
A Proofs of Section 3
A.1 Proof of Theorem 1
To prove the correctness and sample complexity of Algorithm R1, we need to prove Lemma A.2, which
describes the set Gr that the Test returns. This proof uses the following multiplicative forms of the Chernoff
bounds (proved as in Theorems 4.4 and 4.5 of [12]).

Lemma A.1 (Chernoff Bounds). If X is the average of n independent random variables taking values in
{0, 1}, then

Pr[X ≤ (1− s)E[X]] ≤ exp
(
− s2 E[X]n

2

)
, (1)

Pr[X ≥ (1 + s)E[X]] ≤ exp
(
− s2 E[X]n

3

)
, (2)

Pr[X ≥ (1 + s)E[X]] ≤ exp
(
− sE[X]n

3

)
, (3)

where the latter inequality holds for s ≥ 1 and the first two hold for s ∈ (0, 1).

Lemma A.2. Test(f (r), k, ε′, δ′) is such that the following two properties hold, each with probability at least
1− δ′, for all i ∈ [k] and for a given round r ∈ [t].

(a) If errDi
(f (r)) > ε′, then i /∈ Gr.

(b) If errDi
(f (r)) ≤ ε′

2 , then i ∈ Gr.

Proof of Lemma A.2. For this proof we assume that the number of samples |Ti| for each i ∈ [k] must be at
least 32

ε′ ln
(
k
δ′

)
= O

(
1
ε′ ln

(
k
δ′

))
. For a given round r ∈ [t]:

(a) Assume errDi(f (r)) > ε′ for some i ∈ [k]. Then

Pr
[
i ∈ Gr

]
= Pr

[
errTi

(f (r)) ≤ 3
4ε
′
]

< Pr
[
errTi

(f (r)) ≤
(

1− 1
4

)
errDi

(f (r))
]

(1)
≤ exp

(
− 1

2

(
1
4

)2
errDi

(f (r))|Ti|
)

< exp
(
− 1

32ε
′|Ti|

)
≤ exp

(
− 1

32ε
′ 32
ε′ ln

(
k
δ′

))
≤ δ′

k .

Hence, by union bound, errDi(f (r)) > ε′ ⇒ i /∈ Gr holds for all i ∈ [k] with probability at least 1− δ′.

(b) Assume errDi
(f (r)) ≤ ε′

2 for some i ∈ [k]. We consider two cases and we apply the Chernoff bounds
with s = ε′

4errDi
(f(r)) . Note that if errDi(f (r)) = 0 then errTi(f (r)) = 0 and the property holds. So we

only need to consider errDi(f (r)) 6= 0. First, we need to prove that
3ε′
4 ≥ (1 + s)errDi

(f (r))
⇔ 3ε′

4errDi
(f(r)) ≥ 1 + ε′

4errDi
(f(r))

⇔ ε′

2errDi
(f(r)) ≥ 1,

which is true.
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Case 1. If errDi(f (r)) > ε′

4 , which implies s < 1, then

Pr
[
i /∈ Gr

]
= Pr

[
errTi(f (r)) > 3

4ε
′
]

≤ Pr
[
errTi(f (r)) ≥

(
1 + s

)
errDi(f (r))

]
(2)
≤ exp

(
− 1

3

(
ε′

4errDi
(f(r))

)2
errDi

(f (r))|Ti|
)

= exp
(
− ε′2

48errDi
(f(r)) |Ti|

)
≤ exp

(
− 1

482ε′ 24
ε′ ln

(
k
δ′

))
≤ δ′

k .

Case 2. If errDi
(f (r)) ≤ ε′

4 , which implies s ≥ 1, then:

Pr
[
i /∈ Gr

]
= Pr

[
errTi

(f (r)) > 3
4ε
′
]

≤ Pr
[
errTi

(f (r)) ≥
(

1 + s
)
errDi

(f (r))
]

(3)
≤ exp

(
− 1

3
ε′

4errDi
(f(r))errDi

(f (r))|Ti|
)

= exp
(
− ε′

3 |Ti|
)

≤ exp
(
− ε′

3
3
ε′ ln

(
k
δ′

))
≤ δ′

k .

Hence, by union bound, errDi
(f (r)) ≤ ε′

2 ⇒ i ∈ Gr holds for all i ∈ [k] with probability at least 1− δ′.

Proof of Theorem 1. First, we prove that Algorithm R1 indeed learns a good classifier, meaning that for
every player i ∈ [k] the returned classifier fR1 has error errDi

(fR1) ≤ ε with probability at least 1− δ.
Let e(r)

i denote the number of rounds, up until and including round r, that i did not pass the Test. More
formally, e(r)

i = |{r′ | r′ ∈ [r] and i /∈ Gr′}|.

Claim 1. With probability at least 1− 2δ
3 , e(t)

i < 0.4t ∀i ∈ [k].

From Lemma A.2(a) and union bound, with probability at least 1− tδ′ = 1− δ
3 , the number of functions

that have error more than ε′ on Di is the same as the number of rounds that i did not pass the Test, for
all i ∈ [k]. So, if the claim holds, with probability at least 1 − ( 2

3 + 1
3 )δ = 1 − δ, less than 0.4t functions

have error more than ε′ on Di, for all i ∈ [k]. Equivalently, with probability at least 1− δ, more than 0.6t
functions have error at most ε′ on Di, for all i ∈ [k]. As a result, with probability at least 1− δ, the error of
the majority of the functions is errDi

(fR1) ≤ 0.6
0.1ε
′ = ε for all i ∈ [k].

Let us now prove the claim.

Proof of Claim 1. Recall that Φ(r) =
∑k
i=1 w

(r)
i is the potential function in round r. By linearity of

expectation, the following holds for the error on the mixture of distributions:

errD̃(r−1)(f (r)) = 1
Φ(r−1)

∑k
i=1

(
w

(r−1)
i errDi(f (r))

)
≥ 1

Φ(r−1)

∑
i/∈Gr

(
w

(r−1)
i errDi(f (r))

) (4)

From the VC theorem, it holds that, since f (r) = OF (S(r)) and |S(r)| = mε′/16,δ′ , with probability at least
1 − δ′, errD̃(r−1)(f (r)) ≤ ε′

16 . From Lemma A.2(b), with probability at least 1 − δ′, errDi
(f (r)) ≥ ε′

2 for all
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i /∈ Gr. So with probability at least 1− 2δ′ the two hold simultaneously. Combining these inequalities with
(4), we get that with probability at least 1− 2δ′, ε′

16 ≥
1

Φ(r−1)

∑k
i=1

(
w

(r−1)
i

ε′

2

)
⇔
∑
i/∈Gr

w
(r−1)
i ≤ 1

8Φ(r−1).

Since only the weights of players i /∈ Gr are doubled, it holds that for a given round r

Φ(r) ≤ Φ(r−1) +
∑
i/∈Gr

w
(r−1)
i ≤ 9

8Φ(r−1).

Therefore with probability at least 1− 2tδ′ = 1− 2δ
3 , the inequality holds for all rounds, by union bound. By

induction:
Φ(t) ≤

(9
8

)t
Φ(0) =

(9
8

)t
k

Also, for every i ∈ [k] it holds that w(t)
i = 2e

(t)
i , as each weight is only doubled every time i does not pass

the Test. Since the potential function is the sum of all weights, the following inequality is true.
w

(t)
i ≤ Φ(t)

⇒ 2e
(t)
i ≤

(
9
8

)t
k

⇒ e
(t)
i ≤ t log

(
9
8

)
+ log(k)

⇒ e
(t)
i ≤ 0.17t+ 0.2t < 0.4t
So with probability at least 1− 2δ

3 , e(t)
i < 0.4t ∀i ∈ [k]. �

As for the total number of samples, it is the sum of Test’s samples and the mε′/16,δ′ samples for each
round. Since Test is called t = 5dlog(k)e times and each time requests O

(
1
ε′ ln

(
k
δ′

))
samples from each of

the k players, the total number of samples that it requests is O
(

log(k) kε′ ln
(
k
δ′

))
. Substituting ε′ = ε/6 and

δ′ = δ/(3t) = δ/(15dlog(k)e), this yields

O
( log(k)

ε
k ln

(k log(k)
δ

))
= O

( log(k)
ε

k ln
(k
δ

))
samples in total.

In addition, the sum of the mε′/16,δ′ samples drawn in each round to learn the classifier for the mixture
for t = 5dlog(k)e rounds is O

(
log(k)
ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

)))
. Again, substituting ε′ and δ′, we get:

O
( log(k)

ε

(
d ln

(1
ε

)
+ ln

( log(k)
δ

)))
samples in total.

Hence, the overall bound is:
O
( log(k)

ε

(
d ln

(1
ε

)
+ k ln

(k
δ

)))

A.2 Proof of Lemma 2.1
Proof of Lemma 2.1. For this proof, we assume that the number of samples |Ti| for each i ∈ [k] must be at
least 148

ε′ = O
(

1
ε′

)
. For given r ∈ [t] and i ∈ [k]:

(a) Assume errDi(f (r)) > ε′. Then

Pr
[
i ∈ Gr

]
= Pr

[
errTi(f (r)) ≤ 3

4ε
′
]
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< Pr
[
errTi

(f (r)) ≤
(

1− 1
4

)
errDi

(f (r))
]

(1)
≤ exp

(
− 1

2

(
1
4

)2
errDi

(f (r))|Ti|
)

< exp
(
− 1

32ε
′|Ti|

)
≤ exp

(
− 1

32ε
′ 148
ε′

)
< 0.01.
Hence, errDi(f (r)) > ε′ ⇒ i /∈ Gr holds with probability at least 0.99.

(b) Assume errDi
(f (r)) ≤ ε′

2 . We consider two cases and we apply the Chernoff bounds with s = ε′

4errDi
(f(r)) .

Note that if errDi
(f (r)) = 0 then errTi

(f (r)) = 0 and the property holds. So we only need to consider
errDi

(f (r)) 6= 0. First, we need to prove that
3ε′
4 ≥ (1 + s)errDi(f (r))
⇔ 3ε′

4errDi
(f(r)) ≥ 1 + ε′

4errDi
(f(r))

⇔ ε′

2errDi
(f(r)) ≥ 1,

which is true.

Case 1. If errDi
(f (r)) > ε′

4 , which implies s < 1, then

Pr
[
i /∈ Gr

]
= Pr

[
errTi(f (r)) > 3

4ε
′
]

≤ Pr
[
errTi(f (r)) ≥

(
1 + s

)
errDi(f (r))

]
(2)
≤ exp

(
− 1

3

(
ε′

4errDi
(f(r))

)2
errDi

(f (r))|Ti|
)

= exp
(
− ε′2

48errDi
(f(r)) |Ti|

)
≤ exp

(
− 1

482ε′ 148
ε′

)
< 0.01.

Case 2. If errDi
(f (r)) ≤ ε′

4 , which implies s ≥ 1, then

Pr
[
i /∈ Gr

]
= Pr

[
errTi

(f (r)) > 3
4ε
′
]

≤ Pr
[
errTi

(f (r)) ≥
(

1 + s
)
errDi

(f (r))
]

(3)
≤ exp

(
− 1

3
ε′

4errDi
(f(r))errDi

(f (r))|Ti|
)

= exp
(
− ε′

12 |Ti|
)

≤ exp
(
− ε′

12
148
ε′

)
< 0.01.

Hence, errDi
(f (r)) ≤ ε′

2 ⇒ i ∈ Gr holds with probability at least 0.99.
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B Algorithms and proofs of Section 4
B.1 Algorithm NR1

Algorithm NR1
1: Initialization: ∀i ∈ [k] w(0)

i := 1; α′ := α/35; t := 2dln(k)/α′3e; ε′ := ε/60; δ′ := δ/(4t);
2: for r = 1, . . . , t do
3: D̃(r−1) ← 1

Φ(r−1)

∑k
i=1

(
w

(r−1)
i Di

)
, where Φ(r−1) :=

∑k
i=1 w

(r−1)
i ;

4: Draw a sample set S(r) of size O
(

1
α′ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

)))
from D̃(r−1);

5: f (r) ← OF (S(r));
6: for i = 1, . . . , k do
7: Draw a sample set Ti of size O

(
1
α′ε′ ln

(
k
δ′

))
from Di;

8: s
(r)
i ← min

(
errTi

(f(r))α′2

(1+3α′)err
S(r) (f(r))+3ε′ , α

′
)

9: Update: w(r)
i ← w

(r−1)
i (1 + s

(r)
i )

10: end for
11: end for
12:
13: return fNR1 = maj({f (r)}tr=1);

The algorithms of this section share many useful properties. We will first prove some of these properties
and then prove each one of the Theorems 3, 4, 5, and 6.

Corollary (of Lemma A.1). If X is the average of n independent random variables taking values in {0, 1},
then:

Pr[X ≤ (1− α)E[X]− ε] ≤ exp(−αεn) ∀α, ε ∈ (0, 1) (5)

Pr[X ≥ (1 + α)E[X] + ε] ≤ exp
(
− αεn

3

)
∀α, ε ∈ (0, 1) (6)

Proof. We first prove inequality (5). Note that if E[X] ≤ ε then the inequality is trivially true so we only
need to consider E[X] > ε. Let s = α+ ε

E[X] . Notice that s2 ≥ 2αε
E[X] . Thus, by inequality (1),

Pr[X ≤ (1− α)E[X]− ε] ≤ exp(−s2 E[X]n/2) ≤ exp(−αεn).

Next we prove inequality (6). Again let s = α+ ε
E[X] . If s < 1 then by inequality (2,

Pr[X ≥ (1 + α)E[X] + ε] ≤ exp(−s2 E[X]n/3) ≤ exp(−2αεn/3).

If s ≥ 1 then by inequality (3),

Pr[X ≥ (1 + α)E[X] + ε] ≤ exp(−sE[X]n/3) ≤ exp(−εn/3) ≤ exp(−αεn/3).

Lemma B.1 proves that the error of the classifier f (r) of each round on the weighted mixture of distributions
is low. It holds due to a known extension of the VC Theorem and Chernoff bounds, but we prove it here for
our parameters for completeness.
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Lemma B.1. With probability at least 1− δ/2, for all rounds r ∈ [t]:

(a) (1 + 3α′)errS(r)(f (r)) + 3ε′ ≤ (1 + 7α′)OPT + 19ε′.

(b) errD̃(r−1)(f (r)) ≤ (1 + α′)errS(r)(f (r)) + ε′.

Proof. Let S(r) be a set of samples of size C · 1
α′ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

))
drawn from D̃(r−1), where C is a

constant. We will prove that for large enough constant C the two statements hold simultaneously for all
rounds, each with probability at least 1− tδ′. It suffices to prove that each statement in each round holds
with probability at least 1− δ′. For a given round r:

(a) By f∗’s definition it holds that errDi(f∗) ≤ OPT + ε′ ∀i ∈ [k], so it must also hold that errD̃(r−1)(f∗) ≤
OPT + ε′, since D̃(r−1) is a weighted average of the distributions. From the Corollary it holds that
Pr[errS(r)(f∗) ≥ (1 + α′)errD̃(r−1)(f∗) + ε′] ≤ exp(−α′ε′|S(r)|/3) ≤ δ′ and since α′ ≤ 1, it is easy to see
that with probability at least 1− δ′,

errS(r)(f∗) ≤ (1 + α′)OPT + 3ε′ (7)

Since f (r) is the error minimizing classifier for the sample S(r), it holds that errS(r)(f (r)) ≤ errS(r)(f∗)+ε′.
Therefore,

(1 + 3α′)errS(r)(f (r)) + 3ε′ ≤ (1 + 3α′)errS(r)(f∗) + 7ε′
(7)
≤ (1 + 7α′)OPT + 19ε′.

(b) We prove the second statement for all f ∈ F , using Theorem 5.7 from [1]. The theorem states
that for every h ∈ H, it holds that errD(h) ≤ (1 + γ)errS(h) + β with probability at least 1 −
4ΠH(2m) exp

(
−γβm
4(γ+1)

)
, where S is a sample of size m drawn from a distribution D on X × {0, 1},

γ > 2β, and ΠH(n) = max{|H|S | : S ⊆ X and |S| = n} is the growth function of H.
We apply Theorem 5.7 for γ = α′, β = ε′, D = D̃(r−1), S = S(r), H = F . Since the VC-dimension
of F is d, from [[1], Theorem 3.7] it holds that ΠF (2m) ≤

(
2em
d

)d
. In our setting, the theorem

states that, given round r, for every f ∈ F , it holds that errD̃(r−1)(f) ≤ (1 + α′)errS(r)(f) + ε′

with probability at least 1 − 4
(

2em
d

)d
exp

(
−α′ε′m
4(α′+1)

)
. It remains to prove that, for large enough C,

m = C · 1
α′ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

))
samples suffice to guarantee that 4

(
2em
d

)d
exp

(
−α′ε′m
4(α′+1)

)
≤ δ′ so that

the statement holds with probability at least 1− δ′. It suffices to prove that for the given m:

ln(4) + d ln(2e) + d ln
(
m
d

)
− α′

8 ε
′m ≤ − ln

(
1
δ′

)
⇔ ln(4) + d ln(2e) + d ln

(
m
d

)
+ ln

(
1
δ′

)
≤ C

8 d ln
(

1
ε′

)
+ C

8 ln
(

1
δ′

)
.

We consider two cases:

i. If d ln
(

1
ε′

)
≥ ln

(
1
δ′

)
, then m

d ≤
2C
α′ε′ ln

(
1
ε′

)
< C

ε′2 ln
(

1
ε′

)
. So to prove the statement, it suffices

to prove that

ln(4) + d ln(2e) + d
(

ln(C) + 2 ln
( 1
ε′

)
+ ln ln

( 1
ε′

))
+ ln

( 1
δ′

)
≤ C

8 d ln
( 1
ε′

)
+ C

8 ln
( 1
δ′

)
.

The latter inequality holds for large enough C.

ii. If d ln
(

1
ε′

)
≤ ln

(
1
δ′

)
, then m

d ≤
2C
α′ε′

ln(1/δ′)
d < C

ε′2
ln(1/δ′)

d . So to prove the statement, it suffices to
prove that

ln(4) + d ln(2e) + d
(

ln(C) + 2 ln
( 1
ε′

)
+ ln

( ln(1/δ′)
d

))
+ ln

( 1
δ′

)
≤ C

8 d ln
( 1
ε′

)
+ C

8 ln
( 1
δ′

)
.
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If we prove that d ln
(

ln(1/δ′)
d

)
≤ ln(1/δ′), then the inequality holds for large enough C. Indeed, it

holds that ln
(

ln(1/δ′)
d

)
/ ln(1/δ′)

d ≤ 1
e , since maxx∈R{ln(x)/x} = 1

e .

Thus the second statement holds too with probability at least 1− δ′.

Lemmas B.2 and B.3 give us two inequalities that are useful for all the proofs of Section 4.

Lemma B.2. Let Lr = {i ∈ [k] | |errTi(f (r))− errDi(f (r))| ≤ α′ · errDi(f (r)) + ε′}. With probability 1− δ/2,
it holds that∑

i∈Lr

(
w

(r−1)
i errTi(f (r))

)
≤ [(1 + 3α′)errS(r)(f (r)) + 3ε′]Φ(r−1) ≤ [(1 + 7α′)OPT + 19ε′]Φ(r−1).

Proof. By linearity of expectation,

errD̃(r−1)(f (r)) = 1
Φ(r−1)

k∑
i=1

(
w

(r−1)
i errDi

(f (r))
)

≥ 1
Φ(r−1)

∑
i∈Lr

(
w

(r−1)
i errDi(f (r))

)
≥ 1

(1 + α′)Φ(r−1)

∑
i∈Lr

(
w

(r−1)
i errTi

(f (r))
)
− ε′

1 + α′
.

Therefore,
∑
i∈Lr

(
w

(r−1)
i errTi

(f (r))
)
≤ [(1 + α′)errD̃(r−1)(f (r)) + ε′]Φ(r−1). By Lemma B.1(b), it follows that

with probability 1− δ/2,∑
i∈Lr

(
w

(r−1)
i errTi

(f (r))
)
≤ [(1 + α′)(1 + α′)errS(r)(f (r)) + (1 + α′)ε′ + ε′]Φ(r−1)

≤ [(1 + 3α′)errS(r)(f (r)) + 3ε′]Φ(r−1)

Lemma B.1(a)
≤ [(1 + 7α′)OPT + 19ε′]Φ(r−1).

Lemma B.3. For all i ∈ [k] it holds that
t∑

r=1
s

(r)
i ≤

ln(Φ(t))
1− α′/2 .

Proof. In every round r, w(r)
i = w

(r−1)
i (1 + s

(r)
i ). Therefore for any i ∈ [k],

w
(t)
i =

t∏
r=1

(1 + s
(r)
i )

≥
t∏

r=1
exp(s(r)

i − (s(r)
i )2/2)

s
(r)
i
≤a′

≥ exp
(

(1− α′/2)
t∑

r=1
s

(r)
i

)
,

where the second to last inequality holds since (1 + x) ≥ exp(x− x2/2) for x ∈ R+. The inequality follows
since w(t)

i ≤ Φ(t) for all i ∈ [k].
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We will now give the proof of Theorem 3.

Proof of Theorem 3. By the Corollary, for a given round r and player i,

Pr[|errTi
(f (r))− errDi

(f (r))| ≥ α′ · errDi
(f (r)) + ε′] ≤ 2 exp(−α′ε′|Ti|/3).

If |Ti| = 3
ε′α′ ln

(
k
δ′

)
= O

(
1
ε′α′ ln

(
k
δ′

))
, the inequality

|errTi
(f (r))− errDi

(f (r))| ≤ α′ · errDi
(f (r)) + ε′ (8)

holds with probability at least 1− 2δ′/k. By union bound, it follows that (8) holds for every i and every r
with probability at least 1− 2δ′t = 1− δ/2.

With probability at least 1− δ inequality (8) and the inequality of Lemma B.2 hold for all rounds and
players. We restrict the rest of the proof to this event. It holds that,

Φ(r) = Φ(r−1) +
k∑
i=1

(
w

(r−1)
i · s(r)

i

)
≤ Φ(r−1) + α′2

(1 + 3α′)errS(r)(f (r)) + 3ε′
k∑
i=1

(
w

(r−1)
i errTi(f (r))

)
Lr=[k]
≤ Φ(r−1)

(
1 + α′2

(1 + 3α′)errS(r)(f (r)) + 3ε′
[(1 + 3α′)errS(r)(f (r)) + 3ε′]

)
= Φ(r−1)(1 + α′2)

By induction, Φ(t) ≤ Φ(0)(1 + α′2)t = k(1 + α′2)t ≤ k exp(tα′2). From Lemma B.3 and t = 2dln(k)/α′3e,
it follows that

t∑
r=1

s
(r)
i ≤

ln(k) + tα′2

1− α′/2 ≤ 1 + α′

1− α′/2 tα
′2. (9)

Let Gi be the set of rounds r such that s(r)
i < α′. We consider these to be the “good” classifiers. Because

of (9), we have |[t]\Gi| ≤ 1
α′

∑
r∈[t]\Gi

α′ ≤ 1
α′

∑t
r=1 s

(r)
i ≤ 1+α′

1−α′/2α
′t. For the classifiers of the rounds r ∈ Gi,

it holds that ∑
r∈Gi

errTi
(f (r))α′2

(1 + 3α′)errS(r)(f (r)) + 3ε′
=
∑
r∈Gi

s
(r)
i ≤

t∑
r=1

s
(r)
i

(9)
≤ 1 + α′

1− α′/2α
′2t.

Thus,
∑
r∈Gi

errTi(f (r))
B.1(a)
≤ t 1+α′

1−α′/2 [(1 + 7α′)OPT + 19ε′]. From inequality (8), it follows that:

(1− α′)
∑
r∈Gi

errDi
(f (r))− |Gi|ε′ ≤ t

1 + α′

1− α′/2 [(1 + 7α′)OPT + 19ε′]

⇒
∑
r∈Gi

errDi(f (r)) ≤ t 1 + α′

(1− α′/2)(1− α′) [(1 + 7α′)OPT + 19ε′] + tε′

1− α′

⇒
∑
r∈Gi

errDi(f (r)) ≤ [(1 + 12α′)OPT + 25ε′]t,

which holds for α′ < 1/12.
For each example e that is a mistake for fNR1, it must be a mistake for at least t/2− |[t] \Gi| members of

Gi. Thus the fraction of error of fNR1 is at most∑
r∈Gi

errDi
(f (r))

t/2− |[t] \Gi|
≤ (1 + 12α′)OPT + 25ε′

1/2− (1 + α′)α′/(1− α′/2) ≤ (2 + 35α′)OPT + 60ε′.
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Having set α′ = α/35 and ε′ = ε/60 we get that errDi(fNR1) ≤ (2 + α)OPT + ε.
As for the total number of samples, it is the sum of O( k

α′ε′ ln(k/δ′)) and O
(

1
α′ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

)))
samples for each round. Because there are O(ln(k)/α′3) rounds, the total number of samples is

O
( ln(k)
α′4ε′

(
k ln

(
k

δ′

)
+ d ln

( 1
ε′

)))
= O

( ln(k)
α4ε

(
k ln

(
k

δ

)
+ d ln

(1
ε

)))
.

B.2 Algorithm NR2
Proof of Theorem 4. By the Corollary, for a given round r and player i,

Pr[|errTi
(f (r))− errDi

(f (r))| ≥ α′ · errDi
(f (r)) + ε′] ≤ 2 exp(−α′ε′|Ti|/3).

If |Ti| = 6
ε′α′ ln

(√
2
α′

)
= O

(
1
ε′α′ ln

(
1
α′

))
, then

Pr[|errTi(f (r))− errDi(f (r))| ≥ α′ · errDi(f (r)) + ε′] ≤ α′2. (10)

Assuming that the inequality of Lemma B.2 holds, which is true with probability 1− δ/2, it follows that

E[Φ(r) | Φ(r−1)]

≤ E

Φ(r−1) + α′2

(1 + 3α′)errS(r)(f (r)) + 3ε′
∑
i∈Lr

(
w

(r−1)
i errTi(f (r))

)
+
∑
i/∈Lr

(
w

(r−1)
i s

(r−1)
i

)∣∣∣∣∣∣Φ(r−1)


≤ E

Φ(r−1) + α′2

(1 + 3α′)errS(r)(f (r)) + 3ε′
[(1 + 3α′)errS(r)(f (r)) + 3ε′]Φ(r−1) + α′

∑
i/∈Lr

w
(r−1)
i

∣∣∣∣∣∣Φ(r−1)


(10)
≤ Φ(r−1)(1 + α′2 + α′3)

By the definition of expectation, E[Φ(r)] ≤ E[Φ(r−1)](1 + α′2 + α′3). So by induction and the fact that
Φ(0) = k, E[Φ(t)] ≤ k exp(tα′2(1 + α′)). Markov’s inequality states that Pr[Φ(t) ≥ E[Φ(t)]

δ/4 ] ≤ δ/4. So with
overall probability 1− δ/4− δ/2 = 1− 3δ/4 it holds that Φ(t) ≤ 4k

δ exp(tα′2(1 + α′)).
From Lemma B.3 and t = 2dln(4k/δ)/α′3e, it follows that

t∑
r=1

s
(r)
i ≤

ln(4k/δ) + tα′2(1 + α′)
1− α′/2 ≤ (1 + 2α′)

1− α′/2 tα
′2. (11)

For Gi = {r ∈ [t] | s(r)
i < α′}, we have |[t] \Gi| ≤ 1+2α′

1−α′/2α
′t because of (11).

Let Ri = {r ∈ [t] | |errTi
(f (r)) − errDi

(f (r))| ≤ α′ · errDi
(f (r)) + ε′}. For the classifiers of the rounds

r ∈ Gi ∩Ri:

9



∑
r∈Gi∩Ri

errDi
(f (r)) ≤

∑
r∈Gi∩Ri

errTi
(f (r))

1− α′ + |Gi ∩Ri|ε
′

1− α′

≤
∑

r∈Gi∩Ri

(1 + 3α′)errS(r)(f (r)) + 3ε′

α′2
errTi(f (r))α′2

(1− α′)[(1 + 3α′)errS(r)(f (r)) + 3ε′]
+ tε′

1− α′

=
∑

r∈Gi∩Ri

(1 + 3α′)errS(r)(f (r)) + 3ε′

(1− α′)α′2 s
(r)
i + tε′

1− α′

(11)
≤ (1 + 7α′)OPT + 19ε′

(1− α′)α′2
(1 + 2α′)
1− α′/2 tα

′2 + tε′

1− α′

≤ [(1 + 15α′)OPT + 25ε′]t

which holds for α′ < 1/15.
We will now bound |[t] \ Ri|. For every round r, let m(r) be the indicator random variable of the set

[t] \ Ri and let y(r) = α′2. It holds that for all rounds r, |m(r) − y(r)| ≤ 1 and m(r), y(r) ≥ 0. In addition,
from inequality (10) it follows that E[m(r) − y(r) |

∑
r′<rm

(r′),
∑
r′<r y

(r′)] = α′2 − α′2 ≤ 0.
Using [[9], Lemma 10], with ε = 1/2 and A = α′2, we get that

Pr
[

t∑
r=1

m(r) ≥ 2α′2t+ 2α′2t
]
≤ exp(−α′2t/2) ≤ δ/4k.

So |[t] \Ri| =
∑t
r=1m

(r) ≤ 4α′2t for all i with probability at least 1− δ/4, by union bound.
For each example e that is a mistake for fNR2, it must be a mistake for at least t/2 − |[t] \ (Gi ∩ Ri)|

members of Gi ∩Ri. Thus, with probability at least 1− δ, the fraction of error of fNR2 is at most∑
r∈Gi∩Ri

errDi(f (r))
t/2− |[t] \ (Gi ∩Ri)|

≤ (1 + 15α′)OPT + 25ε′

t/2− 4α′2t− (1 + α′)α′t/(1− α′/2) ≤ (2 + 40α′)OPT + 64ε′.

Having set α′ = α/40 and ε′ = ε/64 we get that errDi
(fNR2) ≤ (2 + α)OPT + ε.

As for the total number of samples, it is the sum of O( k
α′ε′ ln(1/α′)) samples and O

(
1
α′ε′

(
d ln

(
1
ε′

)
+

ln
(

1
δ′

)))
samples for each round. Because there are O(ln(k/δ)/α′3) rounds, the total number of samples is

O
( 1
α4ε

ln
(k
δ

)(
k ln

(
1
α

)
+ d ln

(1
ε

)
+ ln

(1
δ

)))
.
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B.3 Algorithm NR1-AVG

Algorithm NR1-AVG
1: Initialization: ∀i ∈ [k] w(0)

i := 1; α′ := α/12; t := 2dln(k)/(ε′α′2)e; ε′ := ε/25; δ′ := δ/(4t);
2: for r = 1, . . . , t do
3: D̃(r−1) ← 1

Φ(r−1)

∑k
i=1

(
w

(r−1)
i Di

)
, where Φ(r−1) :=

∑k
i=1 w

(r−1)
i ;

4: Draw a sample set S(r) of size O
(

1
α′ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

)))
from D̃(r−1);

5: f (r) ← OF (S(r));
6: for i = 1, . . . , k do
7: Draw a sample set Ti of size O

(
1
α′ε′ ln

(
k
δ′

))
from Di;

8: s
(r)
i ←

errTi
(f(r))ε′α′

(1+3α′)err
S(r) (f(r))+3ε′

9: Update: w(r)
i ← w

(r−1)
i (1 + s

(r)
i )

10: end for
11: end for
12:
13: return fNR1-AVG, where fNR1-AVG(x) R← {f (r)(x)}tr=1;

Proof of Theorem 5. The expected error of the returned classifier fNR1-AVG on player i’s distribution is
errDi(fNR1-AVG) = 1

t

∑t
r=1 errDi(f (r)). We will prove that with probability at least 1− δ, errDi(fNR1-AVG) ≤

(1 + α)OPT + ε for all i ∈ [k].
By the Corollary, for a given round r and player i,

Pr[|errTi(f (r))− errDi(f (r))| ≥ α′ · errDi(f (r)) + ε′] ≤ 2 exp(−α′ε′|Ti|/3).

If |Ti| = 3
ε′α′ ln

(
k
δ′

)
= O

(
1
ε′α′ ln

(
k
δ′

))
, the inequality holds with probability at least 1− 2δ′/k. By union

bound, it follows that it holds for every i and every r with probability at least 1− 2δ′t = 1− δ/2.
With probability at least 1− δ the previous inequality as well as the inequality of Lemma B.2 hold for all

rounds and players. We restrict the rest of the proof to this event.
It holds that,

Φ(r) = Φ(r−1) +
k∑
i=1

(
w

(r−1)
i s

(r)
i

)
≤ Φ(r−1) + ε′α′

(1 + 3α′)errS(r)(f (r)) + 3ε′
k∑
i=1

(
w

(r−1)
i errTi(f (r))

)
Lr=[k]
≤ Φ(r−1)

(
1 + ε′α′

(1 + 3α′)errS(r)(f (r)) + 3ε′
[(1 + 3α′)errS(r)(f (r)) + 3ε′]

)
≤ Φ(r−1)(1 + ε′α′)

By induction, Φ(t) ≤ k exp(tε′α′). From Lemma B.3 and since t = 2dln(k)/(ε′α′2)e, it follows that

t∑
r=1

s
(r)
i ≤

ln(k) + tε′α′

1− α′/2 ≤ 1 + α′

1− α′/2 tε
′α′. (12)

11



Therefore, the total error is:
t∑

r=1
errDi(f (r)) ≤

t∑
r=1

errTi
(f (r))

1− α′ + tε′

1− α′

≤
t∑

r=1

(1 + 3α′)errS(r)(f (r)) + 3ε′

ε′α′
errTi

(f (r))ε′α′

(1− α′)[(1 + 3α′)errS(r)(f (r)) + 3ε′]
+ tε′

1− α′

=
t∑

r=1

(1 + 3α′)errS(r)(f (r)) + 3ε′

(1− α′)ε′α′ s
(r)
i + tε′

1− α′

(12)
≤ (1 + 7α′)OPT + 19ε′

(1− α′)ε′α′
(1 + α′)
1− α′/2 tε

′α′ + tε′

1− α′

≤ [(1 + 12α′)OPT + 25ε′]t
= [(1 + α)OPT + ε]t,

where the last inequality holds for α′ < 1/12 and we have set α′ = α/12 and ε′ = ε/25.
As for the total number of samples, it is the sum of O( k

α′ε′ ln(k/δ′)) samples and O
(

1
α′ε′

(
d ln

(
1
ε′

)
+

ln
(

1
δ′

)))
samples for each round. Because there are O(ln(k)/(ε′α′2)) rounds, the total number of samples is

O
( ln(k)
α3ε2

(
k ln

(
k

δ

)
+ d ln

(1
ε

)))
.

B.4 Algorithm NR2-AVG

Algorithm NR2-AVG
1: Initialization: ∀i ∈ [k] w(0)

i := 1; α′ := α/15; t := 2dln(4k/δ)/(ε′α′2)e; ε′ := ε/29; δ′ := δ/(4t);
2: for r = 1, . . . , t do
3: D̃(r−1) ← 1

Φ(r−1)

∑k
i=1

(
w

(r−1)
i Di

)
, where Φ(r−1) :=

∑k
i=1 w

(r−1)
i ;

4: Draw a sample set S(r) of size O
(

1
α′ε′

(
d ln

(
1
ε′

)
+ ln

(
1
δ′

)))
from D̃(r−1);

5: f (r) ← OF (S(r));
6: for i = 1, . . . , k do
7: Draw a sample set Ti of size O

(
1
α′ε′ ln

(
1
ε′

))
from Di;

8: s
(r)
i ←

errTi
(f(r))ε′α′

(1+3α′)err
S(r) (f(r))+3ε′

9: Update: w(r)
i ← w

(r−1)
i (1 + s

(r)
i )

10: end for
11: end for
12:
13: return fNR2-AVG, where fNR2-AVG(x) R← {f (r)(x)}tr=1;

Proof of Theorem 6. The expected error of the returned classifier fNR2-AVG on player i’s distribution is
errDi

(fNR2-AVG) = 1
t

∑t
r=1 errDi

(f (r)). We will prove that with probability at least 1− δ, errDi
(fNR2-AVG) ≤

(1 + α)OPT + ε for all i ∈ [k].
By the Corollary, for a given round r and player i,

Pr[|errTi
(f (r))− errDi

(f (r))| ≥ α′ · errDi
(f (r)) + ε′] ≤ 2 exp(−α′ε′|Ti|/3).
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If |Ti| = 3
ε′α′ ln

(
2
ε′α′

)
α′>2ε′= O

(
1
ε′α′ ln

(
1
ε′

))
, then

Pr[|errTi
(f (r))− errDi

(f (r))| ≥ α′ · errDi
(f (r)) + ε′] ≤ ε′α′. (13)

Assuming that the inequality of Lemma B.2 holds, which is true with probability 1− δ/2, it follows that

E[Φ(r) | Φ(r−1)]

= E

Φ(r−1) + ε′α′

(1 + 3α′)errS(r)(f (r)) + 3ε′
∑
i∈Lr

(
w

(r−1)
i errTi

(f (r))
)

+
∑
i/∈Lr

(
w

(r−1)
i s

(r−1)
i

)∣∣∣∣∣∣Φ(r−1)


≤ E

Φ(r−1) + ε′α′

(1 + 3α′)errS(r)(f (r)) + 3ε′
[(1 + 3α′)errS(r)(f (r)) + 3ε′]Φ(r−1) + α′

∑
i/∈Lr

w
(r−1)
i

∣∣∣∣∣∣Φ(r−1)


(13)
≤ Φ(r−1)(1 + ε′α′ + ε′α′2)

By the definition of expectation, E[Φ(r)] ≤ E[Φ(r−1)](1 + ε′α′ + ε′α′2). So by induction, E[Φ(t)] ≤
k exp(tε′α′(1+α′)). Markov’s inequality states that Pr[Φ(t) ≥ E[Φ(t)]

δ/4 ] ≤ δ/4. So with probability 1−δ/4−δ/2 =
1− 3δ/4 it holds that Φ(t) ≤ 4k

δ exp(tε′α′(1 + α′)).
From Lemma B.3 and t = 2dln(4k/δ)/(ε′α′2)e, it follows that

t∑
r=1

s
(r)
i ≤

ln(4k/δ) + tε′α′(1 + α′)
1− α′/2 ≤ (1 + 2α′)

1− α′/2 tε
′α′. (14)

Let Ri = {r ∈ [t] | |errTi(f (r)) − errDi(f (r))| ≤ α′ · errDi(f (r)) + ε′}. For the classifiers of the rounds
r ∈ Ri:∑

r∈Ri

errDi(f (r)) ≤
∑
r∈Ri

errTi(f (r))
1− α′ + |Ri|ε

′

1− α′

≤
∑
r∈Ri

(1 + 3α′)errS(r)(f (r)) + 3ε′

ε′α′
errTi

(f (r))ε′α′

(1− α′)[(1 + 3α′)errS(r)(f (r)) + 3ε′]
+ tε′

1− α′

=
∑
r∈Ri

(1 + 3α′)errS(r)(f (r)) + 3ε′

(1− α′)ε′α′ s
(r)
i + tε′

1− α′

(14)
≤ (1 + 7α′)OPT + 19ε′

(1− α′)ε′α′
(1 + 2α′)
1− α′/2 tε

′α′ + tε′

1− α′

≤ [(1 + 15α′)OPT + 25ε′]t

which holds for α′ < 1/15.
We will now bound |[t] \ Ri|. For every round r, let m(r) be the indicator random variable of the set

[t] \ Ri and let y(r) = ε′α′. It holds that for all rounds r, |m(r) − y(r)| ≤ 1 and m(r), y(r) ≥ 0. In addition,
from inequality (13) it follows that E[m(r) − y(r) |

∑
r′<rm

(r′),
∑
r′<r y

(r′)] = ε′α′ − ε′α′ ≤ 0.
Using [[9], Lemma 10], with ε = 1/2 and A = ε′α′, we get that

Pr
[

t∑
r=1

m(r) ≥ 2ε′α′t+ 2ε′α′t
]
≤ exp(−ε′α′t/2) ≤ δ/4k.

So |[t] \Ri| =
∑t
r=1m

(r) ≤ 4ε′α′t for all i with probability at least 1− δ/4.

13



Thus, for the expected error it holds that:

t∑
r=1

errDi
(f (r))

t
=

∑
r∈Ri

errDi
(f (r)) +

∑
r/∈Ri

errDi
(f (r))

t
≤ (1 + 15α′)OPT + 25ε′ + 4ε′α′ ≤ (1 + 15α′)OPT + 29ε′.

Having set α′ = α/15 and ε′ = ε/29 we get that errDi
(fNR2-AVG) ≤ (1 + α)OPT + ε with probability at least

1− δ.
As for the total number of samples, it is the sum of O( k

α′ε′ ln(1/ε′)) samples and O
(

1
α′ε′

(
d ln

(
1
ε′

)
+

ln
(

1
δ′

)))
samples for each round. Because there are O(ln(k/δ)/ε′α′2) rounds, the total number of samples is

O
( 1
α3ε2

ln
(k
δ

)(
(d+ k) ln

(1
ε

)
+ ln

(1
δ

)))
.
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