
A Appendix

A.1 Additional Experimental Results

Figure 6: More figures corresponding to the 1-D example.
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Figure 7: More Results on Inference with Dirichlet distributions
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Figure 8: Logistic regression experiments (as in Fig. 5) on more datasets.
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A.2 Proofs for Section 3

Theorem 1 (IWVI). Let qM (z1:M ) be the density of the generative process described by Alg. 1,

which is based on self-normalized importance sampling over a batch of M samples from q. Let

pM (z1:M ,x) = p(z1,x)q(z2:M ) be the density obtained by drawing z1 and x from p and drawing

the “dummy” samples z2:M from q. Then

qM (z1:M ) =
pM (z1:M ,x)

1
M

PM
m=1 !(zm)

. (6)

Further, the ELBO decomposition in Eq. 1 applied to qM and pM is

log p(x) = IW-ELBOM [q(z)kp(z,x)] + KL [qM (z1:M )kpM (z1:M |x)] . (7)

Proof. For the density qM , define the distribution

qM (ẑ1:M , z1:M , h) = qM (ẑ1:M ) qM (h|ẑ1:M ) qM (z1:M |ẑ1:M , h)

qM (ẑ1:M ) = q (ẑ1:M )

qM (h|ẑ1:M ) =
p (ẑh, x) /q (ẑh)

PM
m=1 p (ẑm, x) /q (ẑm)

qM (z1:M |ẑ1:M , h) = � (z1 � ẑh) � (z2:M � ẑ�h) .

What is the marginal distribution over z1:M?

qM (z1:M ) =

Z MX

h=1

qM (ẑ1:M ) qM (h|ẑ1:M ) qM (z1:M |ẑ1:M , h) dẑ1:M

=

Z MX

h=1

q (ẑ1:M )
p (ẑh,x) /q (ẑh)

PM
m=1 p (ẑm,x) /q (ẑm)

� (z1 � ẑh) � (z2:M � ẑ�h) dẑ1:M

=

MX

h=1

Z
q (ẑ1:M )

p (ẑh,x) /q (ẑh)
PM

m=1 p (ẑm,x) /q (ẑm)
� (z1 � ẑh) � (z2:M � ẑ�h) dẑ1:M

= M

Z
q (ẑ1:M )

p (ẑ1,x) /q (ẑ1)PM
m=1 p (ẑm,x) /q (ẑm)

� (z1 � ẑ1) � (z2:M � ẑ2:M ) dẑ1:M

= M

Z
p (ẑ1,x) q (ẑ2:M )

PM
m=1 p (ẑm,x) /q (ẑm)

� (z1 � ẑ1) � (z2:M � ẑ2:M ) dẑ1:M

= M
p (z1,x) q (z2:M )

PM
m=1 p (zm,x) /q (zm)

=
p (z1,x) q (z2:M )

1
M

PM
m=1 p (zm,x) /q (zm)

For the decomposition, we have, by Eq. 1 that

log pM (x) = E
qM (z1:M )

log
pM (z1:M ,x)

qM (z1:M )
+ KL [qM (z1:M )kpM (z1:M |x)] .

Now, by the definition of pM , it’s easy to see that p(x) = pM (x).

Next, re-write the importance-weighted ELBO as

E
qM (z1:M )

log
pM (z1:M ,x)

qM (z1:M )
= E

qM (z1:M )
log

p (z1,x) q (z2:M )

p(z1,x)q(z2:M )
1
M

PM
m=1 p(zm,x)/q(zm)

= E
qM (z1:M )

log

 
1

M

MX

m=1

p (zm, x)

q (zm)

!
.
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This gives that

log p (x) = E
qM (z1:M )

log

 
1

M

MX

m=1

p (zm, x)

q (zm)

!

| {z }
importance weighted ELBO

+KL [qM (z1:M )kpM (z1:M |x)] .

Lemma 4. EqM (z1) t(z1) = Eq(z1:M )

PM
m=1 !(zm) t(zm)PM

m=1 !(zm)
.

Proof.

E
qM (z1:M )

t(z1) =

Z
t(z1) p (z1,x) q (z2:M )

1
M

PM
m=1 p (zm,x) /q (zm)

dz1:M

=

Z
q (z1:M )

t(z1) p (z1,x) /q(z1)
1
M

PM
m=1 p (zm,x) /q (zm)

dz1:M

= E
q(z1:M )

t(z1) p (z1,x) /q(z1)
1
M

PM
m=1 p (zm,x) /q (zm)

= E
q(z1:M )

1
M

PM
m=1 t(zm) p (zm,x) /q(zm)

1
M

PM
m=1 p (zm,x) /q (zm)

= E
q(z1:M )

PM
m=1 ! (zm) t(zm)
PM

m=1 ! (zm)

Theorem 2. The marginal and joint divergences relevant to IWVI are related by

KL [qM (z1:M )kpM (z1:M |x)] = KL [qM (z1)kp(z1|x)] + KL [qM (z2:M |z1)kq(z2:M )] .

As a consequence, the gap in the first inequality of Eq 8 is exactly KL [qM (z1)kp(z1|x)] and the gap

in the second inequality is exactly KL [qM (z2:M |z1)kq(z2:M )].

Proof.

KL [qM (z1:M )kpM (z1:M |x)] = KL [qM (z1)kpM (z1|x)] + KL [qM (z2:M |z1)kpM (z2:M |z1,x)]

by the chain rule of KL-divergence
= KL [qM (z1)kp(z1|x)] + KL [qM (z2:M |z1)kq(z2:M )]

since pM (z1|x) = p(z1|x) and pM (z2:M |z1,x) = q(z2:M ).

The KL-divergences can be identified with the gaps in the inequalities in Eq. 8 through the application
of Eq. 1 to give that

log p(x) � ELBO [qM (z1)kp(z1,x)] = KL [qM (z1)kpM (z1|x)]

which establishes the looseness of the first inequality. Then, Thm. 1 gives that

log p(x) � IW-ELBOM [q(z)kp(z,x)] = KL [qM (z1:M )kpM (z1:M |x)] .

The difference of the previous two equations gives that the looseness of the second inequality is

ELBO [qM (z1)kp(z1,x)] � IW-ELBOM [q(z)kp(z,x)] = KL [qM (z1:M )kpM (z1:M |x)]

�KL [qM (z1)kpM (z1|x)]

= KL [qM (z2:M |z1)kq(z2:M )] .
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A.3 Asymptotics

Theorem 3. For large M , the looseness of the IW-ELBO is given by the variance of R. Formally, if

there exists some ↵ > 0 such that E |R � p(x)|2+↵
< 1 and lim supM!1 E[1/RM ] < 1, then

lim
M!1

M

⇣
log p(x) � IW-ELBOM [q(z)kp(z,x)]| {z }

KL[qMkpM ]

⌘
=

V[R]

2p(x)2
.

We first give more context for this theorem, and then its proof. Since IW-ELBOM [pkq] =

E log(RM ) where
p
M(RM � p(x)) converges in distribution to a Gaussian distribution, the result

is nearly a straightforward application of the “delta method for moments” (e.g. [4, Chapter 5.3.1]).
The key difficulty is that the derivatives of log(r) are unbounded at r = 0; bounded derivatives are
typically required to establish convergence rates.

The assumption that lim supM!1 E[1/RM ] < 1 warrants further discussion. One (rather strong)
assumption that implies this1 would be that E 1/R < 1. However, this is not necessary. For example,
if R were uniform on the [0, 1] interval, then E 1/R does not exist, yet E 1/RM does for any M � 2.
It can be shown2 that if M � M0 and E 1/RM0 < 1 then E 1/RM  E 1/RM0 . Thus, assuming
only that there is some finite M such that E 1/RM < 1 is sufficient for the lim sup condition.

Both Maddison et al. [13, Prop. 1] and Rainforth et al. [18, Eq. 7] give related results that control the
rate of convergence. It can be shown that Proposition 1 of Maddison et al. implies the conclusion of
Theorem 3 if E

⇥
(R � p(x))

6
⇤
< 1. Their Proposition 1, specialized to our notation and setting, is:

Proposition 1 ([13]). If g(M) = E
⇥
(RM � p(x))

6
⇤
< 1 and lim supM!1 E[1/RM ] < 1, then

log p(x) � E logRM =
V[RM ]

2p(x)2
+ O(

p
g(M)).

In order to imply the conclusion of Theorem 3, it is necessary to bound the final term. To do this, we
can use the following lemma, which is a consequence of the Marcinkiewicz–Zygmund inequality [14]
and provides an asymptotic bound on the higher moments of a sample mean. We will also use this
lemma in our proof of Theorem 3 below.
Lemma 5 (Bounds on sample moments). Let U1, . . . , UM be i.i.d random variables with E[Ui] = 0

and let ŪM =
1
M

PM
i=1 Ui. Then, for each s � 2 there is a constant Bs > 0 such that

E
��ŪM

��s  BsM
�s/2 E

��U1

��s.

We now show that if the assumptions of Prop. 1 are true, this lemma can be used to bound g(M) and
therefore imply the conclusion of Theorem 3. If E

��R�p(x)
��6 < 1 then g(M) = E

��RM �p(x)
��6 

B6M
�3 E

��R � p(x)
��6 2 O(M

�3
) and

p
g(M) 2 O(M

�3/2
). Then, since V[RM ] = V[R]/M ,

we can multiply by M in both sides of Prop. 1 to get

M(log p(x) � E logRM ) =
V[R]

2p(x)2
+ O(M

�1/2
),

which goes to V[R]
2p(x)2 as M ! 1, as desired.

Proof of Theorem 3. Our proof will follow the same high-level structure as the proof of Prop. 1 from
Maddison et al. [13], but we will more tightly bound the Taylor remainder term that appears below.

1To see this, observe that since 1/r is convex over r > 0, Jensen’s inequality gives that ( 1
M

PM
m=1 rm)�1 

1
M

PM
m=1 r

�1
m and so E 1/RM  E 1/R.

2Define � to be a uniformly random over all permutations of 1, ...,M . Then, Jensen’s inequality gives that
 

1
M

MX

m=1

rm

!�1

=

 
E
�

1
M0

M0X

m=1

r�(m)

!�1

 E
�

 
1
M0

M0X

m=1

r�(m)

!�1

.

Since RM is a mean of i.i.d. variables, the permutation vanishes under expectations and so E 1/RM  E 1/RM0 .
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Let ✓ = p(x) = ER and �
2

= V[R]. For any r > 0, let � = �(r) =
r�✓
✓ =

r
✓ � 1. Then

log ✓ � log r = � log(1 + �). Since r > 0, we only need to consider �1 < � < 1.

Consider the second-order Taylor expansion of log(1 + �):

log(1 + �) = � � 1

2
�

2
+

Z �

0

x
2

1 + x
dx

Now, let �M = �(RM ). Then, since E[�M ] = 0 and E[�
2
M ] =

1
✓2

�2

M ,

E(log ✓ � logRM ) = �E log(1 + �M ) =
1

2
E�

2
M � E

Z �M

0

x
2

1 + x
dx

=
�
2
/M

2✓2
� E

Z �M

0

x
2

1 + x
dx

Moving M and taking the limit, this is

lim
M!1

M(log ✓ � E logRM ) =
�
2

2✓2
� lim

M!1
M E

Z �M

0

x
2

1 + x
dx.

Our desired result holds if and only if limM!1
��M E

R�M

0
x2

1+xdx
�� = 0. Lemma 7 (proven in

Section A.3.1 below) bounds the absolute value of this integral for fixed �. Choosing � = �M ,
multiplying by M and taking the expectation of both sides of Lemma 7 is equivalent to the statement
that, for any ✏ > 0, 0 < ↵  1:

M E
�����

Z �M

0

x
2

1 + x
dx

�����  M E
"
C✏

����
1

1 + �M

����

✏
1+✏ ���M

�� 2+3✏
1+✏

#
+ MD↵ E

���M

��2+↵
. (16)

Let ↵ be as given in the conditions of the theorem, so that E |R � ✓|2+↵
< 1. Assume without loss

of generality that ↵  1; this is justified because E |R � ✓|2+↵
< 1 =) E|R � ✓|2+↵0

< 1 for all
0  ↵

0  ↵. We will show that both terms on the right-hand side of Eq. (16) have a limit of zero as
M ! 1 for suitable ✏. For the second term, let s = 2 + ↵. Then by Lemma 5,

E
���M

��2+↵
= E

���M

��s = ✓
�s E

��RM � ✓
��s  ✓

�s
BsM

�s/2 E
��R � ✓

��s. (17)

Since s/2 > 1 and E |R� ✓|s < 1, this implies that the D↵ E |�M |2+↵ is o(M�1
) and so the limit

of the second term on the right of Eq. 16 is zero.

For the first term on the right-hand side of Eq. (16), apply Holder’s inequality with p =
1+✏
✏ and

q = 1 + ✏, to get that

M E
"
C✏

����
1

1 + �M

����

✏
1+✏ ���M

�� 2+3✏
1+✏

#
 MC✏

 
E
����

1

1 + �M

����

! ✏
1+✏
 
E
���M

��2+3✏

! 1
1+✏

.

Now, use the fact that lim sup(aMbM )  lim sup aM lim sup bM to get that

lim sup
M!1

M E
"
C✏

����
1

1 + �M

����

✏
1+✏ ���M

�� 2+3✏
1+✏

#

 C✏ lim sup
M!1

 
E
����

1

1 + �M

����

! ✏
1+✏

lim sup
M!1

M

 
E
���M

��2+3✏

! 1
1+✏

(18)

We will now show that the first limit on the right of Eq. 18 is finite, while the second is zero. For the
first limit, our assumption that lim supM!1 E 1

RM
< 1, means that for sufficiently large M , E 1

RM

is bounded by a constant. Thus, we have that regardless of ✏, the first limit of
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lim sup
M!1

 
E
����

1

1 + �M

����

! ✏
1+✏

= lim sup
M!1

 
E
����

✓

RM

����

! ✏
1+✏

is bounded by a constant.

Now, consider the second limit on the right of Eq. 18. Let ✏ = ↵/3 and s
0
=

2+↵
1+✏ > 2. Then, using

the bound we already established above in Eq. 17 we have that

⇣
E
���M

��2+3✏
⌘ 1

1+✏
=

⇣
E
���M

��2+↵
⌘ 1

1+✏  ✓
�s0

B

1
1+✏
s M

�s0/2
⇣
E
��R � ✓

��s
⌘ 1

1+✏
.

Since s
0
> 2 and E

��R � ✓
��s < 1, this proves that the second limit in Eq. (18) is zero. Since we

already showed that the first limit on the right of Eq. 18 is finite we have that the limit of the first
term on the right of Eq. (16) is zero, completing the proof.

A.3.1 Proofs of Lemmas

Lemma 6 (Bounds on sample moments). Let U1, . . . , UM be i.i.d random variables with E[Ui] = 0

and let ŪM =
1
M

PM
i=1 Ui. Then, for each s � 2 there is a constant Bs > 0 such that

E
��ŪM

��s  BsM
�s/2 E

��U1

��s.

Proof. The lemma is proved for the case when s is an integer in [4, Lemma 5.3.1]. Our proof for real
s follows [20]. The Marcinkiewicz–Zygmund inequality [14] states that, under the same conditions,
for any s � 1 there exists Bs > 0 such that

E
 ����

MX

i=1

Ui

����
s
!

 Bs E
 ✓ MX

i=1

|Ui|2
◆s/2

!

Therefore,

E
 ����

1

M

MX

i=1

Ui

����
s
!

= M
�s E

 ����
MX

i=1

Ui

����
s
!

 BsM
�s E

 ✓ MX

i=1

|Ui|2
◆s/2

!

= BsM
�s/2 E

 ✓
1

M

MX

i=1

|Ui|2
◆s/2

!

Now, since v 7! v
s/2 is convex for s � 2

✓
1

M

MX

i=1

|Ui|2
◆s/2

 1

M

MX

i=1

|Ui|s,

and E
⇣

1
M

PM
i=1 |Ui|s

⌘
= E |U1|s, so we have

E
 ����

1

M

MX

i=1

Ui

����
s
!

 BsM
�s/2 E |U1|s.
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Lemma 7. For every ✏ > 0, 0 < ↵  1, there exists constants C✏, D↵ such that, for all � > �1,

�����

Z �

0

x
2

1 + x
dx

�����  C✏

����
1

1 + �

����

✏
1+✏ ���

�� 2+3✏
1+✏

+ D↵

���
��2+↵

.

Proof. We will treat positive and negative � separately, and show that:

1. If �1 < � < 0, then for every ✏ > 0, there exists C✏ > 0 such that
�����

Z �

0

x
2

1 + x
dx

�����  C✏

����
1

1 + �

����

✏
1+✏ ���

�� 2+3✏
1+✏

. (19)

2. If � � 0, then for every 0 < ↵  1,
�����

Z �

0

x
2

1 + x
dx

����� 
1

2 + ↵| {z }
D↵

�
2+↵

. (20)

Put together, these imply that for all � > �1, the quantity
�� R�

0
x2

1+xdx
�� is no more than the maximum

of the upper bounds in Eqs. (19) and (20). Since these are both non-negative, it is also no more than
their sum, which will prove the lemma.

We now prove the bound in Eq. (19). For �1 < � < 0, substitute u = �x to obtain an integral with
non-negative integrand and integration limits:

Z �

0

x
2

1 + x
dx = �

Z ��

0

u
2

1 � u
du < 0

Therefore: �����

Z �

0

x
2

1 + x
dx

����� =
Z ��

0

u
2

1 � u
du

Now apply Holder’s inequality with p, q > 1 such that 1
p +

1
q = 1:

Z ��

0

u
2

1 � u
du 

 Z ��

0

1

(1 � u)p
du

!1/p

·
 Z ��

0
u
2q

du

!1/q

=

 
1

p � 1

1 � (1 + �)
p�1

(1 + �)p�1

!1/p

·
 

1

2q + 1

�
� �

�2q+1

!1/q

= Cp,q ·
 

1 � (1 + �)
p�1

(1 + �)p�1

!1/p

·
 
���
��2q+1

!1/q

 Cp,q ·
 

1

(1 + �)p�1

!1/p

·
 
���
��2q+1

!1/q

= Cp,q ·

�����
1

1 + �

�����

p�1
p

·
���
�� 2q+1

q

In the fourth line, we used the fact that 0 < (1 + �)
p�1

< 1. Now set p = 1 + ✏, q =
1+✏
✏ and

C✏ = Cp,q , and we obtain Eq. (19).

We now prove the upper bound of Eq. (20). For � � 0, the integrand is non-negative and:
�����

Z �

0

x
2

1 + x
dx

����� =
Z �

0

x
2

1 + x
dx.
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Let f(�) =
R�
0

x2

1+xdx and g(�) =
1

2+↵x
2+↵. Then f(0) = g(0) = 0, and we claim that

f
0
(�)  g

0
(�) for all � � 0, which together imply f(�)  g(�) for all � � 0.

To see that f 0
(�)  g

0
(�), observe that:

g
0
(�)

f 0(�)
=

�
1+↵

�2

1+�

=
�

1+↵
(1 + �)

�2
=

�
1+↵

+ �
2+↵

�2
= �

↵�1
+ �

↵

Both terms on the right-hand side are nonnegative. Recall that ↵ 2 (0, 1]. If � 2 [0, 1] then
�

↵�1 � 1. If � � 1, then �
↵ � 1. Therefore, the sum is at least one for all � � 0.

A.3.2 Relationship of Decompositions

This section discusses the relationship of our decomposition to that of Le et al. [12, Claim 1].

We first state their Claim 1 in our notation. Define q
IS
M (z1:M ) =

QM
m=1 q(zm) and define

p
IS
M (z1:M ,x) = q

IS
M (z1:M )

1

M

MX

m=1

p(zm,x)

q(zm)
=

1

M

MX

m=1

p(zm,x)

Y

m0 6=m

q(zm0).

By construction, the ratio of these two distributions is

p
IS
M (z1:M ,x)

qISM (z1:M )
=

1

M

MX

m=1

p(zm,x)

q(zm)
,

and p
IS
M (x) = p(x) and so applying the standard ELBO decomposition (Eq. 1) to p

IS
M and q

IS
M gives

that

log p(x) = IW-ELBOM [q(z)kp(z,x)] + KL[q
IS
M (z1:M )kpISM (z1:M | x)].

This is superficially similar to our result because it shows that maximizing the IW-ELBO minimizes
the KL-divergence between two augmented distributions. However, it is fundamentally different and
does not inform probabilistic inference. In particular, note that the marginals of these two distributions
are

p
IS
M (z1 | x) =

1

M
p(z1 | x) +

M � 1

M
q(z1),

q
IS
M (z1) = q(z1).

This pair of distributions holds q
IS
M "fixed" to be an independent sample of size M from q, and

changes p
IS
M so that its marginals approach those of qISM as M ! 1. The distribution one can

actually sample from, qISM , does not approach the desired target.

Contrast this with our approach, where we hold the marginal of pM fixed so that pM (z1 | x) = p(z1 |
x), and augment q so that qM (z1) gets closer and closer to pM (z1 | x) as M increases. Further, since
qM (z1) is the distribution resulting from self-normalized importance sampling, it is available for use
in a range of inference tasks.
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