
Supplementary Information for: GPyTorch:
Blackbox Matrix-Matrix Gaussian Process Inference

with GPU Acceleration

Jacob R. Gardner∗, Geoff Pleiss∗,
David Bindel, Kilian Q. Weinberger, Andrew Gordon Wilson

Cornell University
{jrg365,kqw4,andrew}@cornell.edu,
{geoff,bindel}@cs.cornell.edu

A Analysis of the modified CG algorithm, mBCG

Linear conjugate gradients is a widely popular algorithm from numerical linear algebra [12, 17, 42]
for rapidly performing matrix solves A−1b. One view of CG is that it obtains matrix solves by
solving a quadratic optimization problem:

A−1b = arg min
u

f(u) = arg min
u

(
1

2
u>Au− u>b

)
. (S1)

CG iteratively finds the solution to (S1). After n iterations, CG is guaranteed in
exact arithmetic to find the exact solution to the linear system. However, each it-
eration of conjugate gradients produces an approximate solve uk that can be com-
puted with a simple recurrence. We outline this recurrence in Algorithm 1.4

Algorithm 1: Standard preconditioned conjugate gradients (PCG).
Input :mvm_A() – function for matrix-vector multiplication (MVM) with matrix A

b – vector to solve against
P−1() – function for preconditioner

Output :A−1b.

u0← 0 // Current solution
r0← mvm_A(u0) - b// Current error

z0← P−1(r0) // Preconditioned error
d0← z0 // “Search” direction for next solution

for j ← 0 to T do
vj ← mvm_A(dj−1)
αj ← (r>j−1zj−1)/(d>j−1vj)
uj ← uj−1 + αjdj−1
rj ← rj−1 − αjvj
if ‖rj‖2 < tolerance then return uj ;
zj ← P−1(rj)
βj ← (z>j zj)/(z

>
j−1zj−1)

dj ← zj − βjdj−1
end
return uj+1

∗Equal contribution.
4 Note that this algorithm assumes a preconditioner. In absence of a preconditioner, one can set P−1 = I .

Conjugate gradients avoids explicitly computing the matrix A, and uses only a matrix vector multiply
routine instead. This leads to the following observation about CG’s running time:
Observation 1 (Runtime and space of conjugate gradients). When performing Conjugate gradients
to solve A−1b, the matrix A is only accessed through matrix-vector multiplications (MVMs) with A.
The time complexity of p iterations of CG is therefore O(p ξ(A)), where ξ(A) is the cost of one MVM
with A. The space complexity is O(n) (assuming A ∈ Rn×n).

This is especially advantageous is A is a sparse or structured matrix with a fast MVM algorithm.
Additionally, CG has remarkable convergence properties, and in practice returns solves accurate to
nearly machine precision in p� n iterations. The error of the approximation between the pth iterate
and the optimal solution u∗, ‖uk − u∗‖, depends more on the conditioning of the matrix than on the
size of the matrix A. Formally, the error can be bounded in terms of an exponential decay involving
the condition number κ(A) = ‖A‖2‖A−1‖2:
Observation 2 (Convergence of conjugate gradients [12, 17, 42]). Let A be a positive definite matrix,
and let u∗ be the optimal solution to the linear system A−1b. The error of the pth iterate of conjugate
gradients up can be bounded as follows:

‖u∗ − up‖A ≤ 2
((√

κ (A)− 1
)
/
(√

κ (A) + 1
))p
‖u∗ − u0‖A, (S2)

where ‖ · ‖A is the A norm of a vector – i.e. ‖v‖A = (v> Av)1/2 [12, 17, 42].

Modified Batched Conjugate Gradients (mBCG), which we introduce in Section 4, makes two
changes to standard CG. In particular, it performs multiple solves A−1B = [A−1b1, . . . , A

−1bt]
simultaneously using matrix-matrix multiplication (MMM), and it also returns Lanczos tridiago-
nalization matrices associated with each of the solves. The Lanczos tridiagonalization matrices are
used for estimating the log determinant of A. mBCG is outlined in Algorithm 2:

Algorithm 2: Modified preconditioned conjugate gradients (PCG).
Input :mmm_A() – function for matrix-matrix multiplication with A

B – n× t matrix to solve against
P̂−1() – func. for preconditioner

Output :A−1B, T̃1, . . ., T̃t.

U0← 0 // Current solutions
R0← mmm_A(U0) - B // Current errors

Z0← P−1(R0) // Preconditioned errors
D0← Z0 // “Search” directions for next solutions

T̃1, . . . T̃t ← 0 // Tridiag matrices

for j ← 0 to t do
Vj ← mmm_A(Dj−1)
~αj ← (Rj−1 ◦ Zj−1)>1/(Dj−1 ◦ Vj)>1
Uj ← Uj−1+ diag(~αj) Dj−1
Rj ← Rj−1− diag(~αj) Vj

if ∀i
∥∥∥r(i)j

∥∥∥
2
< tolerance then return Uj ;

Zj ← P̂−1(Rj)
~βj ← (Zj ◦ Zj)>1/(Zj−1 ◦ Zj−1)>1
Dj ← Zj− diag(~βj) Dj−1
∀i [̃Ti]j,j ← 1/[~αj]i + [~βj−1]i/[~αj−1]i

∀i [̃Ti]j−1,j , [̃Ti]j,j−1←
√

[~βj−1]i/[~αj]i
end
return Uj+1, T̃1, . . . T̃t← 0

Note that blue represents an operation that is converted from a vector operation to a matrix operation.
red is an addition to the CG algorithm to compute the tridiagonalization matrices.

13

In this section, we will derive the correctness of the modified batched CG algorithm. We will show
that the matrix operations perform multiple solves in parallel. Additionally, we will show that the
tridiagonal matrices T̃1, . . . , T̃t correspond to the tridiagonal matrices of the Lanczos algorithm [32].

A.1 Adaptation to multiple right hand sides.

The majority of the lines in Algorithm 2 are direct adaptations of lines from Algorithm 1 to handle
multiple vectors simultaneously. We denote these lines in blue. For example, performing

Vj ← mmm_A(Pj−1)

is equivalent to performing vj ← mvm_A(dj−1) for each column of Pj−1. Thus we can replace
multiple MVM calls with a single MMM call.

In standard CG, there are two scalar coefficient used during each iteration: αj and βj (see Algo-
rithm 1). In mBCG, each solve u1, . . . ,ut uses different scalar values. We therefore now have two
coefficient vectors: ~αj ∈ Rt and ~βj ∈ Rt, where each of the entries corresponds to a single solve.
There are two types of operations involving these coefficients:

1. Updates (e.g. ~αj ← (Rj−1 ◦ Zj−1)>1/(Dj−1 ◦ Vj)>1)
2. Scalaing (e.g. Uj ← Uj−1+ diag(~αj) Dj−1)

The update rules are batched versions of the update rules in the standard CG algorithm. For example:

[~αj]1
...

[~αj]t

 =

(Rj−1 ◦ Zj−1)>1
(Dj−1 ◦ Vj)>1

=

([Rj−1]1◦[Zj−1]1)1
([Dj−1]1◦[Vj]1)1

...
([Rj−1]t◦[Zj−1]t)1
([Dj−1]t◦[Vj]t)1

 =

[Rj−1]
>
1 [Zj−1]1

[Dj−1]>1 [Vj]1
...

[Rj−1]
>
t [Zj−1]t

[Dj−1]>t [Vj]t

 ,

using the identity (v · · ·v′)1 = v>v′. Thus these updates are batched versions of their non-batched
counterparts in Algorithm 1. Similarly, for scaling,

[[Uj]1 · · · [Uj]t] = Uj = Uj−1 + diag(αj)Dj−1

= [[Uj−1]1 · · · [Uj−1]t] + [[αj]1 [Dj−1]1 · · · [αj]t [Dj−1]t] .

This these scaling operations are also batched versions of their counterparts in Algorithm 1. mBCG is
therefore able to perform all solve operations in batch, allowing it to perform multiple solves at once.

A.2 Obtaining Lanczos tridiagonal matrices from mBCG.

To motivate the Lanczos tridiagonal matrices T̃1, . . . , T̃t from mBCG, we will first discuss the
Lanczos algorithm. Then, we will discuss how mBCG recovers these matrices.

The Lanczos algorithm [32] is an iterative MVM-based procedure to obtain a tridiagonalization
of a symmetric matrix A. A tridiagonalization is a decomposition A = QTQ> with Q ∈ Rn×n
orthonormal and T ∈ Rn×n tridiagonal – i.e.

T =

d1 s1 0
s1 d2 s2

s2 d3
. . .

. sn−1
0 sn−1 dn

. (S3)

The exact Q and T matrices are uniquely determined by a probe vector z – which is the first column
of Q. The Lanczos algorithm iteratively builds the rest of Q and T by forming basis vectors in the
Krylov subspace – i.e.

span
{
z, Az, A2z, . . . , An−1z

}
, (S4)

and applying Gram-Schmidt orthogonalization to these basis vectors. The orthogonalized vectors
are collected in Q and the Gram-Schmidt coefficients are collected in T . Lanczos [32] shows that n

14

iterations of this procedure produces an exact tridiagonalization A = QTQ>. p iterations yields a
low-rank approximate tridiagonalization A ≈ Q̃T̃ Q̃>, where Q̃ ∈ Rn×p and T̃ ∈ Rp×p.

Connection between the Lanczos algorithm and conjugate gradients.

There is a well-established connection between the Lanczos algorithm and conjugate gradients
[12, 17, 42]. In fact, the conjugate gradients algorithm can even be derived as a byproduct of the
Lanczos algorithm. Saad [42] and others show that it is possible to recover the T̃ tridigonal Lanczos
matrix by reusing coefficients generated in CG iterations. In particular, we will store the αj and βj
coefficients from Algorithm 1.
Observation 3 (Recovering Lanczos tridiagonl matrices from standard CG [42]). Assume we use
p iterations of standard preconditioned conjugate gradients to solve A−1z with preconditioner P .
Let α1, . . . , αp and β1, . . . , βp be the scalar coefficients from each iteration (defined in Algorithm 1).
The matrix

1
α1

√
β1

α1
0√

β1

α1

1
α2

+ β1

α1

√
β2

α2√
β2

α2

1
α3

+ β2

α2

√
β3

α3

. . .
. . .

√
βm−1

αm−1

0

√
βm−1

αm−1

1
αm

+ βm−1

αm−1

(S5)

is equal to the Lanczos tridiagonal matrix T̃ , formed by running p iterations of Lanczos to achieve
Q̃>P−1AQ̃ = T̃) with probe vector z.

(See [42], Section 6.7.3.) In other words, we can recover the Lanczos tridiagonal matrix T̃ simply
by running CG. Our mBCG algorithm simply exploits this fact. The final two lines in red in
Algorithm 2 use the ~αj and ~βj coefficients to form t tridiagonal matrices. If we are solving the
systems A−1[b1, . . . ,bt], then the resulting tridiagonal matrices correspond to the Lanczos matrices
with probe vectors b1, . . . ,bt.

B Runtime analysis of computing inference terms with mBCG

We first briefly analyze the running time of mBCG (Algorithm 2) itself. The algorithm performs matrix
multiplies with K̂XX once before the loop and once during every iteration of the loop. Therefore, the
running time of mBCG is at least O(pΞ(K̂XX)), where Ξ(K̂XX) is the time to multiply K̂XX by an
n× t matrix.

For the remainder of the algorithm, all matrices involved (Uj , Vj , Rj , Zj , Pj) are n× t matrices. All
of the lines involving only these matrices perform operations that require O(nt) time. For example,
elementwise multiplying Zj ◦ Zj accesses each element in Zj once, and and then multiplying it
by the vector of ones similarly accesses every element in the matrix once. Multiplying Vj by the
diagonal matrix with aj on the diagonal takes O(nt) time, because we multiply every element [Vj]ik
by [aj]i. Therefore, all other lines in the algorithm are dominated by the matrix multiply with K̂XX ,
and the total running time is also O(pΞ(K̂XX)). Furthermore, because these intermediate matrices
are n× t, the space requirement (beyond what is required to store K̂XX) is also O(nt).

We will now show that, after using mBCG to produce the solves and tridiagonal matrices, recovering
the three inference terms takes little additional time and space. To recap, we run mBCG to recover

[u0 u1 · · · ut] = K̂−1XX [y z1 · · · zt] and T̃1, ..., T̃t.

where zi are random vectors and T̃i are their associated Lanczos tridiagonal matrices.

Time complexity of K̂−1XXy. This requires no additional work over running mBCG, because it is the
first output of the algorithm.

15

Time complexity of Tr(K̂−1XX
dK̂XX

dθ). mBCG gives us access to K̂−1XX [z1 . . . zt]. Recall that we
compute this trace as:

Tr
(
K̂−1XX

dK

dθ

)
≈ 1

t

t∑

i=1

(ziK̂
−1
XX)(

dK̂XX

dθ
zi) (S6)

We can get dK̂XX

dθ zi by performing a single matrix multiply dK̂XX

dθ [z1 . . . zt], requiring Ξ(dK̂XX

dθ). (We

assume that Ξ(dK̂XX

dθ) ≈ Ξ(K̂XX), which is true for exact GPs and all sparse GP approximations.)
After this, we need to perform t inner products between the columns of this result and the columns
of K̂−1XX [z1 . . . zt], requiring O(tn) additional time. Therefore, the running time is still dominated
by the running time of mBCG. The additional space complexity involves the 2t length n vectors
involved in the inner products, which is negligible.

Time complexity of log |K̂XX |. mBCG gives us p×p tridiagonal matrices T̃1, ..., T̃t. To compute the
log determinant estimate, we must compute e>1 log T̃ie1 for each i. To do this, we eigendecompose
T̃i = ViΛiV

>
i , which can be done in O(p2) time for tridiagonal matrices, and compute

e>1 Vi log ΛiV
>
i e1 (S7)

where now the log is elementwise over the eigenvalues. Computing V >i e1 simply gets the first row
of Vi, and log Λ is diagonal, so this requires only O(p) additional work.

The total running time post-mBCG is therefore dominated by the O(tp2) time required to eigende-
compose each matrix. This is again significantly lower than the running time complexity of mBCG
itself. The space complexity involves storing 2t p× p matrices (the eigenvectors), or O(tp2).

C The Pivoted Cholesky Decomposition

In this section, we review a full derivation of the pivoted Cholesky decomposition as used for
precondtioning in our paper. To begin, observe that the standard Cholesky decomposition can be
seen as producing a sequentially more accurate low rank approximation to the input matrix K. In
particular, the Cholesky decomposition algorithm seeks to decompose a matrix K as:

[
K11 K12

K>12 K22

]
=

[
L11 0
L21 L22

] [
L>11 L>21
0 L>22

]
(S8)

Note that that K11 = L11L
>
11, K12 = L11L

>
21, and K22 = L21L

>
21 +L22L

>
22. From these equations,

we can obtain L11 by recursively Cholesky decomposing K11, L>21 by computing L>21 = L−111 K12,
and finally L22 by Cholesky decomposing the Schur complement S = K22 − L21L

>
21.

Rather than compute the full Cholesky decomposition, we can view each iteration of the Cholesky
decomposition as producing a slightly higher rank approximation to the matrix K. In particular,

if K =

[
k11 b>

b K22

]
, then L11 =

√
k11, L21 = 1√

k11
b, and the Schur complement is S =

K22 − 1
k11

bb>. Therefore:

K =
1

k11

[
k11
b

] [
k11
b

]>
+

[
0 0
0 S

]
(S9)

= q1q
>
1 +

[
0 0
0 S

]
. (S10)

Because the Schur complement is positive definite [19], we can continue by recursing on the

n− 1× n− 1 Schur complement S to get another vector. In particular, if S = q2q
>
2 +

[
0 0
0 S′

]
,

then:

K = q1q
>
1 +

[
0
q2

] [
0
q2

]>
+

[
0 0
0 S′

]
(S11)

16

In general, after k iterations, defining q̂i =

[
0
qi

]
from this procedure, we obtain

K =

k∑

i=1

q̂iq̂
>
i +

[
0 0
0 Sk

]
. (S12)

The matrix Pk =
∑k
i=1 q̂iq̂

>
i can be viewed as a low rank approximation to K, with

‖K − Pk‖2 =

∥∥∥∥
[

0 0
0 Sk

]∥∥∥∥
2

.

To improve the accuracy of the low rank approximation, one natural goal is to minimize the norm
of the Schur complement, ‖Si‖, at each iteration. Harbrecht et al. [19] suggest to permute the rows
and columns of Si (with S0 = K) so that the upper-leftmost entry in Si is the maximum diagonal
element. In the first step, this amounts to replacing K with π1Kπ1, where π1 is a permutation matrix
that swaps the first row and column with whichever row and column corresponds to the maximum
diagonal element of K. Thus:

π1Kπ1 = q1q
>
1 +

[
0 0
0 S

]
. (S13)

To proceed, one can apply the same pivoting rule to S to achieve π2. Defining π̂2 =

[
1 0
0 π2

]
,

then we have:

π̂2π1Kπ1π̂2 = π̂2q1q
>
1 π̂2 + q̂2q̂

>
2 +

[
0 0
0 S2

]
. (S14)

To obtain a rank two approximation to K from this, we multiply from the left and right by all
permutation matrices involved:

K = π1q1q
>
1 π1 + π1π̂2q̂2q̂

>
2 π̂2π1 + E2. (S15)

In general, after k steps, we obtain:

K =
k∑

i=1

(Qiq̂i)(Qiq̂i)> + Ek, (S16)

where Qi =
∏i
j=1 π̂j . By collecting these vectors in to a matrix, we have that K = LkL

>
k + Ek,

and thus K ≈ LkL>k .

C.1 Running time of the pivoted Cholesky decomposition.

Let LkL>k be the rank k pivoted Cholesky decomposition of KXX . We now analyze the time
complexity of computing the pivoted Cholesky decomposition and using it for preconditioning. We
will prove the claims made about the pivoted Cholesky decomposition made in the main text which
are restated here:
Observation 4 (Properties of the Pivoted Cholesky decomposition).

1. Let LkL>k be the rank k pivoted Cholesky decomposition of KXX . It can be computed in
O(ρ(KXX)k2) time, where ρ(KXX) is the time required to retrieve a single row of KXX .

2. Linear solves with P̂ = LkL
>
k + σ2I can be performed in O(nk2) time.

3. The log determinant of P̂ can be computed in O(nk2) time.

Time complexity of computing LkL>k . In general, computing Lk requires reading the diagonal
of KXX and k rows of the matrix. For a standard positive definite matrix, Harbrecht et al. [19]
observes that this amounts to a O(nk2) running time. Given that the time requirement for an matrix-
vector multiplication with a standard matrix K̂XX is O(n2), computating the pivoted Cholesky
decomposition is a negligible operation.

17

More generally if we wish to avoid computing the exact matrix KXX , then the time requirement
is O(ρ(A)k2), where ρ(A) is the time required to access a row of A. When applying the SoR
approximation (KXX = KXUK

−1
UUK

>
XU), we have that ρ(K) = O(nm). Thus, for SGPR, the time

complexity of computing the rank k pivoted Cholesky decomposition is O(nmk2) time. Assuming
that k2 ≤ m or k2 ≈ m, this operation will cost roughly the same as a single MVM.

When applying the SKI approximation (KXX = WKUUW
>), we have that ρ(KXX) = O(n). In

particular, the ith row of KXX is given by [KXX]i = wiKUUW
>. Rather than explicitly perform

these multiplications using Toeplitz matrix arithmetic, we observe that wiKUU is equivalent to
summing four elements from each column of KUU (corresponding to the four non-zero elements of
wi). Since elements of KUU can be accessed in O(1) time, this multiplication requires O(m) work.
After computing v = wiKUU , computing vW> requires O(n) work due to the sparsity of W>.
Therefore, we can compute a pivoted Cholesky decomposition for a SKI kernel matrix in O(nk2)
time. This time complexity is comparable to the MVM time complexity, which is also linear in n.

Time complexity of computing P̂−1k y and log |P̂k|. To compute solves with the preconditioner, we
make use of the Woodbury formula. Observing that Pk = LkL

>
k ,

P̂−1k y = (LkL
>
k + σ2I)−1y =

1

σ2
y − 1

σ4
Lk(I − 1

σ2
L>k Lk)−1L>k y

Computing L>k y takes O(nk) time. After computing the k× k matrix I − 1
σ2L

>
k Lk in O(nk2) time,

computing a linear solve with it takes O(k3) time. Therefore, each solve with the preconditioner,
Pk + σ2I , requires O(nk2) time total. To compute the log determinant of the preconditioner, we
make use of the matrix determinant lemma:

log |P̂k| = log |Pk + σ2I| = log |I − 1

σ2
L>k Lk|+ 2n log σ

Since I − 1
σ2LkL

>
k is a k × k matrix, we can compute the above log determinant in O(nk2) time.

D Convergence Analysis of Pivoted Cholesky Preconditioned CG

In this section we prove Theorem 1, which bounds the convergence of pivoted Cholesky-
preconditioned CG for univariate RBF kernels.
Theorem 1 (Restated). Let KXX ∈ Rn×n be a n× n univariate RBF kernel, and let LkL>k be its
rank k pivoted Cholesky decomposition. Assume we are using preconditioned CG to solve the system
K̂−1XXy = (KXX + σ2I)−1y with preconditioner P̂ = (LkL

>
k + σ2I). Let uk be the kth solution of

CG, and let u∗ = K̂−1XXy be the exact solution. Then there exists some b > 0 such that:

‖u∗ − uk‖K̂XX
≤ 2

(
1

1 +O(n−1/2 exp(kb/2))

)p
‖u∗ − u0‖K̂XX

. (S17)

Proof. Let LkL>k be the rank k pivoted Cholesky decomposition of a univariate RBF kernel KXX .
We begin by stating a well-known CG convergence result, which bounds error in terms of the
conditioning number κ (see Observation 2):

‖u∗ − uk‖K̂XX
≤ 2

√
κ
(
P̂−1k K̂XX

)
− 1

√
κ
(
P̂−1k K̂XX

)
+ 1

p

‖u∗ − u0‖K̂XX
. (S18)

Our goal is therefore to bound the condition number of (LkL
>
k +σ2I)−1(KXX +σ2I). To do so, we

will first show that LkL>k rapidly converges to KXX as the rank k increases. We begin by restating
the primary convergence result of [19]:

Lemma 2 (Harbrecht et al. [19]). If the eigenvalues of a positive definite matrix KXX ∈ Rn×n
satisfy 4kλk . exp(−bk) for some b > 0, then the rank k pivoted Cholesky decomposition LkL>k
satisfies

Tr(KXX − LkL>k) . n exp(−bk).

18

(See Harbrecht et al. [19] for proof.) Intuitively, if the eigenvalues of a matrix decay very quickly
(exponentially), then it is very easy to approximate with a low rank matrix, and the pivoted Cholesky
algorithm rapidly constructs such a matrix. While there has been an enormous amount of work
understanding the eigenvalue distributions of kernel functions (e.g., [48]), in this paper we prove the
following useful bound on the eigenvalue distribution of univariate RBF kernel matrices:

Lemma 3. Given x1, . . . , xn ∈ [0, 1], the univariate RBF kernel matrix KXX ∈ Rn×n with
Kij = exp

(
−γ(xi − xj)2

)
has eigenvalues bounded by:

λ2l+1 ≤ 2ne−γ/4Il+1(γ/4) ∼ 2ne−γ/4√
πγ

(
eγ

8(l + 1)

)l+1

where Ij denotes the modified Bessel function of the first kind with parameter j.

(See Appendix E for proof.) Thus, the eigenvalues of an RBF kernel matrix KXX decay super-
exponentially, and so the bound given by Lemma 2 applies.

Lemma 3 lets us argue for the pivoted Cholesky decomposition as a preconditioner. Intuitively,
this theorem states that the pivoted Cholesky LkLk converges rapidly to KXX . Alternatively, the
preconditioner (LkL

>
k + σ2I)−1 converges rapidly to K̂−1XX = (KXX + σ2I)−1 – the optimal

preconditioner in terms of the number of CG iterations. We explicitly relate Lemma 3 to the rate of
convergence of CG by bounding the condition number:

Lemma 1 (Restated). Let KXX ∈ Rn×n be a univariate RBF kernel matrix. Let LkL>k be the rank
k pivoted Cholesky decomposition of KXX , and let P̂k = LkL

>
k + σ2I . Then there exists a constant

b > 0 so that the condition number κ(P̂−1K̂XX) satisfies the following inequality:

κ
(
P̂−1k K̂XX

)
,
∥∥∥P̂−1k K̂XX

∥∥∥
2

∥∥∥K̂−1XX P̂k
∥∥∥
2
≤ (1 +O(n exp(−bk)))

2
. (S19)

(See Appendix E for proof.) Lemma 1 lets us directly speak about the impact of the pivoted Cholesky
preconditioner on CG convergence. Plugging Lemma 1 into standard CG convergence bound (S18):

‖u∗ − uk‖K̂XX
≤ 2

√
κ
(
P̂−1k K̂XX

)
− 1

√
κ
(
P̂−1k K̂XX

)
+ 1

p

‖u∗ − u0‖K̂XX

≤ 2

(
1 +O(n exp(−bk))− 1

1 +O(n exp(−bk)) + 1

)p
‖u∗ − u0‖K̂XX

= 2

(
1

1 +O(exp(kb)/n)

)p
‖u∗ − u0‖K̂XX

.

E Proofs of Lemmas

E.1 Proof of Lemma 1

Proof. Let KXX ∈ Rn×n be a univariate RBF kernel matrix, and let LkL>k be its rank k pivoted
Cholesky decomposition. Let E be the difference between KXX and its low-rank pivoted Cholesky
approximation – i.e. E = KXX − LkL>k . We have:

κ
(
P̂−1k K̂XX

)
,
∥∥∥P̂−1k K̂XX

∥∥∥
2

∥∥∥K̂−1XX P̂k
∥∥∥
2

=
∥∥∥
(
LkL

>
k + σ2I

)−1 (
KXX + σ2I

)∥∥∥
2

∥∥∥
(
LkL

>
k + σ2I

) (
KXX + σ2I

)−1∥∥∥
2

=
∥∥∥
(
LkL

>
k + σ2I

)−1 (
LkL

>
K + E + σ2I

)∥∥∥
2

∥∥∥
(
KXX − E + σ2I

) (
KXX + σ2I

)−1∥∥∥
2

=
∥∥∥I +

(
LkL

>
k + σ2I

)−1
E
∥∥∥
2

∥∥∥I −
(
KXX + σ2I

)−1
E
∥∥∥
2

19

Applying Cauchy-Schwarz and the triangle inequality we have

κ
(
P̂−1k K̂XX

)
≤
(

1 +
∥∥∥
(
LkL

>
k + σ2I

)−1∥∥∥
2
‖E‖2

)(
1 +

∥∥∥
(
KXX + σ2I

)−1∥∥∥
2
‖E‖2

)

Let c be some constant such that c ≥
∥∥∥
(
LkL

>
k + σ2I

)−1∥∥∥
2

and c ≥
∥∥∥
(
KXX + σ2I

)−1∥∥∥
2
. Then:

κ
(
P̂−1k K̂XX

)
≤ (1 + c ‖E‖2)

2

Harbrecht et al. [19] show that E is guaranteed to be positive semi-definite, and therefore ‖E‖2 ≤
Tr(E). Recall from Lemma 2 and Lemma 3 that Tr(E) = Tr(KXX − LkL>k) . n exp(−bk) for
some b > 0. Therefore:

κ
(
P̂−1k K̂XX

)
≤ (1 +O(n exp(−bk)))

2
.

E.2 Proof of Lemma 3

Proof. We organize the proof into a series of lemmata. First, we observe that if there is a degree
d polynomial that approximates exp(−γr2) to within some ε on [−1, 1], then λd+1(KXX) ≤ nε
(Lemma 4). Then in Lemma 5, we show that if pl is a truncated Chebyshev expansions of degree 2l,
then |pl(r)− exp(−γr2)| < 2e−γ/4Il+1(γ/4); the argument involves a fact about sums of modified
Bessel functions which we prove in Lemma 6. Combining these two lemmas yields the theorem.

Lemma 4. Given nodes x1, . . . , xn ∈ [0, 1], define the kernel matrix K ∈ Rn×n with kij =
φ(xi − xj). Suppose the degree d polynomial q satisfies |φ(r)− q(r)| ≤ ε for |r| ≤ 1. Then

λd+1(K) ≤ nε.

Proof. Define K̃ ∈ Rn×n with k̃ij = q(xi − xj). Each column is a sampling at the X grid of a
deg(q) polynomial, so K̃ has rank at most deg(q). The entries of the error matrix E = K − K̃ are
bounded in magnitude by ε, so ‖E‖2 ≤ nε (e.g. by Gershgorin’s circle theorem). Thus, λd+1(K) ≤
λd+1(K̃) + ‖E‖2 = nε.

Lemma 5. For x ∈ [−1, 1],

| exp(−γx2)− pl(x)| ≤ 2e−γ/4Il+1(γ/4).

Proof. Given that |(−1)jT2j(x)| ≤ 1 for any x ∈ [−1, 1], the tail admits the bound

| exp(−γx2)− pl(x)| ≤ 2e−γ/2
∑

j=l+1

Ij(γ/2).

Another computation (Lemma 6) bounds the sum of the modified Bessel functions to yield

| exp(−γx2)− pl(x)| ≤ 2e−γ/4Il+1(γ/4).

Lemma 6. ∞∑

j=l+1

Ij(η) ≤ exp(η/2)Il+1(η/2)

Proof. Take the power series expansion

Ij(η) =

∞∑

m=0

1

m!(m+ j)!

(η
2

)2m+j

and substitute to obtain
∞∑

j=l+1

Ij(η) =
∞∑

j=l+1

∞∑

m=0

1

m!(m+ j)!

(η
2

)2m+j

.

20

All sums involved converge absolutely, and so we may reorder to obtain
∞∑

j=l+1

Ij(η) =

∞∑

m=0

1

m!

(η
2

)m ∞∑

j=l+1

1

(m+ j)!

(η
2

)m+j

.

Because it is the tail of a series expansion for the exponential, we can rewrite the inner sum as
∞∑

j=l+1

1

(m+ j)!

(η
2

)m+j

=
exp(ξm/2)

(m+ l + 1)!

(
ξm
2

)m+l+1

for some ξm in [0, η], and thus
∞∑

j=l+1

1

(m+ j)!

(η
2

)m+j

≤ exp(η/2)

(m+ l + 1)!

(η
2

)m+l+1

.

Substituting into the previous expression gives
∞∑

j=l+1

Ij(η) ≤
∞∑

m=0

1

m!

(η
2

)m exp(η/2)

(m+ l + 1)!

(η
2

)m+l+1

= exp
(η

2

) ∞∑

m=0

1

m!(m+ l + 1)!

(η
2

)2m+l+1

= exp(η/2)Il+1(η/2).

21

