A Appendix

A.1 Additional Experimental Results
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Figure 6: More figures corresponding to the 1-D example.
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Figure 7: More Results on Inference with Dirichlet distributions
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Figure 8: Logistic regression experiments (as in Fig. |5) on more datasets.
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A.2 Proofs for Section

Theorem 1 (IWVI). Let qpr(2z1.01) be the density of the generative process described by Alg. |Z,
which is based on self-normalized importance sampling over a batch of M samples from q. Let
oy (21:m,X) = p(z1,X)q(22.01) be the density obtained by drawing z, and x from p and drawing
the “dummy” samples zo.p; from q. Then

pM(zl:]\/f7 X)

am (Z1m) = ——5r - (6)
ﬁ Zm:l W(Zm)
Further, the ELBO decomposition in Eq. [I|applied to gy and pay is
log p(x) = IW-ELBOy [q(2)||Ip(z, x)] + KL [gar(2z1:00) |pas (21:01 %)) - (7

Proof. For the density ¢y, define the distribution

qu (Zri:v, 2000, ) = qar (Z1ar) qor (PZ1:ar) Qo (2100|2100, )
qu (z21:m) = q(Z1:m)
p (2n, @) /q(2n)
Zf\n/lzl P (2m, ) /q(2m)

am (Z1:m|Z1:00,h) = 6(21 — 2p) 6 (B — 2—,) -

gm (hl21.m) =

What is the marginal distribution over z1.5s?

am (z1:m) = /ZQM (z1:00) qur (RNZ1:ar) Qur (Z1:m (2100, B) d2acg

= /Zq (Z1:m) Sl th(7z )/q)(j;)(i )5(21 —21,) 6 (2o:m — 2-p) d21:m
M

— 7. D) [4@) 50 5005 (agng — 5y) d,
;/cﬂ ) et LS )8 — 2 v

_ M/q(zl:M) Sl (;1(’ )/q)(jl)( )5(21*21)5(ZQ:M*22:M)CZ21:M

m=1 Zm,X Zm
= /Z Z;z (Z)2/J(\]/[(z ] 6 (z1 — 21) 0 (Z2:m — Zo:0r) dZ1.

p(z1,%) q (Z2:01)
Yot P (2 %) /4 (2m)
p (Zly X) q (ZQ:JW)

M Zm 1P(Zma )/Q(Zm)

For the decomposition, we have, by Eq. [I]that

logpy(x)= E  log piM(ZLM’X)

+ KL Z1. z1.m]%x)] .
qn(z1:01) QM(ZLJVI) [QM( LM)Hp]M( I.M‘ )]

Now, by the definition of pyy, it’s easy to see that p(x) = ps(x).
Next, re-write the importance-weighted ELBO as
pu (Z1:0m,%) E log p(21,%) q (z2:1m1)

qm (z1::m) qm (Z1:01) - an (z1:m) 1Zﬂgzl’;fEQ(z2:])‘”/21( )
A o1 P(Zm ) /q(Zm

p Zma
E lo
M(zl I\/I g (M Z )
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This gives that

M
ogp (0= E m(&}jﬁ@jv+mmMmMmm@mm»

qm (z1:0)

importance weighted ELBO

M w(2Zm) t(Zm
Lemma 4. EQM(Zl) t(z1) = Eq(z1.a0) %

Proof.

t(zl) (21, ) (Z2:]VI)
E z = dzq.
QM(Zl:JW)t( 1) / i7 Zm 1]9(zm7 )/q (Zm) LM

i,
TSN p(am) /4 (2m)
t(z1) p(z1,x%) /q(z1)

q(z1:m) < Zm 1P (2m,X) /q(Zm)
a7 Zm,:l t(zm) P (2m, %) /q(2m)
q(z1:01) ﬁ Z%:lp(zm’x) /4 (zm)
St © (2m) t(zm)

q(z1:01) Z:\y/f=1 W (Zm)

Theorem 2. The marginal and joint divergences relevant to IWVI are related by

KL [gn(z1:00) lpar (z1:: %)) = KL [gar(21)[[p(21[%)] + KL [gas (22:01|21)[|q(22:00)] -

As a consequence, the gap in the first inequality of Eq is exactly KL [qpr(z1) ||p(21]x)] and the gap
in the second inequality is exactly KL [qpr (22:a1121) ||q(22:01)]-

Proof.

KL [qar(21)|lpar (21 |%)] 4+ KL [qar (22:01|21) [|par (22: 01 |21, X))
by the chain rule of KL-divergence

= KL [qum(z1)|p(z1]x)] + KL [gns (z2:01]21) (| ¢(2Z2:01)]

since pas(z1|x) = p(z1]x) and pas(z2:as|21, %) = q(22.01).

KL (g (z1:00) [P (21201 [%)]

The KL-divergences can be identified with the gaps in the inequalities in Eq. [8]through the application
of Eq. [I]to give that

log p(x) — ELBO [qas(21)|p(21, x)] = KL [gar(21) |pas (21 [x)]

which establishes the looseness of the first inequality. Then, Thm. [I] gives that

log p(x) — IW-ELBO\y [¢(2)[|p(z, x)] = KL [gar (z1::m) [P (Z1:01 %)) -

The difference of the previous two equations gives that the looseness of the second inequality is

ELBO [ga(z1)|lp(z1,%)] — IW-ELBO [q(2) [Ip(2, )]

KL [qar(2z1:00) |par (Z1:01 )]
—KL [gar(21) |lpar (z1]%)]
= KL [qn(z2:021)]]q(Z2:01)] -
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A.3 Asymptotics

Theorem 3. For large M, the looseness of the IW-ELBO is given by the variance of R. Formally, if
there exists some v > 0 such that E|R — p(x)|?>T < oo and limsup,,_, .. E[1/ Ry < oo, then

V[R]
2p(x)%

A}i_r:looM(log p(x) — IW-ELBO [q(z)Hp(z,x)]) -

KL[gn [lp]

We first give more context for this theorem, and then its proof. Since IW-ELBO,y [p|lq] =
Elog(Rys) where v/M(Ry; — p(x)) converges in distribution to a Gaussian distribution, the result
is nearly a straightforward application of the “delta method for moments” (e.g. [4, Chapter 5.3.1]).
The key difficulty is that the derivatives of log(r) are unbounded at » = 0; bounded derivatives are
typically required to establish convergence rates.

The assumption that limsup,,_, ., E[1/Rs] < oo warrants further discussion. One (rather strong)
assumption that implies thig'|would be that E 1/ R < co. However, this is not necessary. For example,
if R were uniform on the [0, 1] interval, then E 1/ R does not exist, yet E 1/ R does for any M > 2.
It can be showthat if M > Mypand E1/Rp;, < cothen E1/Ry; < E1/Ryy,. Thus, assuming
only that there is some finite M such that E 1/Rj; < oo is sufficient for the lim sup condition.

Both Maddison et al. [[13} Prop. 1] and Rainforth et al. [18, Eq. 7] give related results that control the
rate of convergence. It can be shown that Proposition 1 of Maddison et al. implies the conclusion of
Theoremif E [(R — p(x))®] < oo. Their Proposition 1, specialized to our notation and setting, is:

Proposition 1 ([13]). If g(M) =E [(Ry — p(x))®] < oo and limsupy,_, ., E[1/Ry] < oo, then

VIR ]
2p(x)?

logp(x) — Elog Ry = +O0(Vg(M)).

In order to imply the conclusion of Theorem 3] it is necessary to bound the final term. To do this, we
can use the following lemma, which is a consequence of the Marcinkiewicz—Zygmund inequality [14]]
and provides an asymptotic bound on the higher moments of a sample mean. We will also use this
lemma in our proof of Theorem [3|below.
Lemma 5 (Bounds on sample moments). Let Uy, ..., Uy be i.i.d random variables with E[U;] = 0
and let Uy = ﬁ Zf\il U;. Then, for each s > 2 there is a constant Bs > 0 such that

E|Uy|" < B.M—*2E|U;]
We now show that if the assumptions of Prop. [1|are true, this lemma can be used to bound g(M) and
therefore imply the conclusion of Theorem IfE |R—p(x) ‘6 < oo then g(M) = E |Ry—p(x) ’6 <
BsM~*E|R — p(x)|° € O(M~2) and \/g(M) € O(M~%/2). Then, since V[Ra] = V[R]/M,
we can multiply by M in both sides of Prop.[I]to get
VIR]

()2 OMH2),

M (logp(x) — Elog Rys) =

which goes to % as M — oo, as desired.
Proof of Theorem[3] Our proof will follow the same high-level structure as the proof of Prop. 1 from
Maddison et al. [13]], but we will more tightly bound the Taylor remainder term that appears below.

M
m=1

'To see this, observe that since 1/r is convex over r > 0, Jensen’s inequality gives that (1 > rm) T <

LM rntandsoE1/Ry <E1/R.
Define o to be a uniformly random over all permutations of 1, ..., M. Then, Jensen’s inequality gives that

1M -1 | Mo -1 | Mo -1
Y m =|E— o(m <E|—+ o(m .
(xm) (e Zee) =22 ew)

m=1 m=1

Since Rz is a mean of i.i.d. variables, the permutation vanishes under expectations and soE1/ Ry < E1/Ray,.
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Let § = p(x) = ER and 0> = V[R]. Forany r > 0, let A = A(r) = 5% = % — 1. Then
logf — logr = —log(1 + A). Since r > 0, we only need to consider —1 < A < oc.

Consider the second-order Taylor expansion of log(1 + A):

2

o (1+A)A1A2+/A Tz
& ) y 1t
Now, let Ay = A(Ryy). Then, since E[A);] = 0 and E[A3,] = 9%%

1 A 2
E(log 0 — log Rar) = — Elog(1 + Ay) = 5“?\4”/ T
0
2 A 2
202 0 1+

Moving M and taking the limit, this is

o2 Am o 2
A}@@M(log@—}ElogRM):ﬁ—k}ganE/o 1+xda:

Our desired result holds if and only if limp/_,o | M E fOAM ﬁ%dm‘ = 0. Lemmalz(proven in
Section [A.3.T] below) bounds the absolute value of this integral for fixed A. Choosing A = Ay,
multiplying by M and taking the expectation of both sides of Lemma[7)is equivalent to the statement

that, forany e > 0,0 < a < 1:

Am o g2
dz
0 1+
Let o be as given in the conditions of the theorem, so that E|R — 0|27 < co. Assume without loss

of generality that o < 1; this is justified because E |R — 0|2t < 0o = E|R — 0]>**" < oo for all
0 < o’ < a. We will show that both terms on the right-hand side of Eq. have a limit of zero as
M — oo for suitable e. For the second term, let s = 2 + «. Then by LemmaE[,

1
14+ Ay

2+«

ME + MDE|Ay|™™.  (16)

<ME|C.

e
T+e 243e
|AM‘ T+e

24«

E|Ay|"" =E|Am|"=0E|Ry —0|" <0°B,M */*E|R-0|". (17)

Since s/2 > 1and E|R — 6|* < oo, this implies that the D, E|A /[>T is o(M 1) and so the limit
of the second term on the right of Eq.[16]is zero.

For the first term on the right-hand side of Eq. (16), apply Holder’s inequality with p = % and
q = 1 + ¢, to get that

1| 248¢ 1 T A\ T
:[J'—A]w‘ |AM’21-:1‘| S MCE<E‘H—AJW‘> <E|AM}2+3> )

Now, use the fact that lim sup(anbas) < limsup aps limsup by to get that

ME |C.

1
1+ Ay

limsup M E

M —o0

Ce

The 24 3¢
‘AM| e

14»6 11?
) limsupM(IE|AJv1|2+3€) (18)

M—soo 1+ Ay M—oe

1
< C.limsup (E‘

We will now show that the first limit on the right of Eq. [I8]is finite, while the second is zero. For the
first limit, our assumption that lim sup;_, o, E 5~ < 0o, means that for sufficiently large M, E 57—
is bounded by a constant. Thus, we have that regardless of ¢, the first limit of
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ﬁ 9 1jre
= limsu E|—

Now, consider the second limit on the right of Eq. Lete = /3 and s’ = 21'% > 2. Then, using
the bound we already established above in Eq. [I7|we have that

1
lim su E|l—
M%oop ( ‘ 14+ A

is bounded by a constant.

1 1 N
(E’AM|2+36) Ide _ (E|AM|2+Q) 1+e < 975’B?M75’/2<E|R7 0|s> 1+e'

Since s’ > 2 and E |R — 9|s < 00, this proves that the second limit in Eq. is zero. Since we
already showed that the first limit on the right of Eq. [I8 is finite we have that the limit of the first
term on the right of Eq. is zero, completing the proof.

O

A.3.1 Proofs of Lemmas

Lemma 6 (Bounds on sample moments). Let Uy, ..., Uy be i.i.d random variables with E[U;] = 0
and let Uy = ﬁ Zf\il U;. Then, for each s > 2 there is a constant Bs > 0 such that

E|Um|" < B.M™*/2E|U;

‘ S

Proof. The lemma is proved for the case when s is an integer in [4, Lemma 5.3.1]. Our proof for real
s follows [20]]. The Marcinkiewicz—Zygmund inequality [[14] states that, under the same conditions,
for any s > 1 there exists B; > 0 such that

(el = ()
) (iel)

M
> Ui
1=1
M s/2
< B.M°E <(Z UZP) )
i=1
1 M s/2
_ —s/2 - 2
ore((gee)”)
Now, since v —> v5/2 is convex for s >2
| M s/2 | M
2 s
<M2|Ui|> SMEWH ;
and E (ﬁ PO |Ui\5> = E|Uy|*, so we have

1 M
E(‘MZUZ-

i=1

Therefore,

1 M
E(‘MZUi

i=1

> < B.M ™SR |ULJ5.
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Lemma 7. Foreverye >0, 0 < a < 1, there exists constants C,, D, such that, for all A > —1,

24«

< Ce

lif 2+3e
T+e
[A[TF + DalA

o
1+A

A2
/ T dx
o l1+=z

Proof. We will treat positive and negative A separately, and show that:

1. If =1 < A < 0, then for every € > 0, there exists C. > 0 such that

A 2
/ Y _@xl<c
o l1+=z

1

1+A

243e

2

— €

2. If A > 0, then for every 0 < a < 1,

A2
/ x dx SLAQ"'“.
o l+=z

2+«
N——

Da

19)

(20)

Put together, these imply that for all A > —1, the quantity | J. OA 22| is no more than the maximum

1+x

of the upper bounds in Egs. and (20). Since these are both non-negative, it is also no more than

their sum, which will prove the lemma.

We now prove the bound in Eq. (19). For —1 < A < 0, substitute u = —z to obtain an integral with

non-negative integrand and integration limits:
A 2 -A 2
/ S — / du<0
0 1 +x 0 1—wu
A 2 -A 2
/ T de| = / Y du
0 1 +x 0 1—u
Now apply Holder’s inequality with p, ¢ > 1 such that % + % =1
_A u2 _A 1 1/p —A 1/q
/ du < / ——du . / w24 du
o 1-w o (IT—up 0
1/p 1/q
B 1 1—(1+Apt . 1 (_A)2q+l
S \lp—1 (1+A)pL 2g+1
1/p 1/q
oy, (AT
= Up,g (1 + A)p71

1 1/p 1/q
2q+1
<Cpg- ((1+A)’H> ' <|A| )

p.q

Therefore:

1+A

In the fourth line, we used the fact that 0 < (1 + A)?~! < 1. Nowsetp = 1 +¢, ¢ = Lte and

C. = C, 4, and we obtain Eq. (19).
We now prove the upper bound of Eq. (20). For A > 0, the integrand is non-negative and:

A 2 A 2
/ Y dr :/ T dr.
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Let f(A) = fo i 2 dz and g(A) = 7o 2?T*. Then f(0) = g(0) = 0, and we claim that
1(A) < (A) for all A > 0, which together imply f(A) < g(A) forall A > 0.

To see that f/(A) < ¢’(A), observe that:

g'(A) AlJra A1+a(1+A) AlJra +A2+a o o
P& T & T AT T A CATrA
1+A

Both terms on the right-hand side are nonnegative. Recall that « € (0,1]. If A € [0,1] then
A1 > 1. If A > 1, then A® > 1. Therefore, the sum is at least one for all A > 0. O

A.3.2 Relationship of Decompositions
This section discusses the relationship of our decomposition to that of Le et al. [[12, Claim 1].

We first state their Claim 1 in our notation. Define ¢17 (z1.1/) = Hﬁ{:l q(z,) and define

M M
S Z s 1
leu (Z1;M, ) = QM Zy. M g mm = = g p Zp, X H q zm/
m= m=1 m’#m

By construction, the ratio of these two distributions is

M
p{v?(zleax) _ i Z p(zmax)
a7 (z1.m) M

and p!?(x) = p(x) and so applying the standard ELBO decomposition (Eq. lil) to p17 and ¢f7 gives
that

log p(x) = IW-ELBOu [¢(2)|Ip(2, x)] + K {437 (z1.01) P57 (2101 | %)].

This is superficially similar to our result because it shows that maximizing the IW-ELBO minimizes
the KL-divergence between two augmented distributions. However, it is fundamentally different and
does not inform probabilistic inference. In particular, note that the marginals of these two distributions
are

M—-1

1
pai (21| %) = 7p(71 [ %) + q(z1),

a7 (1) = q(21).

This pair of distributions holds q{v}g "fixed" to be an independent sample of size M from ¢, and
changes p{\f so that its marginals approach those of q]IV}q as M — oo. The distribution one can
actually sample from, q{\f , does not approach the desired target.

Contrast this with our approach, where we hold the marginal of pj; fixed so that pys(z1 | x) = p(z1 |
x), and augment ¢ so that gps(z1) gets closer and closer to pas(z; | x) as M increases. Further, since
gn(2z1) is the distribution resulting from self-normalized importance sampling, it is available for use
in a range of inference tasks.
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