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1 Optimization Model of UMA

We consider the following optimization model:
min || X[, + 7Yl — a(M,Y) + 5[]V,
st. X+Y+Z=M, (1.1
Z € B, '
B = {Z][[|Pa(Z)|[r < 4},

where x > 0 is a regularization parameter and M := Pq(M). The model (1.1) is a three-block
convex programming. We define the Lagrangian function and augmented Lagrangian function of
(1.1) as follows:

LXY, Z,A) = X + 7Y [ — oM, Y) + ZY |} — (A X +Y + 2 = M), (12)
LAY, Z,A,8) = X |l + 7Yl — ald,Y) + IV I} — (A, X +Y + 2 — 1)
+§||X+Y+Z—M||%, (1.3)
where 8 > 0 is the penalty parameter.
2 Recovery Guarantee
In this section, we present theoretical guarantee that UMA can recover the low-rank component X

and the sparse component Yj. For simplicity, our theoretical analysis focuses on square matrix, and it
is natural to generalize our results to the general rectangular matrices.

Let the singular value decomposition of X, € R™*™ be given by

— TN sadTl
Xo=82D" = Zi:l 055, (2.4)
where r is the rank of matrix Xy, o1, ..., 0, are the positive singular values, and S = [s1, ..., S;]
and D = [dy,...,d,] are the left- and right-singular matrices, respectively. For > 0, we assume

max||STeiH2 < ur/n,
1

max || D" e||> < pr/n, (2.5)

ISDT|% < pr/n®.
Firstly, we consider the following optimization problem where all the entries of M can be observed.
. R 2
i X+ 7Y s = b, Y) + SV 3

st X +Y + 7 =M, (2.6)

1Z]lF < 6.
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Theorem 2.1 Suppose that the support set of Yo be uniformly distributed for all sets of cardinality
k, and X, satisfies the incoherence condition given by Eqn. 2.3). Let X and Y be the solution
of optimization problem given by Eqn. 2.6) with parameter 7 = O(1/y/n), k = O(1/y/n) and
a = O(1/n). For some constant ¢ > 0 and sufficiently large n, the following holds with probability
at least 1 — en™19 over the choice on the support of Yy

||X0_XHF géand ||Y0—Y||F §5 (27)
if rank(Xo)< prn/u/log*n and k < psn?, where p, and p, are positive constant.

Proof:

Let ) be the space of matrices with the same support as Y, and let 7' denote the linear space of
matrices

T:={SA" + BD" A, B € R"™"}. (2.8)

We will first prove that, for || P Pr|| < 1/2, (X0, Yp) is the unique solution if there is a pair (W, F)
satisfying

SD" +W = 7(sgn(Yy) + F + PoK) (2.9)

where PrW = 0 and |[W|| < 1/2, PoF = 0and ||F||o < 1/2and |PoK||r < 1/4. Notice that
SDT + Wy is an arbitrary subgradient of || X||. at (Xo, Yp), and 7(sgn(Yp) + Fy) — aM + kY is
an arbitrary subgradient of 7||Y||; — a(M,Y) + k||Y||% /2 at (X, Yp). For any matrix H, we have,
by the definition of subgradient,

1 Xo + H|l. +7([Yo = H|s — (M, Yy — H) + 5|[Yo — H||%
> || Xoll« +7[[Yolh — (M, Yo) + 5[ YollE + (aM — kYo, H)
+(SDT + Wy, H) — 7(sgn(Yy) + Fo, H). (2.10)

By setting Wy and Fy satisfying (Wy, H) = ||Pr. H||« and (Fy, H) = —||Pq1 H||1, we have
(SDT + Wo, H) — m(sgn(Yo) + Fo, H)

[P Hl|x + 7| Por H|ly + (SDT — 7sgn(Yo), H)
= [[ProH|« + 7| Por Hlly + (r(F + PoK) — W, H)

\

1
SUIPre Hll + 7l Por Hlly) + 7{Po K, H) (2.11)
where the second equality holds from Eqn. (2.9), and the last inequality holds from
(TF =W, H) > —|(W,H)| = [(TF, H)| > =(|[Pr- H|.. + 7[|Por H|1)/2
for ||W| < 1/2and | F||s < 1/2. We further have
T T

<TPQK7H> Z 71“PQLH||F*§||PTLH”F (212)

from || PoK||r < 1/4 and
[PoH|[r < |[|[PoPrH|r +[|PoProHl|p < ||PoProH|p + [ H| F/2

< (I1PoHllF + [|Por Hl|lF)/2 + | PoProH| F.

Combining with Eqns. (2.10) to (2:12), we have



1 Xo + Hllx +7[[Yo = Hll1 — a(M,Yo - H) + §|[Yo — H| %
> [ Xoll +7I|Yolls — a(M, Yo) + §[Yol%
+aM — kYo, H) + 57| ProH|\« + || Por Hl|x

From the conditions that @ N T" = {0}, 7 = O(1//n), K = O(1/y/n) and & = O(1/n), we have

]_ _
(aM—nYO,H>+TTHPTLHH*+£||PQLHH1 >0 (2.13)

for sufficient large n. Therefore, we can recover Xy and Yj if there is a pair (W, F') satisfying
Eqn. (2.9), and the pair (W, F’) can be easily constructed according to [7]. We complete the proof
from the condition || Z||F < 4.

Similarly to the proof of Theorem[2.1] we present the following theorem for the minimization problem

of Eqn. (T-1).

Theorem 2.2 Suppose that X satisfies the incoherence condition given by Eqn. (2.3), and ) is
uniformly distributed among all sets of size m > n*/10. We assume that each entry is corrupted
independently with probability q. Let X and'Y be the solution of optimization problem given by
Egn. (1) with parameter T = O(1/y/n), k = O(1/y/n) and « = O(1/n). For some constant
¢ > 0 and sufficiently large n, the following holds with probability at least 1 — cn™1°

||X0—X|\F§5and ||Y0—Y||F S(S (214)

if rank(Xo)< prn/p/ log®n and q < qs, where p, and q, are positive constants.

3 Optimality condition

Before starting to show the convergence, we derive its optimality condition of (I.I). Let W :=
B x R™*™ x R™*™ x R™*" It follows from Corollaries 28.2.2 and 28.3.1 of [[1]] that the solution
set of (1.1) is non-empty. Then, let W* = ((Z*)T,(X*)T,(Y*)T,(A*)")T be a saddle point of
(T:I). It is easy to see that (L)) is equivalent to finding W* € W such that

<Z - Z*v _A*> Z 07
[ X0 = 1X " [|s + (X — X*, =A%) >0,

BN

TV = 7Yy + (Y — Y™, —all + 5Y* — A%y >0, W= €W,
X*+Y*+2*—M=0,
(3.15)
or, in a more compact form:
VIOV, 0,6)  6(U) — 6(U") + (W = W W(W") = S|V — Y}, VW ew,
(3.162)
where
Z — K
U= ( X ) CB) = XTIV s~ ol Y + SY (3.16b)
X X By
and W= 1|3 [, V= < 5/( ) ) U(W) = A . (3.16¢)

A

Note that U collects all the primal variables in (3:13) and it is a sub-vector of W. Moreover, we
use W* to denote the solution set of VIOV, ¥, 0) and define V* = ((X*)T,(Y*)",(A*)T)T and
Vo= {V*W* e W}



4 Convergence Analysis

In this section, we solve (1.1)) with global convergence. More specifically, let (X, Y* A*) be given,
UMA generates the new iterate W**! via the following scheme:

Zk+1 = arg minZEB ‘CA(Xka Yk? Zv Aky ﬂ)v

XM = argminycrmxn LA(X,YF, ZFFL AR B),

YR+ = argminy cgmxn Lo(XFHL Y, ZFH1 AR B), @D
Ak+1 _ Ak _ ﬁ(XkJrl +Yk+1 + Zlc+1 _ M)7
which can be easily written into the following more specific form:
1 _
2 = argmingep 012+ XF + ¥ - TAF - 0] (42)
. 9 1 ]
XM = argminycgmn || X ||+ + gHX +YF 4z BAk — M|[%, (4.3)
. - K
yktl = arg miny g gmxn7||Y||1 — a(M,Y) + §||Y||§7
, 1 -
+§||Y+X"+1 + ZT — BAk - M7 @4
ABFL AR L g(x R Rl gk . (4.5)

In the following, we concentrate on the convergence of UMA. In contrast to the existing results in
[6], we aim to present a much more sharp result. We first prove some properties of the sequence
generated by UMA, which play a crucial role in the coming convergence analysis. Before that, we
introduce some notations:

1

An = oI — AR — A% — Al + A5 - A%), 4.6)
1

Ax = gg(IXF =Xl — X = XI5 + X5 = XFIE), @7
1

Ay = (Y =YIR — Y = YR+ Y - YR, (4.8)

R = X+Y+Z-M, (4.9)

REHL — xRy Rl gk (4.10)

Lemma 4.1 Let {W*} be generated by UMA. Then, we have

(1)
(AF — AFFL YRy Rty > | vR — YR, 4.11)

(2)
<Ak o Ak+1,Xk . Xk+1> > ﬁ<Xk _ XkJrlvykJrl _ Yk _ (Yk: _ kal» (4.12)

Proof: (1) Using the optimality of (#.4)), we get

Y = YR 9(r||[ YR ) — AR — oM + kYY) > 0. (4.13)
Setting Y := Y* in , we have
(YF YL o(r| YET|) — AR — oM 4 kYT > 0. (4.14)
Then, setting Y := Y**1 in with the index k replaced with k — 1, it yields
(YFL YR o(r)|Y*||1) — AF — aM + xY*) > 0. (4.15)

Thus, adding (4.14) and (@.15) together, the inequality (4.1T) follows directly.

(2) The inequality (#.12)) can be proved in a similar way as @.I1).



Lemma 4.2 Let {W*} be generated by UMA. Then, we have the following inequality:
O(U) = O(UTY) + (W — W (W) + SR, D(X*, V", Z5))
1
> S(IVEE = VG + [VE = VG = [VE = VIG) + k][ YE = YE|IE
+g||yk+1 YR BUXRHL xR YRy k vk ket
+A(YRHL _y, xR xRy, (4.16)

where
D(XF, Yk ZF) = YP -yt 4 xF— Xk

BI 0 0
Q= 0 BI 0 4.17)
0 0 I
Proof:  According to the optimality condition of (.1}, we have
<Z _ Zlc+17 _ ARk+L 4 ﬂ(Xk _ Xk+1) + B(Yk _ Yk+1)> >0, 7
T T o Gy T Loy Y A (5 o D
TV | — 7 Y*H ) 4+ (Y — YR+ aM+nYk+1 ~ AR >, =| v |@1®
< Ak+1 Xk+1 +Yk+1 + Zk+1 T _ %(Ak _ Ak+1)> >0, A

Then, combining the above inequalities with MB[) and (3.16d), we get
G(U) o 0(Uk+1) + <W o Wk+1, (Wk+1)> + ﬂ (<Z o Zk?+1 Yk o Yk+1 + Xk . Xk+1>

+6<X7Xk+1,ykfyk+1>) AA"’*HY Yk+1||2

> 35
Then, invoking ([@.9) and @.10), we obtain that
O(U) — QUL + (W — WL (WhH) 4 B(R — R¥HL Yk — YR+ 4 x* . xk+l)

B

K
> SV = YH R+ —AA + 5 (Ax + Ay) + Bl — YL XE - X,

2p
Thus, using R*+! = %(Ak — AR+ it yields that
Q(U) _ 9(Uk+1) + <W _ Wk+1 (Wk+l)> 4 6<R7 Yk _ Yk—‘rl + Xk _ Xk+l>

B

K
> §||Y—Yk“|\% LA+l 5 (Ax +Ay) +B(Y — Yk Xk xktly

2
(AR — ARFL YRy Rl X’f — Xk, (4.19)
On the other hand, adding (#.IT)) and (#.12) together, we obtain that
<Ak _ Ak+1 Yk _ Yk-l-l 4 Xk _ Xk+1>
> Ii”Yk . Yk+1||% _ 5<Xk+1 _ Xk,Yk+1 _ Yk _ (Yk: _ Yk71)>.
Next, substituting the above inequality into (#.19), and invoking, it yields the assertion (#.16).
O

In the following, we give each crossing term in the right-hand of a low bound. The following
inequalities enable us to get a much sharper result for UMA solving in contrast to ([6]).

Lemma 4.3 Let {W*} be generated by UMA. Suppose that 0 < £ < \/5 — 2. Then, it holds that

3 \/5 Yk+1 _ Yk 2
_ B<X’€+1 _ Xk7yk+1 _ Yk> Z ﬁ (_ 7 HXk _ Xk-‘rl”%' _ || - \/5 HF , (420)

ch _ kal 2

3-5
A

k+1 _ yk vk yk—1 _
BOXHH - Xk (VE Y )>>ﬁ< —

YY) VB2
2(V5—2—¢) 2

By, XH XKy > ( s+t Xk||%> @)



Proof:  These three inequalities follow from Cauchy-Schwarz inequality. (]

Theorem 4.4 Let {W*} be generated by UMA. Assume that B > 0 in Algorithm . Suppose that
0 < £ < /5 — 2. Then, we have the following contractive property:

SIXET = X[+ GIVEF Y 4 o240 = 27 Sy -y
< SIS = X4 GIVE =Y+ 52— 2+ YR Y
e R e
By e L @29

Proof:  First, invoking (3.16a) and X* + Y* + Z* — M = 0, we have
OUETY) —0(U") + (W — W W(WH) + B(X* + Y™ + 2" — M D(XF, V¥, Z5))
K *
> EjyEe v, @24

Then, setting W := W* € W* in and combining with (4.24), we obtain that

/8 * * *
0> S(IVHE =V +IVE = VEG = [VE= VG + IV M =Y F |54 s VE =Y
_ ﬂ<Xk+1 _ Xk,YkJrl — Yk _— (Yk _ Yk71)> + ﬂ<Yk+1 -Y, Xkt _ ch> (4.25)

Next, adding -[#.22) together, then substituting the resulting inequality into #.25), we derive
the assertion directly. U

Based on the above theorem, we have the following theorem immediately.

Theorem 4.5 When [ is restricted by

8 e (0, 2(v5 — 2)/<;) , (4.26)
there exists a sufficient small scalar € > 0 such that
542 1
m—\[+ B >0, and k — ——— > 0. (4.27)
2 2V5—2-2)p

Then, we have
(1) The sequence {V*} is bounded.
(2) Hmngpoe [V — YFHE X5 — X 4+ A% - AF2) = 0,

Proof. The inequality (@.27) is elementary. Note that the assertion (1) follows from @#23) directly.
Furthermore, we get

(o)
€ Vb +2 1
D | GOIXE = XE G (o AV < YR A A
k=1
ﬁ 1 2 B 1 2 1 1 2 ﬂ 0 12
<X =XMp+ZIY Y+ 12 - 2% + Y'-Y < 400,
| I3+ 5l I+ 55 I3+ 5l I3

which immediately implies that

lim [Y* = Y* Y =0, lim || X*— X1z =0, lim |A* — A"z =0, (4.28)
k—o0 k—oo k—oo
i.e., the second assertion. O

We are now ready to prove the convergence of UMA.



Theorem 4.6 Let {V*} and {W*} be the sequences generated by UMA. Assume that the penalty
parameter (3 is satisfied with (4.26). Then, we have

1. Any cluster point of {W*} is a solution point of :

2. The sequence {V*} converges to some V°° € V*.

3. The sequence {U*} converges to a solution point of .

Proof:  Since {W*} is bounded due to (4.23), it has at least one cluster point. Let W be a cluster
point of {W*} and the subsequence {W "} converges to W . Because of the assertion (4.28), it
follows from (4.18) that

<Z_ Zoo)_Aoo> Z 07
[ X[« = [ X + (X — X, —A%®) >0,
TV L = 7)Y + (Y =Y, —aM + kY > — A>®) >0,

(A— A%, X% +Y>® 4 7% — N) >0,

VW = ew,

> =N

Thus,
O(U) — O(U>) + (W — W) T (W) > gny —YRZ, YW= (2T, XT,YT,AT)T e w.

This means that W is a solution of VIOV, ¥, §). Then the inequality (4.23) is also valid if V* is

replaced by V°°. Therefore, the non-increasing sequence {3||V* — V||, + 37[3\/5 Yk —yk+1)2

converges to 0 since it has a subsequence {3 [|V* — V|2, + 3_ﬁ\/g Yk —Y*i+1]|2} converges

to 0. Thus, the sequence {V'*} converges to some V> € V*. Also, the updating scheme of A¥*+1 in
(@I) implies that

Zk‘+1 _ M _ Xk+1 _ Yk+1 + %(Ak _ Ak+1).

Combining the above equality, (4.28) and limy_, o, ||[VF — V> 15 = 0, we have WP converges to

We°. It implies that the sequence U* converges to a solution point of (1.1). Thus, the third assertion
holds.

Remark 4.7 Note that the range for (3 in ([I6]) with convergence guarantee is (0,0.4k) for UMA
solving (I1). However, we get a much larger range for the penalty parameter (3 in

Next, we present a worst-case O(1/t) convergence rate measured by the iteration complexity for
UMA. Indeed, the range of 3 to ensure the O(1/t) convergence rate is slightly more restrictive than

(@26)). Let us define

t t t

1 1 1
Zf+1 _ % sz—‘rl, th+l — ; Z){k-‘,—l7 }/tk+l — ? Zyk+17
k=1 k=1 k=1
and
1 1
Ufjlf-‘rl —_ ; Z Uk+1, Wtk-‘rl — ; Z WkJrl'
k=1 k=1

Obviously, Wt’“rl € W because of the convexity WW. By invoking Theorem (4.5} there exists a
constant C' such that

max (|| X7, [Y*|lp, 1251 r, [A*]]F) < C. V k.

Next, we present several lemmas to facilitate the convergence rate analysis.



Lemma 4.8 Let {W*} be generated by UMA. Suppose that 0 < £ < /33 — 5. Then, it holds that
7-V33 7+ /33

_ 6<Xk+1 _ Xk7Yk+1 _ Yk> > 6 ( ”Xk XkJrl”% _ Tuylﬁrl _ YkH%

(4.29)

_ 733 7+W _
BIXFH — X (YF—Y*F 1)>25< —IXF - xR - ———|lYF - Y 1II%>,

(4.30)
Yk —y||2 V33—-5—¢
Yk-‘rl _ KXkJrl _ Xk > H F Xk—‘rl _ Xk 2 . (431)
84 )2~ | I3
Proof:  These three inequalities follow from Cauchy-Schwarz inequality. U

Lemma 4.9 Let {W*} be the sequence generated by UMA . If B is restricted by

33—-5
e (07 C“) ’ (4.32)
then we have
OV VE V) <OV VETLY) 4 WL W W), (4.33)
where
1 7+ f
OVHHLVE V) im SIVET - Vg + TSR YR @)
and

EWHRLWE W) = 0(U) — o(U) + (W — WEH) T o (W)
+ R, YF - YHHL 4 XF — XFHL) . (4.35)

Proof:  First, summing inequalities (4.29)-@.31) together, we get
6<Xk+1 _ Xk,Yk+1 _ Yk' _ (Yk _ Yk—l)> + B<yk+1 _ 5/7 Xk+1 _ Xk>

-2 7 \/
> Skt - xkp - L

7+\F _
- BHY’“ YE | -

TE V3 gy vy

1
V33—-5—¢
Then, substituting the above 1nequa11ty into (.16) and invoking (#.34), (4.35), we obtain

oL vk V) < oWk vk v)4zWrt whw) - X*|%

BIYEH —v[5.

5+\/ B 1
—(k — BIYFF YT = Zel| XFH — —[|AF — ARFY5
4 28
K 1
A Yk+1 Y 2 )
& ﬁ_S_gmn 12

Let ¢ — 0+, the assertion follows directly.

Theorem 4.10 For t iterations generated by UMA with (3 restricted in (#.32), the following assertions
holds.

(1) We have
O(UFT) —0(U) + (Wi — W) T (W)

_ 1 7+\ﬁ
4BC|\X+Y+Z—MHF+§||V17V||2Q+ 6||Y1 YO2|. (4.36)



(2) There exists a constant ¢, > 0 such that

X5 YA 4 2 M < (4.37)
(3) There exists a constant ¢ > 0 such that
16U —0(U™)| < %2 (4.38)

Proof: 1) First, it follows from the assertion @) that for all W € W, we have
O(U) — QU + (W — WHHYTW(W) 4+ B(R,YF — YFHL 4 XF — Xk+D
> Q(VEL VR V) ek vl V). (4.39)
Summarizing both sides of the above inequalities from k = 1,2,--- |, we have

t t
=D OUHY (W =Y WY TE(W) + SR, Y - Y+ X - X

- k=1
>Vt Viv)—eWvo V). (4.40)
Then, it follows from the convexity of 6 that
t
1
k+1 k+1
o(UF ) < 2};a(U ). (4.41)

Combining (#.40) and (@41}, we have
1
QU —o(U) + (WET —w)To(W) < - (O(VL, VO, V) +4BC|R| F) - (4.42)

Thus, the assertion (4.36) follows from the above inequality and the defintion of (V! VO V)
directly.
2) Let us define ¢ = 25 ([[A" — A*[|> + [A*+! — A*[|?). Then, we have
||Xk+1 Yk+1 + Zk-‘,—l _ MH2
t
Z Xk-‘rl Yk+1 =+ Zk+1 _ M}

t

12{ )

=1

Al _ At+1) 2

E
2 * * C1
< ooz (I = A AR = A7) = 5,

The assertion (#.37) is proved immediately.

3) It follows from £(U}™, A*) > L(U*, A*) with £ defined in (1.2) that
OUFT) —0(U") > (A, X 4+ YT 4 Zp T — M>

1 _ 1
> —( |A*||2+t||x’f“+n’““+zf+1—MH?) > L ). @)

where the second inequality is due to Cauchy-Schwarz inequality, and the last is due to (#.37). On
the other hand, setting W := W* in (#.42), we obtain

1
(U = 0(U™) + (W =W e (W) < —e(VhL Vo V).
Invoking the definition of ¥ in (3.16c), we have
_ 1
(W =W TO(W*) = (A", X 4 Y+ Z8H — ) > *2*15(”/\*”2 +a),

where the proof of the last inequality is similar to (4.43). Combining these two inequalities above, we
get

~

AL~ 6U") < TO(V, VO, V") 4 2 (AP + ). (444

The inequalities (]Zfll’a’[) and (]E[) 1nd1cate that the assertlon (@38) holds by setting ¢, :=
(VL VY V*) + S([[A*]|* + c1).
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