epoch of length
E and is left unchanged throughout the remainder of that epoch. This heuristic approach does not
work well in a scenario where Gi(xt) varies significantly. In [8] a similar idea to max_r is used
with ri replaced by Gi, but only in the full information setting. Because of the update rule used in
[8], the convergence rate is O (d ·maxGi(x

t)/G(xt)) times slower than Theorem 2 (see also the
comparison at the end of Section 2.3). The Gauss-Southwell rule (GS) is another coordinate selection
strategy for smooth cost functions [21] and its convergence is studied in [13] and [22]. GS selects
the coordinate to update as the one that maximizes |∇iF (xt)| at time t. max_r can be seen as an
extension of GS to a broader class of cost functions (see Lemma 2 in the supplementary materials).
Furthermore, when only sub-gradients are defined for gi(·), GS needs to solve a proximal problem.
To address the computational tractability of GS, in [22], lower and upper bounds on the gradients
are computed (instead of computing the gradient itself) and used for selecting the coordinates, but
these lower and upper bounds might be loose and/or difficult to find. For example, without a heavy
pre-processing of the data, ASCD in [22] converges with the same rate as uniform sampling when the
data is normalized and f(Ax) = ‖Ax− Y ‖2.

In contrast, our principled approach leverages a bandit algorithm to learn a good estimate of rti ;
this allows for theoretical guarantees and outperforms the state-of-the-art methods, as we will see
in Section 4. Furthermore, our approach does not require the cost function to be strongly convex
(contrary to e.g., [6, 13])
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Figure 2: CD for regression using Lasso (i.e., a non-smooth cost function). Y-axis is the log of
sub-optimality gap and x-axis is the number of epochs. The algorithms presented in this paper

(max_r, B_max_r) outperform the state-of-the-art across the board.

Bandit approaches have very recently been used to accelerate various stochastic optimization algo-
rithms; among these works [12, 17, 16, 4] focus on improving the convergence of SGD by reducing
the variance of the estimator for the gradient. A bandit approach is also used in [12] to sample for CD.
However, instead of using the bandit to minimize the cost function directly as in B_max_r, it is used
to minimize the variance of the estimated gradient. This results in a O(1/

√
t) convergence, whereas

the approach in our paper attains an O(1/t) rate of convergence. In [16] bandits are used to find the
coordinate i whose gradient has the largest magnitude (similar to GS). At each round t a stochastic
bandit problem is solved from scratch, ignoring all past information prior to t, which, depending on
the number of datapoints, might require many iterations. In contrast, our method incorporates past
information and needs only one sample per iteration.

4 Empirical Simulations
We compare the algorithms from this paper with the state-of-the-art approaches, in two ways. First,
we compare the algorithm (max_r) for full information setting as in Section 2.3 against other state-of-
the-art methods that similarly use O(d · z̄) computations per epoch of size d, where z̄ denotes the
number of non-zero elements of A. Next, we compare the algorithm for partial information setting as
in Section 2.4 (B_max_r) against other methods with appropriate heuristic modifications that also
allow them to use O(z̄) computations per epoch. The datasets we use are found in [5]; we consider
usps, aloi and protein for regression, and w8a and a9a for binary classification (see Table 2 in the
supplementary materials for statistics about these datasets).

Various cost functions are considered for the experiments, including a strongly convex cost function
(ridge regression) and non-smooth cost functions (Lasso and L1-regularized logistic regression).
These cost functions are optimized using different algorithms, which minimize either the primal or the
dual cost function. The convergence time is the metric that we use to evaluate different algorithms.

4.1 Experimental Setup

Benchmarks for Adaptive Algorithm (max_r):

• uniform [18]: Sample a coordinate i ∈ [n] uniformly at random.3
• ada_gap [15]: Sample a coordinate i ∈ [n] with probability Gi(xt)/G(xt).

Benchmarks for Adaptive-Bandit Algorithm (B_max_r): For comparison, in addition to the uniform
sampling, we consider the coordinate selection method that has the best performance empirically in
[15] and two accelerated CD methods NUACDM in [1] and Approx in [9].

• gpe [15]: This algorithm is a heuristic version of ada_gap, where the sampling probability
pti = Gi(x

t)/G(xt) for i ∈ [d] is re-computed once at the beginning of each bin of length
E.
3 If ‖ai‖ = ‖aj‖ ∀i, j ∈ [n], importance sampling method in [24] is equivalent to uniform in Lasso and

logistic regression.
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Figure 3: CD for binary Classification using L1-regularized logistic regression and CD for regression
using Lasso. The algorithms presented in this paper (max_r and B_max_r) outperform the

state-of-the-art across the board.

• NUACDM [1]: Sample a coordinate i ∈ [d] with probability proportional to the square root of
smoothness of the cost function along the ith coordinate, then use an unbiased estimator for the
gradient to update the decision variables.

• Approx [9]: Sample a coordinate i ∈ [d] uniformly at random, then use an unbiased estimator for
the gradient to update the decision variables.

NUACDM is the state-of-the-art accelerated CD method (see Figures 2 and 3 in [1]) for smooth
cost functions. Approx is an accelerated CD method proposed for cost functions with non-smooth
gi(·) in (1). We implemented Approx for such cost functions in Lasso and L1-reguralized logistic
regression. We also implemented Approx for ridge-regression but NUACDM converged faster in our
setting, whereas for the smoothen version of Lasso but Approx converged faster than NUACDM in
our setting. The origin of the computational cost is two-fold: Sampling a coordinate i and updating
it. The average computational cost of the algorithms for E = d/2 is depicted in Table 1. Next, we
explain the setups and update rules used in the experiments.

For Lasso F (x) = 1/2n‖Y − Ax‖2 +
∑n
i=1 λ|xi|. We consider the stingyCD update proposed in

[11]: xt+1
i = arg minz [f(Axt + (z − xti)ai)] + gi(xi). In Lasso, the gis are not strongly convex

(µi = 0). Therefore, for computing the dual residue, the Lipschitzing technique in [7] is used, i.e.,
gi(·) is assumed to have bounded support of size B = F (x0)/λ and g?i (ui) = Bmax {|ui| − λ, 0}.

For logistic regression F (x) = 1/n
∑n
i=1 log

(
1 + exp(−yi · x>ai)

)
+
∑n
i=1 λ|xi|. We consider the

update rule proposed in [18]: xt+1
i = s4λ(xti − 4∂f(Axt)/∂xi), where sλ(q) = sign(q) max{|q| −

λ, 0}.
For ridge regression F (x) = 1/n‖Y −Ax‖2 + λ/2‖x‖2 and it is strongly convex. We consider the
update proposed for the dual of ridge regression in [20], hence B_max_r and other adaptive methods
select one of the dual decision variables to update.

In all experiments, λs are chosen such that the test and train errors are comparable, and all update
rules belong toH. In addition, in all experiments, E = d/2 in B_max_r and gap_per_epoch. Recall
that when minimizing the primal, d is the number of features and when minimizing the dual, d is the
number of datapoints.

4.2 Empirical Results

Figure 2 shows the result for Lasso. Among the adaptive algorithms, max_r outperforms the state-of-
the-art (see Figures 2a, 2b and 2c). Among the adaptive-bandit algorithms, B_max_r outperforms the
benchmarks (see Figures 2d, 2e and 2f). We also see that B_max_r converges slower than max_r for
the same number of iterations, but we note that an iteration of B_max_r is O(d) times cheaper than
max_r. For logistic regression, see Figures 3a, 3b, 3e and 3f. Again, those algorithms outperform
the state-of-the-art. We also see that B_max_r converges with the same rate as max_r. We see that
the accelerated CD method Approx converges faster than uniform sampling and gap_per_epoch, but
using B_max_r improves the convergence rate and reaches a lower sub-optimality gap ε with the
same number of iterations. For ridge regression, we see in Figures 3c, 3d that max_r converges faster
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Figure 4: Analysis of the running time of B_max_r for different values of ε and E. A smaller E
results in fewer iterations, and results in larger clock time per epoch (an epoch is d iterations of CD).

than the state-of-the-art ada-gap. We also see in Figures 3g, 3h that B_max_r converges faster than
other algorithms. gap_per_epoch performs poorly because it is unable to adapt to the variability of
the coordinate-wise duality gaps Gi that vary a lot from one iteration to the next. In contrast, this
variation slows down the convergence of B_max_r compared to max_r, but B_max_r is still able to
cope with this change by exploring and updating the estimations of the marginal decreases. In the
experiments we report the sub-optimality gap as a function of the number of iterations, but the results
are also favourable when we report them as a function of actual time. To clarify, we compare the
clock time needed by each algorithm to reach a sub-optimality gap ε(xt) = exp(−5) in Table 1.4

Next, we study the choice of parameters ε and E in Algorithm 1. As explained in Section 2.4 the
choice of these two parameters affect c in Proposition 2, hence the convergence rate. To test the effect
of ε and E on the convergence rate, we choose a9a dataset and perform a binary classification on it
by using the logistic regression cost function. Figure 4a depicts the number of iterations required to
reach the log-suboptimality gap log ε of −5. In the top-right corner, ε = 1 and B_max_r becomes
CD with uniform sampling (for any value of E). As expected, for any ε, the smaller E, the smaller
the number of iterations to reach the log-suboptimality gap of −5. This means that c(ε, E) is a
decreasing function of E. Also, we see that as ε increases, the convergence becomes slower. That
implies that for this dataset and cost function c(ε, E) is close to 1 for all ε hence there is no need
for exploration and a smaller value for ε can be chosen. Figure 4b depicts the per epoch clock time
for ε = 0.5 and different values of E. Note that the clock time is not a function of ε. As expected, a
smaller bin size E results in a larger clock time, because we need to compute the marginal decreases
for all coordinates more often. After E = 2d/5 we see that clock time does not decrease much, this
can be explained by the fact that for large enough E computing the gradient takes more clock time
than computing the marginal decreases.

5 Conclusion
In this work, we propose a new approach to select the coordinates to update in CD methods. We
derive a lower bound on the decrease of the cost function in Lemma 1, i.e., the marginal decrease,
when a coordinate is updated, for a large class of update methodsH. We use the marginal decreases
to quantify how much updating a coordinate improves the model. Next, we use a bandit algorithm
to learn which coordinates decrease the cost function significantly throughout the course of the
optimization algorithm by using the marginal decreases as feedback (see Figure 1). We show that
the approach converges faster than state-of-the-art approaches both theoretically and empirically.
We emphasize that our coordinate selection approach is quite general and works for a large class of
update rulesH, which includes Lasso, SVM, ridge and logistic regression, and a large class of bandit
algorithms that select the coordinate to update.

The bandit algorithm B_max_r uses only the marginal decrease of the selected coordinate to update
the estimations of the marginal decreases. An important open question is to understand the effect
of having additional budget to choose multiple coordinates at each time t. The challenge lies in
designing appropriate algorithms to invest this budget to update the coordinate selection strategy such
that B_max_r performance becomes even closer to max_r.

4In our numerical experiments, all algorithms are optimized as much as possible by avoiding any unnecessary
computations, by using efficient data structures for sampling, by reusing the computed values from past iterations
and (if possible) by writing the computations in efficient matrix form.
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Appendix

A Basic Definitions

For completeness, in this section we recall a variety of standard definitions.

A.1 Basic Definitions

Definition 1 (1/β-smooth) A function f(·) : Rn −→ R is 1/β-smooth if for any x ∈ Rn and
y ∈ Rn

f(y) ≤ f(x) +∇f(x)>(y − x) +
1

2β
‖x− y‖2.

Definition 2 (µ-strongly convex) A function f(·) : Rn −→ R is µ-strongly convex if for any
x ∈ Rn and y ∈ Rn

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖x− y‖2.

Definition 3 (L-bounded support) A function f(·) : Rn −→ R has L-bounded support if there
exists a euclidean ball with radius L such

f(x) <∞⇒ ‖x‖ ≤ L.

A.2 The Class of Update Rules

Definition 4 (H) In (1), let f(·) be 1/β-smooth and each gi(·) be µi-strongly convex with convexity
parameter µi ≥ 0 ∀i ∈ [d]. For µi = 0, we assume that gi has a Li-bounded support. Let
ĥ : Rn × [n] −→ Rn be the update rule, i.e., xt+1 = ĥ(xt, i), for the decision variables xt whose
jth entry is

ĥj(x, i) =

{
xj + sjκj if j = i,
xj if j 6= i,

(9)

where

si = min

{
1,

Gi(x) + µi|κi|2/2
|κi|2(µi + ‖ai‖2/β)

}
. (10)

We use the update ĥ as a baseline to defineH. H is the class of all update rules h : Rn × [n] −→ Rn
such that ∀x ∈ Rn and i ∈ [d],

F (h(x, i)) ≤ F
(
ĥ(x, i)

)
, (11)

or
F̂P (x, h(x, i)) ≤ F̂P

(
x, ĥ(x, i)

)
, (12)

where

F̂P (x,x′) =

d∑
i=1

( (
∇f(Ax)>ai

)
(x′i − xi) +

1

2β
‖ai‖2(x′i − xi)2 + gi(x

′
i)− gi(xi)

)
. (13)

Intuitively, F̂P (x,x′) approximates the difference of the cost function evaluated at x and x′, which
follows from the smoothness property of f :

F (x′)− F (x) ≤ ∇f(Ax)>

(
d∑
i=1

ai(x
′
i − xi)

)
+

1

2β

∥∥∥∥∥
d∑
i=1

ai(x
′
i − xi)

∥∥∥∥∥
2

+

d∑
i=1

gi(x
′
i)− gi(xi)

≤
d∑
i=1

( (
∇f(Ax)>ai

)
(x′i − xi) +

1

2β
‖ai‖2(x′i − xi)2 + gi(x

′
i)− gi(xi)

)
,

where the first inequality follows from the smoothness property of f and the last inequality follows
from the triangle inequality.
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B Proofs

B.1 Omitted Proofs for CD (Sections 2.2, 2.3 and 2.4)

In this section, we present the proofs of the results in Sections 2.2, 2.3 and 2.4.

Proof of Lemma 1: We first prove the claim for the update rule ĥ given by (9) in part (i), and next
extend it to any update rule inH in part (ii).

(i) Our starting point is the inequality

F (xt+1) ≤ F (xt)− stiGi(xt)−
(µi (sti − (sti)

2
)

2
− (sti)

2‖ai‖2

2β

)
|κti|2, (14)

which holds for sti ∈ [0, 1], for all i ∈ [d] and which follows from Lemma 3.1 of [15].5 After
minimizing the right-hand side of (14) with respect to sti, we attain the desired bound (4) for sti as in
(3).

(ii) We now extend (i) to any update rule inH. If the update rule h(xt, i) satisfies (11), we can easily
recover (4) because

F
(
h(xt, i)

)
≤ F

(
ĥ(xt, i)

)
≤ F (xt)− rti .

If the update rule satisfies (12), we have

F
(
h(xt, i)

)
≤ F

(
xt
)

+ F̂P
(
xt, h(xt, i)

)
(15)

≤ F
(
xt
)

+ F̂P

(
xt, ĥ(xt, i)

)
(16)

≤ F
(
xt
)
− rti , (17)

where (15) follows from the 1/β-smoothness of f and (13), (16) follows from (12), and (17) follows
from the µi-strong convexity of gi. More precisely, by plugging

gi(x
t
i+s

t
iκ
t
i) = gi

(
xti + sti(u

t − xti)
)
≤

stigi(u
t) + (1− sti)gi(xti)−

µi
2
sti(1− sti)(κti)2

into (16), and using the Fenchel-Young property, we recover (14). Then, by setting sti as in (3) we
recover (17). �

Lemma 2 Under the assumptions of Lemma 1, if gi(xi) = λ · (xi)2 in (1) and ‖ai‖ = 1 for all
i ∈ [d], then the Gauss-Southwell rule and max_r are equivalent.

Proof: [Proof of Lemma 2] We prove the lemma for x ∈ Rn and drop the dependence on t
throughout the proof. First, we show that Gi ∼ (∇iF (x))2. The function gi(xi) = λ · (xi)2 is
2λ strongly convex for all i ∈ [d], i.e., µi = µ = 2λ. The dual convex conjugate of the function
gi(xi) = λ · (xi)2 is

g?(z) =
z2

4λ
.

Then, for w = ∇f(Ax), Gi(x) = g?i (−a>i w) + gi(xi) + xia
>
i w becomes

Gi(x) =
(a>i w)2

4λ
+ λ(xi)

2 + xia
>
i w =

(
a>i w + 2λxi

)2
4λ

.

As∇iF (x) = a>i ∇f(Ax) + 2λxi = a>i w + 2λxi, we have

Gi(x) =
(∇iF (x))

2

4λ
.

Next, note that

κi = ∂g?i (−a>i w)− xi =
−a>i w

2λ
− xi = −∇iF (x)

2λ
.

5This inequality improves variants in Theorem 2 of [20], Lemma 2 of [24] and Lemma 3 of [6].
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Next, plugging Gi(x) = (∇iF (x))2/4λ and κi = −∇iF (x)/2λ in (3) yields

si = min

{
1,

3λ

2λ+ 1
β

}
for all i ∈ [d].

Hence, ri in (5) becomes

ri =


(∇iF (x))2

8λ2β (2λβ − 1) if λ ≥ 1
β ,

3
4
(∇iF (x))2

2λ+ 1
β

otherwise,

Hence, arg maxi∈[d] ri = arg maxi∈[d] (∇iF (x))
2. In Gauss-Southwell rule, we choose the coordi-

nate whose gradient has the largest magnitude, i.e., arg maxi∈[d] |∇iF (x)|. As a result, the selection
rules max_r and Gauss-Southwell rule are equivalent. �

Now, we show that our approach leads to a linear convergence when gi is strongly convex for i ∈ [d],
i.e., when µi > 0.

Proof: [Proof of Theorem 1] According to Proposition 1, we know that the selection rule max_r
is optimal for the bound (4). Therefore, if we prove the convergence results using (4) for another
selection rule, then the same convergence result holds for max_r. For this proof, we use the following
selection rule: At time l, we choose the coordinate i with the largest Gi(xt)µi/(µi+‖ai‖

2/β), which we
denote by i?.

First, we show that rti? in (5) is lower bounded as follows

rti? ≥ Gi?(xt)
µi?

µi? + ‖ai?‖2
β

. (18)

We prove (18) for two cases sti? = 1 and sti? < 1 separately, where sti is defined in (3) for i ∈ [d].

(a) If sti? = 1, according to (5) we have

rti? = Gi?(xt)− ‖ai
?‖2|κti? |2

2β
.

Next, we prove (18) by showing that rti? −Gi?(xt) µi?

µi?+‖ai?‖2/β
≥ 0,

rti? −Gi?(xt)
µi?

µi? + ‖ai?‖2
β

= Gi?(xt)

‖ai?‖2
β

µi? + ‖ai?‖2
β

− ‖ai
?‖2|κti? |2

2β

=
‖ai?‖2

2β
·

2Gi?(xt)− µi|κti? |2 −
‖ai?‖2|κti? |

2

β

µi? + ‖ai?‖2
β

≥ 0,

where the last inequality follows by setting sti? = 1 in (3) which then reads:

Gi?(xt)− µi? |κti? |2

2
− ‖ai

?‖2|κti? |2

β
≥ 0.

This proves (18).

(b) Now, if sti? < 1, according to (5) we have

rti? =

(
Gi?(xt) + µi? |κti? |2/2

)2
2(µi? + ‖ai?‖2

β )|κti? |2
. (19)
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With rti? given by (19), (18) becomes(
Gi?(xt) + µi? |κti? |2/2

)2
2(µi? + ‖ai?‖2

β )|κti? |2
≥ Gi?(xt)

µi?

µi? + ‖ai?‖2
β

,

and rearranging the items, it successively becomes(
Gi?(xt) + µi? |κti? |2/2

)2
2|κti? |2

≥ Gi?(xt)µi?(
Gi?(xt) + µi? |κti? |2/2

)2 ≥ 2Gi?(xt)|κti? |2µi?
Gi?(xt)2 + (µi? |κti? |2/2)2 −Gi?(xt)|κti? |2µi? ≥ 0(

Gi?(xt)− µi? |κti? |2/2
)2 ≥ 0,

which always holds and therefore recovers the claim, i.e., (18).

Hence in both cases (18) holds. Now, plugging (18) and G(xt) ≥ ε(xt) in (4) yields

ε(xt+1)−ε(xt) = F (xt+1)− F (xt) ≤ −rti?

≤ −G(xt) max
i∈[d]

Gi(x
t)µi

G(xt)
(
µi + ‖ai‖2

β

) ≤ −ε(xt) max
i∈[d]

Gi(x
t)µi

G(xt)
(
µi + ‖ai‖2

β

) , (20)

that results in

ε(xt+1) ≤ ε(xt)− ε(xt) max
i∈[d]

Gi(x
t)µi

G(xt)
(
µi + ‖ai‖2

β

) , (21)

which gives

ε(xt+1) ≤ ε(xt)

1−max
i∈[d]

Gi(x
t)µi

G(xt)
(
µi + ‖ai‖2

β

)
 , (22)

As (22) holds for all t, we conclude the proof. �

Proof: [Proof of Theorem 2] Similar to the proof of Theorem 1, we prove the theorem for the
following selection rule: At time t, the coordinate i with the largest Gi(xt) is chosen. Since the
optimal selection rule for minimizing the bound in Lemma 1 is to select the coordinate i with the
largest rti in (4), as shown by Proposition 1, the convergence guarantees provided here holds for
max_r as well.

The bound (7) is proven by using induction.

Suppose that (7) holds for some t ≥ t0. We want to verify it for t+ 1. Let i? = argmaxi∈[d]Gi(x
t).

We study two cases sti? = 1 and sti? < 1 separately, where sti is defined in (3) for i ∈ [d].

(a) If sti? = 1, then first we show that

ε(xt+1) ≤ ε(xt) ·
(

1− 1

2d

)
, (23)

second we show that induction hypothesis (7) holds. Since sti? = 1, (3) yields that

Gi?(xt) ≥ |κ
t
i? |2‖ai?‖2

β
+
µi|κti? |

2
,

that gives

Gi?(xt) ≥ |κ
t
i? |2‖ai?‖2

β
,
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which, combined with (5), implies that

rti? = Gi?(xt)− |κ
t
i? |2‖ai?‖2

2β
≥ Gi?(xt)

2
. (24)

Using F (xt+1)− F (xt) = ε(xt+1)− ε(xt) and (24), we can rewrite (4) as

ε(xt+1)−ε(xt) ≤ −Gi
?(xt)

2
.

As i? is the coordinate with the largest Gi(xt), we have

ε(xt+1)− ε(xt) ≤ −Gi
?(xt)

2
≤ −G(xt)

2d
. (25)

According to weak duality, ε(xt) ≤ G(xt). Plugging this in (25) yields

ε(xt+1)− ε(xt) ≤ −G(xt)

2d
≤ −ε(x

t)

2d
, (26)

and therefore

ε(xt+1) ≤ ε(xt) ·
(

1− 1

2d

)
. (27)

Now, by plugging (7) in (27) we prove the inductive step at time l + 1:

ε(xt+1) ≤
8L2η2

β

2d+ t− t0

(
1− 1

2d

)

≤
8L2η2

β

2d+ t+ 1− t0
.

(b) If sti? < 1, the marginal decreases in (5) becomes

rti? =

(
Gi?(xt) + µi?

|κti? |
2

2

)2
2|κti? |2

(
µi? + ‖ai?‖2

β

) . (28)

Next, we show that

rti? ≥
G2
i?(xt)β

2|κti? |2‖ai?‖2
. (29)

To prove (29), we plug (28) in (29) and rearrange the terms which gives

‖ai?‖2

β

(
µ2
i?
|κti? |4

4
+Gi?(xt)µi? |κti? |2

)
≥ µi?G2

i?(xt), (30)

(30) holds because of (3). More precisely, if we plug the value of sti? < 1 in (3) we get

Gi?(xt) ≤ |κ
t
i? |2‖ai?‖2

β
+
µi|κti? |

2
, (31)

which shows the correctness of (30), hence (29).

According to Lemma 22 of [20] or Lemma 2.7 of [15] we know |κti| ≤ 2L. Plugging |κti| ≤ 2L in
(29) yields

rti? ≥
G2
i?(xt)β

8L2‖ai?‖2
.
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Next, using weak duality and the definition of η in Theorem 2, we lower bound rti? by

rti? ≥
(

Gi?(xt)

G(xt) ‖ai?‖

)2
G2(xt)β

8L2

≥ ε2(xt)β

8L2η2
. (32)

Hence we have

ε(xt+1)− ε(xt) ≤ −rti? ≤ −
ε2(xt)β

8L2η2
,

and therefore

ε(xt+1) ≤ ε(xt)
(

1− ε(xt)β

8L2η2

)
. (33)

Let f(y) = y (1− yβ/8L2η2), as f ′(y) > 0 for y < 4L2η2/β, plugging (7) in (33) yields

ε(xt)

(
1− ε(xt)β

8L2η2

)
≤

8L2η2

β

2d+ t− t0

1−
8L2η2

β

2d+ t− t0
β

8L2η2

 . (34)

Now, we prove the inductive step at time t+ 1 by using (34):

ε(xt+1) ≤
8L2η2

β

2d+ t− t0
·

1−
8L2η2

β

2d+ t− t0
β

8L2η2


≤

8L2η2

β

2d+ t+ 1− t0
.

To conclude the proof, we need to show that the induction base case is correct, i.e., we need to show
that

ε(xt0) ≤ 4L2η2

βd
. (35)

First, we rewrite (5) using rti? ≥ ε2(xt)β/8L2η2 for sti? < 1 and rti? ≥ ε(xt)/2d for sti? = 1 as

ε(xt+1)− ε(xt) ≤ −rti? ≤ −1{sti? = 1}ε(x
t)

2d
− 1{sti? < 1}ε

2(xt)β

8L2η2
. (36)

From (36), for l < t0 we have

ε(xt+1) ≤ ε(xt)
(

1− 1{sti? = 1} 1

2d
− 1{sti? < 1}ε(x

t)β

8L2η2

)
≤ ε(xt)

(
1−min

{
1

2d
,
ε(xt)β

8L2η2

})
≤ ε(xt)

(
1−min

{
1

2d
,
ε(xt0)β

8L2η2

})
, (37)

where (37) holds because for t ≤ t0 we know that ε(xt0) ≤ ε(xt). We use the proof by contradiction
to check the induction base, i.e., we show that assuming ε(xt0) > 4L2η2/βd results in a contradiction.
If ε(xt0) > 4L2η2/βd, then

1

2d
= min

{
1

2d
,
ε(xt0)β

8L2η2

}
. (38)

From (37) and (38) we get

ε(xt0) ≤ ε(x0)

(
1− 1

2d

)t0
. (39)
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Using the inequality 1 + y < exp(y) for y < 1 we have

ε(xt0) ≤ ε(x0) exp(− t0
2d

) = ε(x0) exp(− log
dβε(x0)

4L2η2
)

= ε(x0)
4L2η2

βdε(x0)
=

4L2η2

βd
,

which shows that the induction base holds and this concludes the proof.

�

Proof: [Proof of Proposition 2] The proof is similar to the proof of Theorem 2 and it uses induction.
We highlight the differences here. To make the proof easier, we simplify the definition of sti in (3)
and the marginal decrease rti in (5) by using the upper bound |κti| ≤ 2L (recall that L = Li for all i
in Proposition 2). The upper bound |κti| ≤ 2L follows from Lemma 22 of [20]. The starting point of
the proof is the following equation

F (xt+1) ≤ F (xt)− stiGi(xt) + 2
(sti)

2‖a1‖2

β
L2, (40)

which is derived by upper bounding (14) using |κti| ≤ 2L and µi = 0 for all i ∈ [d], which holds
since gi(·) are not strongly convex. Equation (40) holds for sti ∈ [0, 1], and for all i ∈ [d]. After
minimizing the right-hand side of (40) with respect to sti, we attain the following new sti and the new
marginal decrease rti :

sti = min

{
1,

Gti
4L2‖a1‖2/β

}
, (41)

and

rti =

{
Gti −

2‖a1‖2L2

β if sti = 1,
(Gti)

2

8L2‖a1‖2/β otherwise.
(42)

Hereafter, let

α =
8L2‖a1‖2

β
(
ε/d2 + (1−ε)η2/c

)
as defined in Proposition 2.

Now, suppose that (7) holds for some t ≥ t0. We want to verify it for t+ 1. We start the analysis by
computing the expected marginal decrease for ε in Algorithm 1,

E
[
rti |xt

]
≥ ε

d

∑
sti=1

rti +
∑
sti<1

rti

+ (1− ε)r
t
i?

c
, (43)

where c is a finite constant in Proposition 2 and i? = arg maxi∈[d] r
t
i . The expectation is with respect

to the random choice of the algorithm.

When sti = 1, from (41) we have Gti ≥ 4L2‖a1‖2/β and from (42) we have rti ≥ 2L2‖a1‖2/β. Plugging
rti ≥ 2L2‖a1‖2/β when sti = 1 in (43) yields

E
[
rti |xt

]
≥ ε

d

∑
sti=1

2L2‖a1‖2

β
+
∑
sti<1

G2
i (x

t)β

8L2‖a1‖2

+ (1− ε)r
t
i?

c
, (44)

(a) If sti? = 1, then the cost function decreases at least by

E
[
rti |xt, si?(xt) = 1

]
≥ 2L2‖a1‖2

β

(
ε

d
+

1− ε
c

)
. (45)
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(b) Let sti? < 1, from the definition of sti? we know that Gi(xt) ≤ Gi?(xt) for all i ∈ [d], hence we
deduce that sti < 1 for all i ∈ [d], then (44) reads as

E
[
rti |xt, si?(xt) < 1

]
≥ ε

d

(
d∑
i=1

G2
i (x

t)β

8L2‖a1‖2

)
+ (1− ε) G

2
i?(xt)β

8L2c‖a1‖2

≥ β

8L2‖a1‖2

ε
(∑d

i=1Gi(x
t)
)2

d2
+ (1− ε)G

2
i?(xt)

c


≥ β

8L2‖a1‖2

(
ε
G2(xt)

d2
+ (1− ε)G

2(xt)

η2c

)
, (46)

where (46) follows from the assumption G(xt) ≤ ηGi?(xt) in Proposition 2. Similar to the proof of
Theorem 2, we plug the inequality ε(xt) < G(xt) in (46) and get

E
[
rti |xt, si?(xt) < 1

]
≥ βε2(xt)

8L2‖a1‖2

(
ε

d2
+

(1− ε)
η2c

)
=
ε2(xt)

α
. (47)

Next, we use (45), (47) and use the tower property to check the induction hypothesis

E[ε(xt+1)]− E[ε(xt)] ≤ E
[
1{sti? = 1}E

[
rti |xt, sti? = 1

]
+ 1{sti? <= 1}E

[
rti |xt, sti? < 1

]]
≤ −E

[
1{sti? = 1}2L2‖a1‖2

β

(
ε

d
+

1− ε
c

)
+ 1{sti? < 1}ε

2(xt)

α

]
.

(48)

As we assumed

ε2(xt) ≤ ε2(x0) ≤ 2αL2‖a1‖2

β

(
ε

d
+

1− ε
c

)
in Proposition 2, we have

min

{
2L2‖a1‖2

β

(
ε

d
+

1− ε
c

)
,
ε2(xt)

α

}
=
ε2(xt)

α
.

Hence, (48) becomes

E[ε(xt+1)]− E[ε(xt)] ≤ −E
[
ε2(xt)

α

]
≤ −E[ε(xt)]2

α
, (49)

where the last inequality is because of the Jensen’s inequality (i.e., E[ε(xt)]2 ≤ E[ε2(xt)]). By
rearranging the terms in (49) we get

E[ε(xt+1)] ≤ E
[
ε(xt)

](
1− E [ε(xt)]

α

)
(50)

Now, let f(y) = y
(
1− y

α

)
, as f ′(y) > 0 for y < α/2, we can plug (8) in (50) and prove the inductive

step at time t+ 1;

E[ε(xt+1)] ≤ E
[
ε(xt)

](
1− E [ε(xt)]

α

)
≤ α

2 + t− t0
·
(

1− 1

2 + t− t0

)
≤ α

2 + t+ 1− t0
. (51)

Finally, we need to show that the induction basis indeed is correct. By using the inequality (49) for
t = 1, . . . , t0 we get

E[ε(xt0)] ≤ ε(x0)−
t0−1∑
t=0

E[ε(xt)]2

α
, (52)
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Table 2: Statistics of the datasets. The first three datasets are used for regression and the last two for
binary classification.

#classes #datapoints #features %nonzero
usps 10 7291 256 100%
aloi 1000 108000 128 24%

protein 3 17766 357 29%
w8a 2 49749 300 4%
a9a 2 32561 123 11%

since at each iteration the cost function decreases, we have ε(xt+1) ≤ ε(xt) for all t ≥ 0. Therefore,
if E[ε(xt)] ≤ α/2 for any 0 ≤ t ≤ t0, we can conclude that E[ε(xt0)] ≤ α/2. We prove the induction
hypothesis by showing that E[ε(xt0)] > α/2 results in a contradiction. With this assumption, (52)
becomes

E[ε(xt0)] ≤ ε(x0)− t0
α

4
= ε(x0)

(
1− t0

α

4ε(x0)

)
, (53)

Next, we use the inequality 1 + y ≤ exp(y) with (53)

E[ε(xt0)] ≤ ε(x0) exp

(
−t0

α

4ε(x0)

)
. (54)

Plugging

t0 =
4ε(x0)

α
log(

2ε(x0)

α
)

in (54) yields

E[ε(xt0)] ≤ α

2
, (55)

which proves the induction basis and concludes the proof.

�
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